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ABSTRACT – In micropalaeontology, statistics resulting from counts are rarely reported with error
margins or confidence intervals. A short discussion of taxon proportions and of Fisher’s � diversity index
is augmented with tables and graphs to assist the researcher in calculating confidence intervals. Any
results, discussions or further calculations based on counts can then be put on a more secure statistical
footing. J. Micropalaeontol. 23(1): 61–65, May 2004.

INTRODUCTION
Quantitative studies in micropalaeontology continue to develop,
with new and powerful multivariate statistical methods being
tried and adopted. However, confidence intervals are rarely, if
ever, calculated, let alone referred to. All too often, numbers
from counts are presented as being both accurate and precise
and used as such in more complex methods. This omission is
detrimental as it makes it very difficult to gauge significance and
reliability of any outcome of such statistical operations.

Although the statistics of sampling are very well established,
tables and graphs of immediate use to the micropalaeontologist
are not as readily available as one might wish. This article deals
only with the numbers obtained from the picking tray or slide
traverse. The problems of dealing adequately with the sampling
of a population as it occurs out there in the world are different
from the problems of correctly measuring and representing the
taxa present in the physical samples taken. Therefore, the term
‘population’ is used here in the statistical sense, referring to the
specimens in the collected rock sample or in the (washed)
residue, not to the biological population out in the field.

It is relevant and important to have a reliable and correct
measure of the precision with which one counts and calculates
taxon presence and proportions. When working with extant
organisms and their heterogeneous distribution, the measure of
‘laboratory precision’ has a direct bearing on the nature and,
particularly, the intensity of any sampling program in the field.
In marked contrast, many, if not most, micropalaeontologists
work with fossil material from outcrop or drillcore. They simply
cannot afford the luxury of dealing with such ecological consid-
erations and issues of replicate sampling. Nevertheless, palae-
oecological interpretations have to be made from whatever
material could be recovered. Such interpretations necessarily
rely on the abundances of any taxa encountered and statistically
justified confidence intervals are, therefore, important. Anyone
confronted with such problems will hopefully benefit from the
following discussion, tables and graphs.

CONFIDENCE INTERVALS ON PROPORTIONS
A general problem which has greatly exercised the minds of
researchers and statisticians alike is the minimal size of a sample
required to answer a particular question. The micropalaeontolo-
gist, in particular, is confronted with the question of how many,
or few, specimens to pick from a rock sample or washed residue
and still retain confidence in the detection level and possibly

proportions calculated of the taxa in the sample. Phleger (1960)
applied the results obtained by Dryden (1931) and proposed
the now commonly used 300 specimens as a sufficient and
practical number with which to determine relative abundances
of foraminiferal species. In a different context, Shaw (1964) also
used the Binomial Distribution and arrived at the same kind of
answers. Dennison & Hay (1967) applied Shaw’s analysis to the
problem of the size of sample area and provided a very useful
graph (calculated and refigured here in Fig. 1). They also
discussed the wider applicability of their results, including
amongst others Dryden’s and Phleger’s work.

Their plot shows the number of specimens required if one is
prepared to overlook with a probability P a species making up a
particular proportion in the population. For example, the graph
in Figure 1 shows that if one is prepared to miss out 1 in 20
(p = 0.05) species which make up a proportion of 0.01 of the
population, then one needs to count 300 specimens.

What these analyses and associated graphs do not provide
is a measure of the precision of these proportions. There is
a substantial difference between finding a taxon making up
a particular proportion in a sample and calculating that
proportion. Many, if not most, taxa are rare (Fisher et al., 1943;
Buzas et al., 1982) and may well play an important role in
ecology, palaeoecology and any assessment or characterization
of environments (Cao et al., 1998; Cao & Larsen, 2001). It
is, therefore, important and relevant to be able to justify
statistically any measurement of occurrence of such rare taxa.

Fig. 1. Estimating sample size. For a number of probabilities of failing to
find a taxon, the curves show how many specimens must be counted to
detect a taxon present at a particular proportion in the population
samples.
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Finding specimens of rare species in a sample is a good
example of a discontinuous stochastic process known as the
Poisson Process – well described by the Poisson Distribution
(Poisson, 1837; Student, 1907). There are benefits in deriving this
distribution from discontinuous stochastic processes (e.g. Hald,
1952). A very important, but all too often overlooked, result is
that the Poisson Distribution describes a process in its own right
and should not be seen as a limiting case of the Binomial
Distribution.

