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Abstract. The Mid-Brunhes Transition (MBT) saw an increase in the amplitude of glacial cycles expressed
in ice core and deep ocean records from about 400 ka, but its influence on high-latitude climates is not fully
understood. The Arctic Ocean is thought to have warmed and exhibited reduced sea ice, but little is known of
sea ice marginal locations such as the Bering Sea. The Bering Sea is the link between the Arctic and Pacific
Ocean and is an area of high productivity and CO2 ventilation; it hosts a pronounced oxygen minimum zone
(OMZ) and is thought to be the location of Glacial North Pacific Intermediate Water (GNPIW) formation in the
Pleistocene. To understand palaeoceanographic change in the region, we analysed benthic foraminiferal faunas
from Bowers Ridge (Site U1342, 800 m of water depth) over the past 600 kyr, as they are uniquely well pre-
served and sensitive to changes in deep and surface ocean conditions. We identified and imaged 71 taxa and
provide a full taxonomy. Foraminiferal preservation is markedly higher during glacials, indicating the presence
of less corrosive GNPIW. The most abundant species are Bulimina exilis, Takayanagia delicata, Alabaminella
weddellensis, Gyroidina sp. 2, Cassidulina laevigata, Islandiella norcrossi, and Uvigerina bifurcata, consistent
with broadly high net primary production throughout the last 600 kyr. Correspondence analysis shows that the
most significant Assemblage 1 comprises B. exilis, T. delicata, Bolivina spissa, and Brizalina, which occur spo-
radically within intervals of laminated, biogenic-rich sediment, mostly during glacials and also some deglacials,
and are interpreted as indicating very high productivity. Other assemblages contain the phytodetritivore species
A. weddellensis, I. norcrossi, and C. laevigata, indicative of seasonal phytoplankton blooms. Before the MBT,
more numerous intervals of the very high-productivity Assemblage 1 and A. weddellensis occur, which we sug-
gest reflect a time of more sea-ice-related seasonal stratification and ice edge blooms. Our inference of a decrease
in sea ice meltwater stratification influence in the central Bering Sea after the MBT is consistent with records
showing that the Arctic and Pacific Ocean warmed during glacials and suggests that high-latitude productivity
and sea ice changes were an important feature of this climate event.
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1 Introduction

The Mid-Brunhes Transition (MBT) was a period of climate
change that saw the emergence of greater glacial–interglacial
variability in temperature and CO2 from ∼ 400 ka (Jouzel et
al., 2007; Lüthi et al., 2008). Glacials became slightly colder
over Antarctica, interglacials warmer, and global deep ocean
δ18O records (Lisiecki and Raymo, 2005) show greater vari-
ability after the MBT, indicating changes to deep ocean tem-
perature and global ice volume. The cause of the MBT is
under debate but may have been related to changes in high-
latitude Southern Ocean sea ice, windiness, upwelling, and
deep ocean ventilation (Kemp et al., 2010; Yin, 2013). How-
ever, there is a need for high-latitude palaeoceanographic
records over the MBT to test the global expression of this
climate event (Barth et al., 2018) and determine if the am-
plification of climate change occurred in the higher latitudes
(Cronin et al., 2017). Intermediate water temperature and sea
ice records from the Arctic Ocean have shown that the MBT
was associated with a pronounced warming and reduction in
sea ice influence (Cronin et al., 2017). The Bering Sea is a
critical region, as there is a pronounced OMZ, deep ocean
upwelling, CO2 ventilation to the atmosphere (Stabeno et al.,
1999), sea ice, and an oceanographic link between the Arctic
and Pacific Ocean.

