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Abstract. Vertebrate microfossils have broad applications in evolutionary biology and stratigraphy research ar-
eas such as the evolution of hard tissues and stratigraphic correlation. Classification is one of the basic tasks of
vertebrate microfossil studies. With the development of techniques for virtual paleontology, vertebrate microfos-
sils can be classified efficiently based on 3D volumes. The semantic segmentation of different fossils and their
classes from CT data is a crucial step in the reconstruction of their 3D volumes. Traditional segmentation meth-
ods adopt thresholding combined with manual labeling, which is a time-consuming process. Our study proposes
a deep-learning-based (DL-based) semantic segmentation method for vertebrate microfossils from CT data. To
assess the performance of the method, we conducted extensive experiments on nearly 500 fish microfossils. The
results show that the intersection over union (IoU) performance metric arrived at least 94.39 %, meeting the se-
mantic segmentation requirements of paleontologists. We expect that the DL-based method could also be applied
to other fossils from CT data with good performance.

1 Introduction

Paleozoic vertebrate microfossils provide important evidence
for biostratigraphy, paleobiodiversity, and paleogeography
(Zhao and Zhu, 2014; Zhao et al., 2018; Ogg et al., 2016;
Märss et al., 1995; Žigaitė et al., 2011; Wang, 2006), as well
as oil and gas exploration (Hackley et al., 2017; Funkhouser
and Evitt, 1959). As one subset of vertebrate microfossils,
fish microfossils significantly contribute to the study of early
vertebrate evolution (Janvier, 1996; Cui et al., 2020; Wang,
1984; Chen et al., 2016; Botella et al., 2007; Cui et al., 2021).

In recent years, thanks to the widespread use of computed
tomography (CT) technologies in paleontology, virtual pale-
ontology (VP) has rapidly developed (Lautenschlager, 2016;
Sutton et al., 2017; Sutton, 2008; Cunningham et al., 2014).
Paleontologists can nondestructively obtain more compre-

hensive three-dimensional (3D) fossil CT data, including 3D
microstructures from inside to the surface (Fernandez et al.,
2012, 2013, 2015). Digital techniques have also been used
to classify fish microfossils in 3D volumes (Cui et al., 2020,
2021). Semantic image segmentation is a crucial step in the
reconstruction of 3D volumes. However, this task requires a
lot of time in addition to expertise in paleontology.

The purpose of this research paper is to create an effec-
tive method for semantic segmentation of vertebrate micro-
fossils from CT data. We chose the deep-learning-based (DL-
based) U-Net (Ronneberger et al., 2015) and ResNet34 (He
et al., 2016) model for semantic image segmentation. First,
we compiled a dataset containing four types of fish micro-
fossils from CT data, which were segmented and labeled by
reconstructors. Second, we used ResNet34 as the main en-
coder part of the U-Net model. An end-to-end U-Net model
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with ResNet34 was designed and trained to solve the seman-
tic segmentation problem. The weights of the optimal net-
work were saved during the training process and then used to
semantically segment the microfossils from CT data. Finally,
the performance of the DL-based segmentation method was
compared to the popular segmentation methods and verified
using the global intersection over union (IoU) scores.

2 Traditional segmentation method

2.1 Popular segmentation method

In practice, paleontologists usually use 3D virtual models of
microfossils to classify them (Andreev et al., 2016; Cui et
al., 2020; Qu et al., 2017). They collect microfossil CT data
using micro-CT, segment the data, and generate 3D models.
This part provides an introduction to the popular binary seg-
mentation methods. The CT data quality may be degraded by
various factors including ring artifacts and background noise.
To achieve accurate segmentation, the CT data stack should
be optimized, which usually includes noise reduction, image
enhancement, and image simplification (Buser et al., 2020).
Popular binary segmentation methods include thresholding,
morphological filtering, region growing, and boundary de-
tecting (Serra and Vincent, 1992; Ziou and Tabbone, 1998;
Sahoo et al., 1988). Various image segmentation methods
have been applied to fossil images (Ni et al., 2012; Pérez-
Ramos and Figueirido, 2020). Thresholding is performed by
assigning a visual attention level to the greyscale values. Any
part of the CT data above this level is considered a region of
interest (ROI) (Goh et al., 2018). Region-growing methods
employ seed points manually added by reconstructors. A seg-
mented ROI is then spread from the seed to neighboring vox-
els that meet certain predefined criteria (Adams and Bischof,
1994). Segmentation based on an edge detector offers an al-
ternative method that discerns the boundary between ROIs
and defines these voxels as an edge (Bhardwaj and Mittal,
2012).