Thanks to the properties of the Poisson Distribution (some of
which are discussed in the Appendix), confidence intervals on
any observed number of occurrences can be derived and calcu-
lated. The value and the power of using a Poisson Distribution
lies in the fact that it allows one to deal directly with the number
of occurrences. This is in marked contrast to the Binomial
Distribution which needs both the number of occurrences and
the total number of events.

With the Poisson Distribution, it is a straightforward matter
to derive the confidence limits (equations 4) and then calculate
the confidence interval on the proportion of the species of
interest. Rather than have the reader refer to �2 tables to
calculate confidence intervals, Table 1 lists the lower and upper
limits of the 0.99, 0.95 and 0.90 confidence intervals for number
of specimens between 0 and 50.

An example will clarify the use of this table. Suppose that six
specimens of a taxon are found in a picking tray. From Table 1
one reads that the 0.95 confidence interval for six specimens lies
between 2.2 and 13.1. The proportion and the 0.95 confidence
limits of this proportion are simply these numbers divided by the
total number of specimens counted or picked from the tray. If
100 specimens were found in total, the species would make up
0.06 on average of the population and this proportion would lie
anywhere between 0.02 and 0.13. Similarly, if 300 specimens had
yielded the six specimens, the proportion would be 0.02 with the
0.95 confidence interval stretching from 0.007 to 0.044.

Inspection of the table shows the asymmetric nature of the
confidence intervals, especially for the smaller values. This
asymmetry is a clear indication of the non-Gaussian nature of
the distribution and argues against the use of normal approxi-
mations (Garwood, 1936; Hald, 1952). With the table calculated
here, there is no need to resort to approximations: the values
presented are exact.

A related, but different, problem is posed if one wishes to
know if two taxa make up different proportions in the popu-
lation. How much of a difference in counts is necessary for one
to conclude that the taxa make up different proportions? Or
indeed, how much of a difference in counts may one allow for
the taxa to occur in the same proportions?

Once again, thanks to the properties of the Poisson Distri-
bution, these critical numbers can be calculated exactly. The
calculations are straightforward but tedious (see equation 9),
therefore, the results are listed here in Table 2. The table shows
for counts from 0 to 50 of a taxon A how many specimens
of a taxon B have to be found for B to be deemed more
abundant than A, at the usual confidence levels of 0.90, 0.95 and
0.99.

Revisiting the previous example with six specimens of species
A, how many specimens does one need of species B before it can
be said to be more abundant (and make up a larger proportion

of the population)? Looking under the entries for six in Table 2
shows that at least 16 specimens of species B are required (at a
probability of 0.95). These numbers can then be translated to
proportions by dividing them by the total number of specimens
counted.

If, amongst the counts, there are 10 specimens of species A
and 20 of species B, one looks up the entry for 10 to find that at
least 21 specimens are needed for B to be more abundant (at 0.95

Table 1. Confidence intervals for the Poisson Distribution. The list
shows for an observed number of occurrences n the lower and upper
limits at probabilities 0.99, 0.95 and 0.90.