Study Site U1342 (Fig. 1) is located on Bowers Ridge, an
extinct arc system extending 300 km north from the Aleu-
tian Island arc, and was the shallowest site cored during the
Integrated Ocean Drilling Program (IODP) Expedition 323
(818 m of water depth; Expedition 323 Scientists, 2011).
Deep water connections are restricted to the Aleutian Island
passes (< 4000 m of water depth; Hood, 1983; Stabeno et
al., 1999) such that the majority of Bering Sea deep wa-
ter is sourced from aged low-oxygen North Pacific Deep
Water (NPDW). Nutrient-rich intermediate nutricline water
upwells over Bowers Ridge, particularly along the northern
slope, inducing high primary productivity and associated or-
ganic carbon flux to the sea floor (Stabeno et al., 1999; Taka-
hashi, 2005). There is also significant slope-shelf water ex-
change that brings nutrients up from the slope (Stabeno et al.,
1999) and a very minor component of deep water (∼ 4000 m)
formed within the Bering Sea, probably from sea ice brine
rejection (Warner and Roden, 1995). Today, seasonally sea-
ice-covered areas of the Bering Sea are found mainly over
the northern continental shelf (Fig. 1). Bowers Ridge and the
southern Bering Sea are affected by the relatively warm and
high-salinity Alaskan Stream surface water current (Fig. 1).
The onset and termination of summer stratification, from
the solar warming of surface water and also sea ice melt,
causes spring and autumn phytoplankton blooms (Niebauer
et al., 1995; Eslinger and Iverson, 2001; Kuroyanagi et al.,
2002) and associated high seasonal phytodetrital flux to the
sea floor. High productivity, combined with the low-oxygen
NPDW-sourced water bathing Bowers Ridge (Stabeno et al.,

1999), causes the OMZ to be pronounced (∼ 0.6 mL L−1 at
the depth of Site U1342; Conkright et al., 2002).

Studies have shown that sea ice was present in the Bering
Sea through at least the last 2.5 Myr, became more prevalent
during the mid-Pleistocene (Stroynowski et al., 2015, 2017;
Detlef et al., 2018), and likely resulted in GNPIW expansion
(Horikawa et al., 2010; Knudson and Ravelo, 2015; Kender
et al., 2018; Worne et al., 2019) and a reduced OMZ. How-
ever, high-resolution Bering Sea records of organic carbon
flux and OMZ presence have not yet been produced over the
MBT. Existing low-resolution records at the Bering Sea slope
do suggest that sea ice was reduced at∼ 500 ka (Stroynowski
et al., 2017), but there are no existing records with the reso-
lution required to test the sea ice influence on productivity
at a marginal location in the central Bering Sea. Diatom as-
semblage records from several piston cores in the Bering Sea
and North Pacific (Katsuki and Takahashi, 2005) have been
used to reconstruct Quaternary sea ice variation (see Leven-
ter et al., 2007). Katsuki and Takahashi (2005) showed that
during the Last Glacial Maximum (LGM), when sea level
was over 100 m lower than today and much of the continen-
tal shelf was exposed (Fig. 1), seasonal sea ice covered the
northwestern slope, drift ice covered the majority of the cen-
tral Bering Sea and much of Bowers Ridge, and open water
covered the south–central Bering Sea and parts of northern
Bowers Ridge, including the location of Site U1342 (Fig. 1).
However, there is currently little information on the evolution
of intermediate water properties over Bowers Ridge during
this time period or of sea ice, organic carbon flux, and OMZ
and GNPIW presence over the MBT.