2.2 Manual semantic segmentation method

In our laboratory, image processing technologies were used
to segment fish microfossils in CT data. First, we filtered out
the influence of random noise from the data. Based on the ex-
cellent performance of a median filtering algorithm, we used
a 3×3 median filter to eliminate the random noise generated
during the scanning process (Omer et al., 2018), defined as
follows:

I (i,j )=median(IH (i,j )) , (1)

where I (i,j ) is the output of the median filter, IH (i,j ) is the
grey value of the pixels in the neighborhood, and the median
function is the median of sequence IH (i,j ). The CT data
before and after median filtering are shown in Fig. 1. The

random noise was reduced after median filtering, especially
inside the microfossils.

Fish microfossils have a much higher mass density than
the surrounding air and transparent plastic wrap for fossil
support. The microfossil images have significantly different
grey values from the surrounding background. We used this
contrast to segment the fossils in CT data. A typical binary
thresholding algorithm such as the Otsu (Otsu, 1979) selects
objects of interest from the background, producing binary
images of the objects (fish microfossils in our case). A bi-
narization process converts the grey value of each pixel to 0
(black) or 1 (white) using black to represent the background
and white to represent the objects of interest. In this paper,
black denotes air and plastic wrap, while white denotes fish
microfossils. With an appropriate threshold, most fish micro-
fossils in CT data can be binarized using the Otsu method
(see Fig. 2a).

The fish microfossils are inevitably in contact during the
scanning process. It is difficult to obtain ideal object seg-
mentation on some digitally connected areas. We can only
manually segment these areas one by one. Fish microfossils
are manually segmented by reconstructors, who usually de-
termine the assignment or affinity of the fish microfossil im-
age regions based on their gross morphology (see Fig. 2b).
The reconstructors apply color to the masks automatically
and create multilabel images for training the network (see
Fig. 2c). Finally, 3D models of the microfossils are generated
using a surface-rendering technique (Racicot, 2017) with dif-
ferent colors, each color associated with a unique type of
microfossil (see Fig. 2d). This process is one of the main
methods to reconstruct the 3D structure of fish microfossils.
Figure 3 shows the workflow of the manual semantic seg-
mentation of fish microfossils in our laboratory.

3 DL-based semantic segmentation method

3.1 Network structure

Manual semantic segmentation consumes a lot of time and
requires expertise in paleontology to accomplish. We need to
find an alternative technique. Deep learning is a popular re-
search area in the field of machine learning and artificial in-
telligence, which has made great progress in the last decade
(LeCun et al., 2015). DL-based techniques have achieved ex-
cellent performance in various computer vision tasks such as
image denoising (Tian et al., 2020), target detection (Khan et
al., 2017), image classification (Xu et al., 2020), and image
segmentation (Jin et al., 2018). Paleontologists are utilizing
the capabilities of deep neural networks (DNNs) to solve pa-
leontological problems (Marchant et al., 2020; Tetard et al.,
2020; Bourel et al., 2020). DNNs can be exploited not only
for the accurate classification of vertebrate fossils from their
3D volumes (Hou et al., 2020), but also for the rapid doc-
umentation of discrete fossiliferous levels (Martín-Perea et
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Figure 1. CT data before and after median filtering.

Figure 2. Reconstructing the 3D structure of fish microfossils.

al., 2020). DNNs have achieved impressive performance and
present great potential in the field of paleontology.

Semantic image segmentation is also an important appli-
cation of deep learning that separates a single image into dif-
ferent parts. U-Net is a classic network for semantic segmen-
tation that performs well in microfossil images, especially
CT data. The U-Net model has been successfully utilized for
planktonic foraminifera recognition (Carvalho et al., 2020;
Ge et al., 2020), charcoal particle identification (Rehn et al.,
2019), and other micropaleontology tasks. In this paper, we
chose an improved U-Net model to semantically segment fish
microfossils from CT data. We used the CT data with man-
ual semantic segmentation as the training set. The boundaries
between touching particles in the dataset were manually la-
beled by reconstructors. The DNNs could continuously learn
the marked boundaries through feature extraction. Therefore,

we could use the data to train the network and solve the sep-
aration problem of touching particles.