n 0.99 0.95 0.90

0 0.0000 5.2983 0.0000 3.6888 0.0000 2.9957
1 0.0050 7.4301 0.0253 5.5716 0.0512 4.7438
2 0.1034 9.2737 0.2422 7.2246 0.3553 6.2957
3 0.3378 10.9774 0.6186 8.7672 0.8176 7.7536
4 0.6722 12.5940 1.0898 10.2415 1.3663 9.1535
5 1.0779 14.1497 1.6234 11.6683 1.9701 10.5130
6 1.5369 15.6596 2.2018 13.0594 2.6130 11.8424
7 2.0373 17.1335 2.8143 14.4226 3.2853 13.1481
8 2.5711 18.5782 3.4538 15.7631 3.9808 14.4346
9 3.1324 19.9984 4.1153 17.0848 4.6952 15.7052
10 3.7169 21.3978 4.7953 18.3903 5.4254 16.9622
11 4.3213 22.7792 5.4911 19.6820 6.1690 18.2075
12 4.9431 24.1449 6.2005 20.9615 6.9242 19.4425
13 5.5801 25.4966 6.9219 22.2304 7.6895 20.6685
14 6.2306 26.8359 7.6539 23.4896 8.4639 21.8864
15 6.8933 28.1640 8.3953 24.7402 9.2463 23.0971
16 7.5670 29.4819 9.1453 25.9830 10.0359 24.3011
17 8.2506 30.7905 9.9031 27.2186 10.8321 25.4992
18 8.9433 32.0907 10.6679 28.4477 11.6343 26.6917
19 9.6444 33.3829 11.4392 29.6708 12.4419 27.8792
20 10.3532 34.6680 12.2165 30.8883 13.2546 29.0620
21 11.0692 35.9462 12.9993 32.1007 14.0720 30.2404
22 11.7918 37.2182 13.7872 33.3082 14.8937 31.4148
23 12.5206 38.4843 14.5800 34.5112 15.7195 32.5853
24 13.2553 39.7449 15.3772 35.7101 16.5490 33.7524
25 13.9953 41.0004 16.1786 36.9049 17.3821 34.9160
26 14.7405 42.2509 16.9840 38.0960 18.2185 36.0766
27 15.4906 43.4968 17.7931 39.2835 19.0581 37.2341
28 16.2452 44.7384 18.6058 40.4678 19.9006 38.3889
29 17.0041 45.9758 19.4217 41.6488 20.7459 39.5409
30 17.7672 47.2093 20.2408 42.8268 21.5939 40.6905
31 18.5342 48.4390 21.0630 44.0020 22.4445 41.8376
32 19.3048 49.6652 21.8879 45.1744 23.2974 42.9824
33 20.0791 50.8879 22.7156 46.3442 24.1526 44.1250
34 20.8567 52.1074 23.5459 47.5115 25.0101 45.2656
35 21.6375 53.3238 24.3787 48.6765 25.8696 46.4041
36 22.4215 54.5371 25.2139 49.8391 26.7311 47.5407
37 23.2084 55.7476 26.0514 50.9996 27.5946 48.6754
38 23.9982 56.9554 26.8910 52.1579 28.4599 49.8084
39 24.7908 58.1605 27.7328 53.3142 29.3269 50.9397
40 25.5859 59.3630 28.5765 54.4686 30.1957 52.0693
41 26.3836 60.5631 29.4223 55.6211 31.0661 53.1974
42 27.1838 61.7608 30.2699 56.7718 31.9381 54.3239
43 27.9863 62.9562 31.1193 57.9207 32.8116 55.4490
44 28.7911 64.1494 31.9704 59.0679 33.6866 56.5726
45 29.5981 65.3405 32.8233 60.2135 34.5630 57.6948
46 30.4072 66.5295 33.6777 61.3575 35.4407 58.8158
47 31.2184 67.7165 34.5338 62.5000 36.3198 59.9354
48 32.0316 68.9015 35.3914 63.6410 37.2002 61.0538
49 32.8467 70.0847 36.2504 64.7806 38.0819 62.1710
50 33.6637 71.2660 37.1109 65.9187 38.9647 63.2870
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probability): therefore, one has to conclude that both taxa occur
with the same abundance.

From Table 2 it can also be seen that a count of 300
specimens is just sufficient to differentiate at the 0.95 confidence
level between a 0.01 and 0.04 proportion in a population: a
count of three differs significantly from 12 (at 0.95 confidence

level), which, divided by 300, translates into differentiating a 1%
from a 4% proportion.

CONFIDENCE INTERVALS ON FISHER’S ALPHA
INDEX
This diversity index was proposed by Fisher as a natural
extension of the Poisson Distribution (Fisher et al., 1943). In a
great many cases, the distribution of species in function of the
numbers of specimens found can be described as a negative
binomial distribution, i.e. many taxa are represented by only a
few specimens while only a very few occur in great numbers. The
� index characterizes with a single number the shape of this
distribution: it gives the number of species represented by a
single specimen in a sample, whatever its size. Unfortunately,
the index is an awkward function of two variables – number of
specimens and number of species – and direct calculation is not
possible. Various kinds of graphs can be made up to show the
relation: Figure 2 is such a graph, which differs in portrayal
from the one used most often in micropalaeontological circles
since its introduction and excellent discussion by Murray (1968,
1973).