Deep sea benthic foraminifera respond to changes in or-
ganic carbon flux and oxygen availability in modern settings
(e.g. Kaiho, 1994; Thomas and Gooday, 1996; Jorissen et
al., 2007; Gooday and Jorissen, 2012; Kaminski, 2012) and
have been shown to respond to environmental variability in
the Bering Sea during the last glacial cycle (Gorbarenko et
al., 2005; Okazaki et al., 2005). For instance, the phytode-
tritivore species Alabaminella weddellensis dominated fau-
nas during the LGM over the Umnak Plateau (Site UMK-
3A; Fig. 1), and the high-productivity–low-oxygen genera
Rutherfordoides and Bulimina dominated faunas during the
deglacial when surface water productivity peaked (Okazaki
et al., 2005). Coretop “mudline” samples from U1342 of
sub-recent age reveal an assemblage dominated by the high-
productivity–low-oxygen taxa Bulimina, Brizalina, Globob-
ulimina, Stainforthia, Rhumblerella, and Martinottiella (Ex-
pedition 323 Scientists, 2011; Kender and Kaminski, 2017),
which is consistent with the position of U1342 within the
core of the modern OMZ. To better understand surface and
deep water evolution over glacial–interglacial cycles of the
last 600 kyr at ∼ 800 m of water depth (within the mod-
ern OMZ), we analysed benthic foraminiferal assemblages
in high resolution at Site U1342 to constrain palaeoceano-
graphic changes.
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Figure 1. (a) Map of the Bering Sea with modern surface ocean flow (white arrows), showing the position of Site U1342 (this study) and other
sites referred to in the text. Bathymetry above 100 m of depth is marked as grey, approximating glacial coastlines. Last Glacial Maximum
(∼ 30 kyr ago) sea ice conditions (blue lines and text) are from Katsuki and Takahashi (2005), interpreted from diatom assemblages. Map
drawn in Ocean Data View (Schlitzer, 2019). (b) Bering Sea north–south section showing dissolved oxygen concentrations (Schlitzer, 2019)
and the position of core sites discussed in this study.

2 Methods and materials

The sediments at Site U1342 are a mixture of biogenic ma-
terial (largely diatom frustules and foraminifera, with mi-
nor nannofossils, silicoflagellates, sponge spicules, and ra-
diolarians), intermittent laminated intervals (predominantly
parallel but occasionally cross-bedded), volcaniclastic mate-
rial (fine to coarse ash) occurring in both discrete layers and
scattered in the sediment, and rare clay to pebble-sized silici-
clastics (Expedition 323 Scientists, 2011). This site is chosen
as it is on a ridge at ∼ 800 m of water depth, and the lyso-
cline is shallow in the North Pacific such that calcite dissolu-
tion is strong below ∼ 1000 m. As the Bowers Ridge region
is far from continental areas and was submerged during at
least the Pleistocene, the coarser siliciclastic component was
likely derived from sea ice and/or icebergs (Aiello and Rav-
elo, 2012). The laminated sediments have a distinct biogenic
composition dominated by diatom and foraminiferal tests.
Conversely, the homogenous intervals contain a variety of
sedimentary components that include both biogenic and ter-
rigenous particles (Aiello and Ravelo, 2012). Expedition 323
Scientists (2011) report that the majority of laminated inter-
vals are bedding-parallel, while cross-bedding and scouring
indicative of bottom water currents are less common.

The age–depth tie points used to plot our data against
age are derived from detailed benthic foraminiferal oxy-
gen isotope (δ18O) analyses carried out on Uvigerina pere-
grina in the same samples by Knudson and Ravelo (2015).
The isotope stratigraphy of U1342 has a correlation coeffi-
cient of 0.64 with the global reference stack LR04 (Lisiecki
and Raymo, 2005) after a three-point running mean was ap-
plied. The accuracy of the age model is probably better than

±10 ka, which is taken into account when evaluating the data
with respect to global glacial–interglacial cycles.

A total of 160 samples were collected from the top ∼
20 m CCSF (composite depth scale; Expedition 323 Scien-
tists, 2011) of Site U1342 at ∼ 14 cm spacing, correspond-
ing to the last ∼ 600 kyr, and an average time resolution of
∼ 3.7 kyr between each sample. Sample processing was car-
ried out at the University of California, Santa Cruz. Samples
were freeze-dried, gently washed over a 63 µm mesh screen,
and stored in glass vials before picking. Slides are housed in
collections at the University of Exeter, UK. Due to the small
size of the samples (ranging between 10 and 20 cc), we aimed
to pick a minimum of 100 specimens of benthic foraminifera
per sample into cardboard reference slides. Samples that con-
tained many more than 300 specimens were subdivided us-
ing a micro-splitter. Benthic foraminiferal fragmentation per-
centage was determined by calculating the percentage of bro-
ken specimens (fragments) to the sum of whole (unbroken)
and fragmented specimens in each sample.