The U-Net model can perform semantic segmentation of
CT data at the pixel level. The model consists of three parts:
encoder, connector, and decoder. The encoder uses a con-
volutional layer to extract features from the input images.
Within the encoder layer, pooling layers are applied to de-
crease the scale, speed up feature detection, and reduce the
computational burden. The connector represents a copy op-
eration to concatenate the features at the same scale extracted
by down-sampling and up-sampling on the same channel.
The decoder uses a deconvolution layer to restore the charac-
teristic image to the size of the input images and predict the
results.

Similarly, our defined network also comprises three parts:
encoder, connector, and decoder. A residual module is intro-
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Figure 3. Workflow of the manual semantic segmentation method.

duced into the encoder part. The calculation of the residual
module is shown in Eqs. (2) and (3):

yl = h (xl)+F (xl,Wl) , (2)
xl+1 = f (yl) , (3)

where xl and xl+1 are the input and output of the lth residual
module, F (xl,Wl) is the residual function, h (xl) is the iden-
tity mapping function, and f (yl) is the rectified linear unit
(ReLU) activation function. Under normal circumstances,
h (xl)= xl , and the size and quantity of feature maps are the
same at the same stage. When entering the next stage, the
feature map size becomes 1/2 of the original and the number
is doubled.

Our network uses a pre-trained ResNet34 as the backbone
for the encoder. ResNet34 is a residual network based on
the convolutional neural network (CNN). Compared to tra-
ditional neural networks, the most significant difference is
that the original input is added to the output of the con-
volution block. When the layers of the network are deeper,
more features can be extracted and the image semantics can
be better expressed. Traditional neural networks face serious
vanishing gradient and network degradation problems (Wu et
al., 2019). The addition of a residual block solves this prob-
lem, and the resulting network is much easier to optimize.
ResNet34 in the encoder part is used to extract features. In
this process, there are four stages and each stage has several
residual modules.

The pixel level has a great influence on the computing
costs and prediction results. To support the training process
and graphics processing unit (GPU) memory limit, the CT
data and labels on the datasets are randomly cropped into
small patches of 256× 256 pixels in size (see Fig. 4). Our
method can crop an arbitrarily sized image, and therefore it
can be applied to different image sizes according to the hard-
ware capacity. This process can also be regarded as data en-
hancement to prevent overfitting and obtain a more robust
network. Our method can perform image segmentation at the
pixel level when the network and GPU meet its constraints.

The input image is designed to be a patch of 256× 256
pixels. The input layer is followed by a normalization layer
and a maximum pooling layer. The activation function of the

network is based on the ReLU activation function. Four 2×2
max pooling layers perform down-sampling, which plays a
crucial role in dimensionality reduction and image feature
extraction.

The connector, the middle jump connection part inspired
by the feature pyramid network (FPN), is designed as a pyra-
midal hierarchical structure (Lin et al., 2017). The connector
concatenates the feature maps from the encoding unit to the
decoding unit to achieve multiscale feature fusion. Then the
feature maps are input to the decoder to semantically seg-
ment the fish microfossils from CT data.

The decoder part also consists of four stages. Each stage
includes an up-sampling process that uses a transposed con-
volutional layer with a 2× 2 kernel, feature connection, and
two convolutional layers with 3× 3 kernels. The size and
number of feature maps are the same at the same stage as in
the encoder part. Finally, the feature maps are output through
a convolutional layer with a 1× 1 kernel and a softmax acti-
vation function. The different types of fish microfossils and
backgrounds are semantically segmented from CT data with
multiclass probabilities.

The U-Net+ResNet34 network in this paper solves the
vanishing gradient problem caused by the increased numbers
of layers. The network’s pyramid structure combines multi-
scale features at different levels, helping to restore the edge
profiles of fish microfossils from CT data. Figure 5 shows the
network of the DL-based semantic segmentation method.

3.2 Network training

The U-Net model can perform semantic segmentation for
an arbitrarily sized image. To match the network and GPU
memory, we randomly cropped the CT data and labels with
a sliding window to patches having a fixed size of 256× 256
pixels (see Fig. 4).

Semantic segmentation is like a multiclass classification
problem that assigns labels to pixels in an image. We chose a
multiclass cross-entropy function as our loss function. The
function calculated the difference between true labels and
predicted labels. Then we updated the weights of the net-
work and improved its performance on the training set with
this function. To obtain better-performing model parame-
ters, the Adam algorithm was chosen to optimize the weights
(Kingma and Ba, 2014). The training process ran a total of 20
iterations. The batch size was set to 8, and the initial learning
rate was given to 0.0001. The formula of the loss function is
shown in Eq. (4):

loss=−
∑k

j=1

∑n

i=1
yi,j log ŷi,j + yi,j log ŷi,j

+ . . .+ yi,k log ŷi,k, (4)

where n is the pixel number in the images and k is the number
of categories. ŷi is the predicted category. yi is the true label.