The nature of the index is counterintuitive: it seems odd that
the number of taxa represented by a single specimen should
remain constant, regardless of the number of specimens col-
lected. In practice, an increase in the value of the index is often
encountered. In the original article by Fisher et al., Williams
showed increases in � (from 31.38 to 40.24) when continuing to
collect lepidoptera over a four-year period – and that with
specimen numbers running up to 15 000. Murray (1968) also
found an increase in � when going on picking foraminifera from
100 to about 600 specimens. Nevertheless, he concluded that the
variation he had come across was not sufficiently large to cause
concern.

A rerun of Murray’s counting experiment on two different
samples failed to reproduce this increase. The samples used were
the Sands of Wemmel, Belgium (Eocene, Lutetian) and from
Antikephalina Bay, Paros, Greece (Recent). The samples had
been washed on a 63 µm sieve and portions randomly scattered
on a picking tray. Table 3 shows the results: these should allay
any concern about the validity of the � index as a consistent
measure of diversity.

Table 2. Critical values for the discrimination of two Poisson-distributed
samples. Given a number of specimens n for one species, the list shows
the minimal number required for another species to occur with a higher
abundance, at confidence probabilities of 0.99, 0.95 and 0.90.

n 0.99 0.95 0.90

0 8 5 4
1 11 7 6
2 12 9 7
3 14 10 9
4 16 12 10
5 17 13 12
6 19 15 13
7 21 16 14
8 22 18 16
9 24 19 17
10 25 21 18
11 27 22 20
12 28 23 21
13 30 25 22
14 31 26 23
15 32 27 25
16 34 28 26
17 35 30 27
18 37 31 28
19 38 32 29
20 39 33 31
21 41 35 32
22 42 36 33
23 43 37 34
24 45 38 35
25 46 40 37
26 47 41 38
27 49 42 39
28 50 43 40
29 51 45 41
30 53 46 42
31 54 47 44
32 55 48 45
33 56 49 46
34 58 51 47
35 59 52 48
36 60 53 49
37 62 54 51
38 63 55 52
39 64 57 53
40 66 58 54
41 67 59 55
42 68 60 56
43 69 61 57
44 70 62 58
45 72 64 60
46 73 65 61
47 74 66 62
48 75 67 63
49 76 68 64
50 77 69 65

Fig. 2. Fisher’s � diversity index. From the number of specimens laid out
on the y-axis the � index can be read off on the x-axis using the curve
with the number of species found. The successive curves increase with a
step of five species from 5 to 100.
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When Fisher proposed this index, he also investigated the
effects of variation. His calculation of the variance of the index
is of particular interest. As one would expect from the functions
defining the index, the formula for the variance is somewhat
involved and its relation to the parameters making it up –
number of species and number of specimens – is far from
transparent. However, by adopting the coefficient of variation
(standard deviation divided by the mean), a highly informative
graph can be drawn by plotting the coefficient of variation
against the number of specimens used for a selection of values of
�, as shown in Figure 3.

It transpires from this graph that the coefficient of variation
at counts of 300 specimens is about 0.1, or, that the standard
deviation amounts to about one-tenth (0.092–0.145 to be exact)
of �, and that for a very wide range of values of � (100–2). This
means that the 95% confidence interval of � when calculated
from 300 counted specimens, is about 20% of its value (i.e.
0.1�1.96 which is near enough 0.2, or 20%), a substantial
amount. It takes roughly an order of magnitude more in
specimens to be counted, about 3000, to reduce this confidence
interval to plus or minus 10% of the value of �. These surpris-
ingly large intervals should be borne in mind when attempting to
compare and contrast samples.