Correspondence analysis (CA) (using the software PAST;
Hammer et al., 2005) was carried out on samples containing
> 50 specimens and with species with fewer than 50 spec-
imens in the whole dataset removed. Using a reciprocal av-
eraging algorithm (Greenacre, 1984; Hammer and Harper,
2006) to compare species occurrences across samples, simi-
lar CA scores for samples indicate comparable faunal char-
acteristics (e.g. Kuhnt et al., 2002; Hammer and Harper,
2006; Kender et al., 2008). CA attempts to show multidi-
mensional data in fewer dimensions, with axis 1 (describing
the largest variance in the dataset) being shown to represent
the strongest ecological parameter in many studies (Hammer
and Harper, 2006).
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3 Results

We identified and counted a total of 71 taxa (Table S1 in
the Supplement) and completed detailed taxonomic analysis
and imaging of each one (see Taxonomy section in the Sup-
plement). In total, 106 of the 160 samples contained > 100
specimens (Fig. 2c). Diversity averaged 12 taxa per sample
but ranged up to over 20 in several samples (Fig. 2c). The
number of taxa typically increased in samples with greater
abundance (Fig. S1 in the Supplement), with samples having
fewer than 50 specimens (n= 43) showing the most reduced
diversity (Fig. 2c). In these samples, the foraminifera showed
a higher degree of fragmentation (Figs. 2b, S1 in the Supple-
ment), which has been used as a qualitative proxy for disso-
lution (Metzler et al., 1982; Thunell, 1976; Berger, 1970).
We therefore removed these 43 samples from assemblage
analysis. Intervals of less dissolution and good preservation,
as defined by abundance, diversity, and fragmentation, ap-
pear to be restricted to glacial maxima as defined by benthic
foraminiferal δ18O (Fig. 2a, grey bars). A tight correlation
with abundance, diversity, and glacial cycles can be identi-
fied, with the highest abundances in the glacial periods before
400 ka (Fig. 2). The species that make up the majority of the
assemblages are Bulimina exilis, Takayanagia delicata, Al-
abaminella weddellensis, Gyroidina sp. 2, Cassidulina lae-
vigata, Islandiella norcrossi, and Uvigerina bifurcata, which
change in their dominance multiple times throughout the core
(Fig. S2 in the Supplement).

CA axis 1 describes 19% of the variance within the dataset,
with positive values signifying times of abundant B. exilis,
T. delicata, Epistominella exigua, Bolivina spissa, Briza-
lina alata, and Brizalina earlandi. These species make up
Assemblage 1, which correlates very well with CA axis 1
(Fig. 3b). CA axis 2 (14 % of the variance) shows a good
correlation with A. weddellensis, Cassidulinoidies parkeri-
anus, Globobulimina auriculata and Stainforthia fusiformis
(Assemblage 2) for positive values, and C. laevigata (Assem-
blage 3) for negative values (Fig. 3c). Other axes do not de-
fine further meaningful assemblages, although I. norcrossi
and U. bifurcata are important constituents of the fauna out-
side these three assemblages (Fig. S2 in the Supplement) and
plot near the CA axes 1 and 2 origin (Fig. 3a), signifying no
particular abundance preference for the three defined assem-
blages. Both CA axes 1 and 2 show considerable variability
with time when plotted against age (Fig. 4), with numerous
intervals of dominant Assemblage 1 co-occurring with lam-
inated sediment but no clear glacial–interglacial variability.
Of the 15 samples analysed from laminated sediments, 13
(87 %) have CA axis 1 values above 0. Of the 98 samples
analysed from non-laminated sediments, 78 (80 %) have CA
axis 1 values below 0. In contrast, CA axis 2 shows a weak
preference for unlaminated, homogenous samples.