We applied the U-Net+ResNet34 model for semantic
segmentation at the pixel level. We trained the model to
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Figure 4. Random cropping of CT data and labels with patches of 256 ×256 pixels.

Figure 5. U-Net+ResNet34 network.

minimize the loss function with a training set and a cross-
validation set. We used the test sets to verify the effectiveness
of the DL-based method. However, the final network needs to
have not only a good structure but also labels as a “gold stan-
dard”. We used the manual semantic segmentation method to
create experimental datasets for training the network.

The method proposed in this paper was implemented using
Keras (Chollet, 2015), which has been widely used in many
other tasks such as medical image segmentation and fossil
classification (Hou et al., 2020). The computer has an Nvidia
RTX 2080Ti GPU, 128 GB of memory, and an Intel XEON
silver 4114 CPU.

4 Experiment

4.1 Data preparation

We dissolved the matrix surrounding the samples from the
Xitun Formation (Early Devonian) (Zhao et al., 2021) with

a 3 %–7 % acetic acid solution. The fish microfossils were
separated under a microscope from the processed samples
(Cui et al., 2020; Li et al., 2021; Cui et al., 2021). All fish
microfossils were collected and examined at the Institute
of Vertebrate Paleontology and Paleoanthropology (IVPP)
of the Chinese Academy of Sciences (CAS). We applied
plastic wrap and a specially customized plastic tube to fix
the specimens. We scanned the fixed microfossils with a
225 kV micro-CT scanner that had three main parts: X-ray
tube (Phoenix XS-225D), detector (Varian 4030CB), and ro-
tary table (HUBER 410). The scanner was designed by the
Institute of High-Energy Physics (IHEP), CAS (Wang et
al., 2019). The potential difference applied to the tube was
100 kV. The target current was set to 100 µA. The voxel size
of the CT data was given as 5.96 µm. A total of 1440 pro-
jections were collected from 360◦ in 0.25◦ steps. The soft-
ware for the computed tomography process was developed
by IHEP, CAS. We obtained 1536 CT data points, each of
which was 2048×2048 pixels in size with a 16 bit greyscale.
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Table 1. Details of experimental datasets.

Serial Number Number Number Number
number of types of fish of CT data of patches

microfossils

1 4 92 780 7020
2 4 84 437 5244
3 4 86 661 10 576
4 4 75 877 10 524
5 4 68 525 8400
6 4 77 785 4710

We analyzed the data using Materialise’s interactive medi-
cal image control system (Mimics) 18.0 software. To ensure
that the dataset was at a “gold standard” level, we used the
manual semantic segmentation method to create our experi-
mental dataset. We set the appropriate grey-level thresholds,
generated the masks, and separated different types of fish mi-
crofossils. Finally, we marked them with different colors as
true labels in the experimental datasets. Figure 6 shows the
process of the data preparation.

4.2 Experimental dataset

A total of six experimental datasets were compiled for this
research. The number and placement of microfossils were
different in different datasets. The details of the datasets are
shown in Table 1. All the CT data in the datasets were man-
ually marked with color masks as true labels, such as yel-
low associated with Nostolepis, green associated with teeth,
blue associated with Psarolepis, and purple associated with
Gualepis (see Fig. 2). We divided each experimental dataset
into a training set and a test set. We used 80 % of the experi-
mental dataset as the training set, 20 % of the training set as
the cross-validation set, and 20 % of the experimental dataset
as the test set.

4.3 Evaluation criteria

The multiclass approach was used to semantically segment
all the pixels in CT data. Therefore, we performed a multi-
class IoU as the evaluation criterion. IoU is a popular evalu-
ation metric for DL-based semantic segmentation. We eval-
uated both the popular methods and the DL-based method
using IoU. The IoU score is defined as the size of the inter-
section divided by the size of the union of the sample sets
and computed as follows:

IoU=
TP

TP+FP+FN
, (5)

where TP is the true positive value, FP is the false positive
value, and FN is the false negative value. The values were
computed using all true labels and predicted labels at the
pixel level in CT data.

Table 2. Global IoUmacro scores of the binary image segmentation
method.