MATHEMATICS APPENDIX

The Poisson Distribution
The Poisson Distribution was proposed by Poisson (1837) and
independently by ‘Student’ (pseudonym of W. S. Gosset, 1907).
It is a function defined by a single parameter m. This remarkable
and valuable property contributes substantially to the power of

this function in many of its applications. In contrast, all
other distributions are functions determined by two or more
parameters. The probability distribution is defined as

p(x) = e � m mx

x!
, x = 0,1,2... (1)

Confidence intervals. The cumulative distribution function can
be shown to be related to the �2 distribution (Deming, 1950;
Hald, 1952):

P(x) = 1 � P(�2 < 2m), f = 2(x + 1) (2)

This relation gives the means with which to calculate confidence
intervals for the parameter m of the Poisson Distribution:

P $ m(x0) %m %m (x0)% = P2 � P1 (3)

yielding

5m = 1
2 �(1 � P1)

2 , f = 2(x0 + 1)

m = 1
2 �(1 � P2)

2 , f = 2x0

(4)

Since the �2 distribution is defined through a �-function, the
values of the confidence intervals can be calculated directly.
Table 1 lists the results of such calculations carried out with the
Mathematica program.

Critical values. To find out if two observations come from two
Poisson Distributions with the same or with different means
relies on the addition theorem for the Poisson Distribution. This
easily proved theorem states that if x1, x2, ., xn are stochasti-
cally independent and Poisson-distributed with means m1, m2,
., mn then the sum x = x1+x2+...+xn will be Poisson-
distributed with mean m = m1+m2+...+mn.

With the null hypothesis that the two means are equal, the
probability of observing n1, n2 is simply

p(n1 + n2) = e � 2m (2m)n1 + n2

(n1 + n2)!
(5)

and, therefore, the conditional probability becomes

p(n1|n1 + n2) =
p(n1, n2)

p(n1 + n2)
=

(n1 + n2)!

n1!n2!
S1

2
Dn1 + n2

(6)

To test the hypothesis that m1 = m2 against the alternative of
m1 > m2, one requires the probability

P~n R n1|n1 + n2! = S1

2
Dn1 + n2

-
n = n1

n1 + n2Sn1 + n2

n D (7)

= 1 � PSF <
n1

n2 + 1
D, f1 = 2~n2 + 1!, f2 = 2n1 (8)

Table 3. Cumulative counts of specimens (N) and species (S) with the
resulting Fisher’s � index from a sample of the Eocene Sands of
Wemmel and a sample of the Recent of Paros.

Wemmel Sands, Belgium Paros, Greece
N S � N S �

142 29 11.0�3.0 192 45 18.6�4.0
228 32 10.5�2.5 344 52 16.5�3.0
353 37 10.5�2.0 409 58 18.5�2.9
556 42 10.6�1.9 502 62 18.6�2.9
757 42 9.6�1.5 620 70 20.2�2.8

Fig. 3. Variation coefficient of Fisher’s � diversity index. A plot of the
coefficient of variation of � in function of the number of specimens used
to calculate �, and that for a selection of values of �.
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If this probability is less than or equal to the significance level �,
then reject the null hypothesis that m1 = m2. Alternatively, the
equation can be transformed to

n1

n2 + 1
RF1 � �~2~n2 + 1!, 2n1! (9)

which allows for the calculation from the F-Distribution of the
critical values for which the means of the parent Poisson
Distributions differ. The critical values at significance levels
0.99, 0.95 and 0.90 are listed for n2 values between 0 and 50 in
Table 2.

Fisher’s �
Fisher derived the � index by extending the Poisson Distribution
by considering the effects of the parameter (the mean) having a
distribution of its own. He chose the Euler function (now usually
known as the T-function), and arrived at the expression

f(n) =
~k + n � 1!!

n!~k � 1!!

pn

~1 + p!
k + n

(10)

and setting the constant factor in the denominator �k�1�! = �,
k = 0 and p/�p+1� = x, simplified it to

�

n
xn (11)

Through summations, Fisher calculated the expected number of
species S and the number of individuals N to obtain

S = � � ln~1 � x!, N =
�x

1 � x
(12)

By eliminating x from these two formulae the equation becomes
the well-known

S = � lnS1 +
N

�
D (13)

Fisher also derived a formula for the variance of �

s�
2 =

�3H~N + �!
2lnS2N + �

N + �
D� �NJ

~SN + S� � �N!
2

(14)

The coefficient of variation is defined as the ratio between
standard deviation and mean: applying this to the variance
formula for � yields

c� =

Œ�H~N + �!
2lnS2N + �

N + �
D� �NJ

SN + S� � �N
(15)
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