4 Discussion and conclusions

Each glacial period of the past 600 kyr experienced a re-
markable increase in the preservation of calcareous benthic
foraminifera at Site U1342 (fragmentation, abundance, and
diversity; Fig. 2). The most likely reason is the presence of
a different, less corrosive glacial water mass over Bowers
Ridge, which has been identified as GNPIW from offsets in
oxygen and carbon isotopes at U1342 (Knudson and Rav-
elo, 2015) and other sites (Cook et al., 2016; Kender et al.,
2018; Worne et al., 2019), and neodymium isotope changes
within the Bering Sea (Horikawa et al., 2010). Positive ben-
thic δ13C and depleted benthic δ18O during glacials at U1342
were interpreted as the export of surface waters to depth
via sea ice brine rejection and intermediate water formation
(Knudson and Ravelo, 2015). Surface waters were likely de-
pleted in 12C, CO2, and DIC compared with aged deeper
NPDW due to primary productivity, which could have led to
an increased carbonate ion concentration and better preser-
vation of CaCO3. Modern NPIW is formed partially in the
Sea of Okhotsk, which has typical δ13C values of −0.2 ‰ to
−0.4 ‰ at 800 m of water depth compared with −0.6 ‰ to
−0.7 ‰ in the Bering Sea (Keigwin, 1998; Cook et al., 2016)
where intermediate water does not currently reach. Alterna-
tive possible causes of increased glacial preservation are de-
creased primary productivity, which is not supported by the
distribution of laminated sediment and benthic foraminiferal
assemblages (see below), and lower sea level, which is un-
likely as the modern δ13C chemocline is at ∼ 250 m of water
depth in the Bering Sea (Keigwin, 1998).

To assess the palaeoecological changes at Site U1342,
we removed samples heavily affected by poor preservation
and examined the underlying benthic foraminiferal assem-
blage changes. Surprisingly, although preservation shows
strong glacial cyclicity, foraminiferal assemblages do not
show a glacial trend but a preference for laminated sedi-
ment that also does not follow glacial cyclicity (Fig. 4). Ben-
thic foraminiferal faunas are controlled by a range of factors
that include primary productivity and organic carbon supply,
sediment heterogeneity, bottom water currents, organic car-
bon type, quantity and seasonality, bottom water and sed-
iment pore water oxygen levels (Sun et al., 2006; Joris-
sen et al., 2007) and the ability of organic carbon to reach
the sea floor after passing through different water masses
with varying degradative constituents (Arndt et al., 2013).
In the deeper Bering Sea, organic carbon flux and oxygen
levels are the major two variables, controlled by a combi-
nation of export production and intermediate water ventila-
tion (Kender and Kaminski, 2017). Of our most dominant
species, C. laevigata, Uvigerina peregrina, and species from
the genera Bulimina, Bolivina, Stainforthia and Globobulim-
ina are known denitrifiers able to survive in anoxic water
in the modern ocean by respiring nitrate (Piña-Ochoa et al.,
2010). We interpret the assemblages described here as gen-
erally tolerant of low oxygen, even though the majority of
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Figure 2. (a) U1342 benthic foraminiferal δ18O record used to construct the age model (Knudson and Ravelo, 2015). (b) The degree of
foraminiferal fragmentation at Site U1342 as a proxy for bottom water dissolution. (c) Abundance (red) and diversity (blue) of benthic
foraminifera at Site U1342 as a proxy for preservation. Grey bars indicate glacial maxima as defined by the positive δ18O.