Serial Global IoUmacro Global IoUmacro
number (popular method) (DL-based method)

1 91.13 % 99.28 %
2 86.20 % 98.85 %
3 86.67 % 99.24 %
4 91.97 % 99.58 %
5 91.07 % 99.18 %
6 87.30 % 99.04 %

The predicted labels were evaluated based on manually
marked true labels. We performed semantic image segmenta-
tion of multiple types of fish microfossils. We calculated the
IoU score of each type and their average to obtain a global
index. IoUmacro is the average score, and the calculation for-
mula is as follows:

IoUmacro =
1
k

∑k

i=1
IoUi, (6)

where IoUi is the IoU of each type, IoUmacro is the average
of the total type IoUs, and k is the number of types. When
working with CT data, a global IoUmacro is reported to eval-
uate the data at their original resolution, and a local IoUmacro
is used to evaluate all the patches in the test set.

5 Result

5.1 Comparison with the popular segmentation method

We compared the DL-based method with the popular method
for all six experimental datasets. The popular segmentation
method was based on automatic thresholding and watersheds
(Roerdink and Meijster, 2000). For example, on the dataset
SN1, we used the Otsu method for binary image segmen-
tation. The digital connection problem of fish microfossils
appeared as indicated by the red circles in Fig. 7. We also
tried to use the watershed method to separate the fossils, yet
the results were not as expected. It was difficult to isolate
individual fossils using the watershed algorithm. A single
fish microfossil was divided into several parts as indicated
by the green circles in Fig. 7. The DL-based method showed
better performance in segmenting the details than the popu-
lar method. Table 2 shows the global IoUmacro scores of the
popular method and the DL-based method in binary image
segmentation for all six experimental datasets. It can be seen
from the experimental results that the DL-based method im-
proved the global IoUmacro scores so that they were close to
those of the reconstructors’ manual segmentation.

5.2 Semantic image segmentation result

We obtained a limited number of tomograms and labels man-
ually segmented by reconstructors to train the network. Then,
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Figure 6. Process of the data preparation.

Figure 7. Comparison between popular methods and the DL-based
method.

we employed the full CT dataset with the trained DL program
to accomplish semantic segmentation. We chose the global
IoUmacro scores as the evaluation criteria for semantic im-
age segmentation and obtained the scores for all six experi-
mental datasets. The segmentation results showed that global
IoUmacro scores were between 94 % and 98 %, as depicted in
Table 3. The results demonstrate the versatility of the DL-
based method. From the experimental results, the DL-based
method achieved good performance and avoided overfitting.
For example, on the dataset SN1, the segmentation accuracy
and loss function curves of the experimental process showed
few iterations reaching 99 % accuracy (Fig. 8a) with a small
loss function result (Fig. 8b). The good performance was also
supported by the local confusion matrix and the results of the
DL-based semantic segmentation method on the test set, as
shown in Fig. 9. The diagonal elements represent the clas-
sification accuracy for each category, while the off-diagonal
elements are the percentage of classifier mislabels.

Table 3. Global IoUmacro scores of the DL-based semantic segmen-
tation method.

Serial Global IoUmacro
number

1 98.03 %
2 97.26 %
3 96.80 %
4 97.59 %
5 97.79 %
6 94.39 %

6 Discussion

We proposed a DL-based semantic segmentation method for
fish microfossils from CT data. We demonstrated that our
method is effective and produces results close to those of
manual segmentation. Our methodology was compared fa-
vorably with the popular segmentation method.

An essential step in the popular segmentation method se-
lects the threshold for optimal binarization segmentation in
the absence of prior knowledge (Nosrati and Hamarneh,
2016). The noise in images is manifested in different ways
that depend on the target application (Sagheer and George,
2020). On the experimental dataset, for instance, the light
grey-level noise from CT data corresponds to the relatively
low-density plastic wrap used to fix the microfossils, while
the remaining high grey represents the fish microfossils,
mainly scales and teeth. The plastic wrap could not cleanly
isolate each microfossil, leading to problems of digital con-
nections between two or more fish microfossils. Experimen-
tal results show that the watershed algorithm (Roerdink and
Meijster, 2000) cannot automatically detect the boundaries of
fish microfossils. Therefore, the reconstructors have to man-
ually segment the fish microfossils digitally connected. This
process is time-consuming and requires expertise.