Figure 3. (a) Correspondence analysis (CA) of the dataset for samples with > 50 specimens and for species with > 50 individuals. Samples
are marked with grey dots, and grey circles are the approximate position of the interpreted assemblages. (b) Percentage counts for Assem-
blage 1 (B. exilis, T. delicata, E. exigua, B. spissa, B. alata, and B. earlandi) against CA axis 1 scores for each sample (with> 50 specimens).
(c) Percentage counts for Assemblage 2 (A. weddellensis, C. parkerianus, G. auriculata, and S. fusiformis) and Assemblage 3 (C. laevigata)
against CA axis 2 scores for each sample (with > 50 specimens). Linear regression for Assemblage 2 is only for samples with positive CA
scores, and Assemblage 3 is only for negative CA scores.
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Figure 4. Benthic foraminiferal dataset CA axis 1 and 2 scores compared with various other records plotted on age. Marine Isotope Stages
(MISs) are shown at the top. (a) The Site U1342 benthic foraminiferal δ18O record (blue) used to construct the age model (Knudson
and Ravelo, 2015) against the global benthic δ18O composite record (Lisiecki and Raymo, 2005). (b) Site U1342 magnetic susceptibility
record (Expedition 323 Scientists, 2011). (c) Benthic foraminifera CA axis 1 scores, with high values indicating Assemblage 1 (Fig. 3).
(d) Benthic foraminifera CA axis 2 scores, with high values indicating Assemblage 2 and low values Assemblage 3 (Fig. 3). (e) Bottom
water temperature (BWT) record from Mg/Ca of ostracods in various Arctic Ocean intermediate water depth sites (Cronin et al., 2017).
(f) Sea surface temperature (SST) record from alkenones at North Pacific Site 882 (Martínez-Garcia et al., 2010). Green bars indicate
laminated sediment at Site U1342 (Knudson and Ravelo, 2015).
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our species have not yet been analysed for nitrate reduc-
tion. Whilst E. exigua, Cibicidoides, and other minor con-
stituents found here are unable to respire nitrate (Piña-Ochoa
et al., 2010), E. exigua is abundant in the OMZ of the Peru–
Chile Trench (Sen Gupta and Machain-Castillo, 1993; Er-
dem and Schönfeld, 2017), and if the majority of species at
U1342 are able to respire nitrate it appears as though oxy-
gen limitation alone is unlikely the predominant control on
benthic faunas. Some species may still have a competitive
advantage over others in low-oxygen settings, and indeed
various OMZs today contain faunas that have characteris-
tic assemblages (Hermelin and Shimmield, 1990; Sen Gupta
and Machain-Castillo, 1993; Kaminski et al., 1995; Kaiho,
1999; Gooday et al., 2000; Schumacher et al., 2007). In the
core of the OMZ of the Arabian Sea (∼ 0.1 mL L−1), C. lae-
vigata, B. exilis, Uvigerina semiornata (a morphologically
similar species to U. bifurcata), U. peregrina, Globobulim-
ina, and Bolivina species all show high abundance at dif-
ferent depths (Schumacher et al., 2007). Bulimina spp., T.
delicata, Bolivina spissa, and U. peregrina were abundant
in OMZs of offshore California (Sen Gupta and Machain-
Castillo, 1993), and I. norcrossi was abundant in the Okhotsk
Sea where oxygen levels were 0.3 mL L−1 (Bubenshchikova
et al., 2008). The only abundant species in our dataset that
does not typically occur in high abundance in OMZs at lower
latitudes is A. weddellensis, although it is associated with
low-oxygen-tolerant species in this study, and it is present in
six of our laminated samples with an abundance greater than
50. Thus, relatively high organic carbon flux conditions were
likely present throughout much of the past 600 kyr, as the de-
fined assemblages and the residual fauna, consisting largely
of U. bifurcata, are all indicative of modern high-productivity
OMZs, and typical abundant deep water benthic foraminifera
from oligotrophic well-oxygenated settings, such as Plan-
ulina wuellerstorfi and Cibicidoides mundulus, are all but ab-
sent.

It seems most likely that the assemblages in our study are
controlled predominantly by changes in the supply of organic
carbon to the sea floor, as most of the species are tolerant of
low oxygen. The high correlation of Assemblage 1 with lam-
inated sediments (in > 80 % of the samples – green vertical
bars in Fig. 4) is evidence that those species are indicative
of the highest organic carbon flux to low-oxygen regime to
the sea floor at this site. That is because (1) the associated
low oxygen (the absence of deep bioturbation, allowing lam-
inations to be preserved) was likely caused by high benthic
respiration rates from high organic carbon flux, and (2) the
laminations are enriched in biogenic material as indicated
by diatom-rich layers (Expedition 323 Scientists, 2011) and
consistent low magnetic susceptibility (MS) (Fig. 4) signify-
ing non-magnetic biogenic material (Expedition 323 Scien-
tists, 2011). Alabaminella weddellensis (from Assemblage 2)
is regarded as an opportunistic species, blooming at times of
high seasonal phytodetrital flux to the sea floor (Smart et al.,
1994; Thomas and Gooday, 1996). On the Arctic shelf, high

proportions of I. norcrossi coincide with seasonal sea ice and
probable summer ice edge productivity (Steinsund, 1994;
Polyak et al., 2002; Ivanova et al., 2008), and the species
is considered to respond and reproduce with highly seasonal
phytodetritus deposition (Wollenburg et al., 2004). A labora-
tory experiment by Alve (2010) showed that living C. lae-
vigata (Assemblage 3), in contrast to many other species,
disappeared from the assemblage after a halt in the supply
of fresh phytodetritus, indicating that this species requires
an input of fresh phytodetritus to survive. Outside Assem-
blage 1 (highest organic carbon flux), it appears as though
I. norcrossi, A. weddellensis, and possibly C. laevigata were
competing as seasonal phytodetritus species in a relatively
(compared to Assemblage 1) lower organic carbon flux en-
vironment, responding to changes in the type, quantity, and
quality of organic carbon supplied to the sea floor.

Diatom assemblages from nearby Site BOW-8A (Fig. 1)
can be used to indicate surface ocean conditions proximal to
U1342 over the past 270 kyr (Katsuki and Takahashi, 2005).
BOW-8A is dominated by Neodenticula seminae, indicat-
ing that the Alaskan Stream (Sancetta, 1982) influenced the
palaeoceanography at the western Bowers Ridge over this
time, and low proportions of the sea-ice-living diatoms Tha-
lassiosira gravida and Fragilariopsis cylindricus indicate
that this location was similarly unaffected by persistent sea
ice over much of this time period (Katsuki and Takahashi,
2005). Jin et al. (2006) modelled Bering Sea reductions in
spring thermal stratification, wind mixing and tidal mixing,
and found that – even though they had different effects on
the timing of blooms and zooplankton–phytoplankton con-
centrations – all caused reduced net primary production, thus
providing possible mechanisms for past changes in organic
carbon flux to the sea floor. We propose three broad scenar-
ios for the annual cycling of surface water masses at Bowers
Ridge over the Quaternary in the absence of significant sea
ice (as indicated by diatom records; Katsuki and Takahashi,
2005). The first scenario is the modern setting (interglacials)
in which water mixing brings intermediate nutricline water,
influenced by nutrient-rich NPDW, into the photic zone, and
summer warming causes spring–summer blooms and high
net primary production (Eslinger and Iverson, 2001; Kat-
suki and Takahashi, 2005). The second scenario is weaker
glacial spring thermal stratification due to colder glacial con-
ditions, coupled with enhanced glacial wind mixing as mod-
elled due to the presence of larger North American ice sheets
(Gray et al., 2018). Although mixing would have brought
deeper water into the photic zone, reduced thermal stratifi-
cation would have acted to reduce net spring–summer bloom
productivity (Katsuki and Takahashi, 2005; Jin et al., 2006).
In addition, during glacial times, wind mixing would have
brought a smaller proportion of nutrients into the photic zone
due to enhanced nutrient-poor GNPIW presence (Kender et
al., 2018; Knudson and Ravelo, 2015). The third scenario is
glacial spring–summer stratification from southward-flowing
cold low-salinity surface water sourced from melting sea ice,
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causing a spring–summer bloom and elevated seasonal phy-
todetrital flux (Eslinger and Iverson, 2001; Katsuki and Taka-
hashi, 2005; Aguilar-Islas et al., 2007). Site U1342 was prob-
ably affected by seasonal stratification over the majority of
glacials (Fig. 4), as suggested by the high proportions of
phytodetritivores I. norcrossi, A. weddellensis, and possibly
C. laevigata, perhaps similar to scenario three. Although sea
ice melt stratification would likely have been more extensive
during strong glacials, we may not expect to see an increase
in net primary production as the greater presence of GNPIW
would have separated high-nutrient deeper water from the
photic zone. These competing mechanisms at Bowers Ridge
may explain why there is no clear glacial–interglacial cyclic-
ity to the foraminiferal assemblages and laminated sedi-
ments. The lack of abundant sea ice diatoms over the last
∼ 270 kyr indicates that the bloom production, suggested by
abundant phytodetritivores, may have been caused by stratifi-
cation from low-salinity spring water from melting sea ice in
the north and east (Katsuki and Takahashi, 2005). The inter-
vals low in phytodetritivore abundance may indicate episodes
of little spring stratification and associated seasonal blooms.