In this paper, we used the U-Net+ResNet34 network to
semantically segment fish microfossils in CT data. We in-
serted ResNet34 into the U-Net model, which effectively
solved the problems of overfitting, parameter redundancy,
and deep degradation caused by too many network layers.
The comparative experiments show that we achieved bet-
ter results from binarization segmentation than the popular
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170 Y. Hou et al.: Semantic segmentation of vertebrate microfossils

Figure 8. Accuracy and loss function curves on the dataset SN1.

Figure 9. Performance of the DL-based semantic segmentation method on the dataset SN1.

method. The global IoUmacro scores of the semantic seg-
mentation also reached at least 94.39 % on the experimen-
tal datasets, meeting the requirements of paleontologists for
segmenting fish microfossils from CT data.

Similarly, the DL-based method also encountered some
challenges. The digitization of microfossils requires a series
of tasks, such as the selection of specimens, the cost of us-
ing micro-CT, and the process of labeling each fossil by re-
constructors. We do not have enough data to verify whether
our method could be successfully applied to other types of

fish microfossils. The universality of the DL-based method
should be tested in follow-up studies.

However, our contribution is a well-established method for
semantically segmenting vertebrate microfossils, specifically
fish microfossils. Our goal at this research stage is to ob-
tain more CT data on fish microfossils to expand our dataset.
We have a professional labeling team that can provide high-
quality data. Our proposed method is relatively successful
and promising. Currently, for four types of fish microfossils,
we have obtained nearly 500 specimens, which represent an
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abundance of samples. There is no other publicly available
CT dataset of fish microfossils that is comparable in size,
let alone containing expert-labeled images. We believe that
our work may be helpful in the processing of CT data from
fish microfossils and even data from other microfossils. The
fully labeled CT dataset and DL-based semantic segmenta-
tion method that we will make public in a publicly accessible
repository (ADMorph) at http://admorph.ivpp.ac.cn/ (last ac-
cess: 20 June 2020) can potentially provide research support
to other paleontologists and experts in the field of computer
sciences.

7 Conclusions

In summary, we have provided a labeled CT dataset and pro-
posed a baseline for a DL-based method of semantically seg-
menting vertebrate microfossils in CT data. Our preliminary
study by means of extensive experiments on nearly 500 fish
microfossils shows that the intersection over union (IoU) per-
formance metric arrived at least 94.39 %, meeting the seman-
tic segmentation requirements of paleontologists. Along with
improving our existing hardware and framework structure,
our future work aims to increase the types of fossils in our
dataset. Further network training could lead to the automatic
segmentation of more types of microfossils and add to the
knowledge of the distribution of vertebrate microfossils in
the strata.
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Žigaitė, Živilė, Karatajūtė-Talimaa, V., and Blieck, A.: Ver-
tebrate microremains from the Lower Silurian of Siberia
and Central Asia: palaeobiodiversity and palaeobiogeography,
J. Micropalaeontol., 30, 97–106, https://doi.org/10.1144/0262-
821X11-016, 2011.

Ziou, D. and Tabbone, S.: Edge detection techniques-an overview,
Pattern Recognit. Image Anal., 8, 537–559, 1998.

https://doi.org/10.5194/jm-40-163-2021 J. Micropalaeontology, 40, 163–173, 2021

https://doi.org/10.1017/scs.2017.6
https://doi.org/10.1016/j.quascirev.2019.106038
https://doi.org/10.3233/FI-2000-411207
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.bspc.2020.102036
https://doi.org/10.1016/0734-189X(88)90022-9
https://doi.org/10.1007/BF01189221
https://doi.org/10.1017/scs.2017.5
https://doi.org/10.1098/rspb.2008.0263
https://doi.org/10.5194/cp-16-2415-2020
https://doi.org/10.1016/j.neunet.2020.07.025
https://doi.org/10.1007/s11442-006-0415-5
https://doi.org/10.19615/j.cnki.1000-3118.170921
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.13745/j.esf.2014.02.014
https://doi.org/10.1007/s11430-020-9794-8
https://doi.org/10.1007/s11430-020-9794-8
https://doi.org/10.1144/0262-821X11-016
https://doi.org/10.1144/0262-821X11-016

	Abstract
	Introduction
	Traditional segmentation method
	Popular segmentation method
	Manual semantic segmentation method

	DL-based semantic segmentation method
	Network structure
	Network training

	Experiment
	Data preparation
	Experimental dataset
	Evaluation criteria

	Result
	Comparison with the popular segmentation method
	Semantic image segmentation result

	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