There may be different possible causes of the sporadic, rel-
atively short-lived episodes of very high productivity and or-
ganic carbon flux at U1342, as indicated by Assemblage 1
and the laminated intervals (Fig. 4). (1) During warming
(deglacials), a widespread reduction in regional subarctic
North Pacific sea ice occurred, which shut down GNPIW for-
mation (Kender et al., 2018; Worne et al., 2019) and pro-
moted the expansion of high-nutrient–low-oxygen NPDW
to intermediate and nutricline depths (Site U1342), aiding
productivity. This could be comparable to the scenario pro-
posed for the last deglacial Bølling–Allerød (e.g. Shibahara
et al., 2007; Gray et al., 2018) in which laminated sediments
appear to have been formed across the North Pacific and
Bering Sea. In addition, melting ice sheets could have de-
livered an increase in surface nutrients (Katsuki and Taka-
hashi, 2005). The deglacial collapse of the GNPIW scenario
could only explain high Assemblage 1 at the termination
of Marine Isotope Stages (MISs) 2, 8, 14, and 15 in our
records (Fig. 4), as the remaining high-productivity episodes
occurred during glacials. (2) During colder intervals (early
glacials), enhanced wintertime sea ice formation in the north-
east Bering Sea could have aided the production of spring-
time low-salinity stratification over Bowers Ridge from melt-
ing sea ice, causing an associated local increase in primary
productivity (Katsuki and Takahashi, 2005). An increase in
productivity large enough to produce Assemblage 1 and lam-
inated sediment may have only been possible at times when
GNPIW was not yet extensive (compared with glacial max-
ima) to allow for the mixing of high-nutrient intermediate
water sourced from NPDW into the photic zone.

Our conceptual model indicates that both very high-
productivity episodes (Assemblage 1 and laminated sedi-
ment) and longer periods of bloom productivity (phytode-
tritivores in Assemblages 2 and 3) required spring–summer

stratification from sea ice melt elsewhere in the Bering Sea,
as glacial air masses were likely a lot colder than at present
(Gray et al., 2018) and less able to cause strong summer
thermal stratification. We observe that Assemblage 1 is more
prevalent in the earlier part of the record (from 400–600 ka),
and our increased ice melt–productivity interpretation is con-
sistent with overall higher benthic foraminifera abundance
(Fig. 2c) and higher abundances of A. weddellensis (As-
semblage 2) in the earlier part of the record. During the
Last Glacial Maximum A. weddellensis was very abundant
(60 % of the fauna) over the eastern Bowers Ridge (BOW-
9A, Fig. 1) and Umnak Plateau (UMK-3A) (Okazaki et al.,
2005), and both of these locations were interpreted as be-
ing influenced by sea ice (Fig. 1) (Katsuki and Takahashi,
2005). In contrast, we find very low abundances of A. wed-
dellensis at western Bowers Ridge (U1342) during the LGM
(Fig. 4), where open water conditions were likely present
during glacials over the past 270 kyr (Katsuki and Takahashi,
2005). Older diatom records do not exist from Bowers Ridge,
but low-resolution records from Bering slope Sites U1343
and U1344 do show a reduction in pack-ice-related diatom
species from ∼ 500 ka (Stroynowski et al., 2017), consistent
with our suggestion. This time period approximately coin-
cides with the MBT, for which alkenone-based sea surface
temperatures indicate that North Pacific (Site 882; Fig. 1)
glacials warmed (Martínez-Garcia et al., 2010), and Mg/Ca
intermediate water temperatures indicate that Arctic Ocean
glacials warmed and sea ice became more seasonal (Cronin
et al., 2017) (see Fig. 4). Our records may therefore suggest
that the Bering Sea responded to regional warming during
the MBT after initial cooling and sea ice expansion in the
mid-Pleistocene (Stroynowski et al., 2015, 2017).
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