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Abstract. A morphometric outline analysis of the brackish-water ostracod Cyprideis examines a 2.0-million-
year period during which the Central Paratethys region underwent significant geographic and environmental
transformations.

Based on hingement anatomy, the polymorphic Cyprideis pannonica, characterized by considerable variation
in valve outline and size, inhabited the marginal marine environments of the Central Paratethys during the late
Middle Miocene. With the transition to lacustrine conditions in the Late Miocene, Cyprideis colonized the brack-
ish Lake Pannon and adapted to different water depths. However, compared to its Middle Miocene ancestors, it
lost its total variability in outline due to a fragmented lacustrine environment.

Less than 0.5 million years after the lake’s formation, a regression event eliminated littoral C. pannonica
morphotypes. When a new transgressive cycle began, these morphotypes were replaced by neoendemic littoral
taxa, which exhibited only limited morphometric similarity to their ancestors and contemporaneous sublittoral
relatives. While littoral taxa evolved rapidly in terms of outline, sublittoral species increased in size, consistent
with Bergmann’s rule, and were more conservative in the outline, maintaining a higher degree of morphometric
similarity to their ancestors.

Despite a physiological adaptation to brackish waters, Cyprideis were outnumbered in Lake Pannon by primar-
ily freshwater candonins and marine/brackish leptocytherids. It is concluded that lacustrine habitat heterogeneity
and tectonic activity in the Central Paratethys had impacted the adaptive radiation and the polycyclic evolution
of Cyprideis.

1 Introduction species can evolve rapidly (Martens et al., 1994) due to habi-

tat fragmentation (Altizer et al., 2003; Gross et al., 2013),

Long-lived lakes serve as biodiversity hotspots for freshwa-
ter species and marine-like animals. However, only certain
ostracod groups exhibit a higher predisposition for specia-
tion in these environments (Martens, 1994). Adaptive radi-
ation can occur from ancestors inhabiting both the lake and
the surrounding biotopes. This radiation is generally consid-
ered adaptive, influenced by intrinsic and extrinsic factors,
and strongly driven by tectonic activity and climatic changes
(von Rintelen et al., 2004; Schoén and Martens, 2004). New

often forming small populations with limited geographical
distribution (Cohen, 1994).

The most favourable period for adaptive radiation occurs
when a species invades a new or unoccupied niche, compet-
ing with other species. Successive morphological adaptations
are associated with distinct habitat preferences, dietary shifts
(Schluter, 1996), sexual selection pressures, time-related fac-
tors, and developmental and historical constraints (Schén and
Martens, 2004). However, highly fluctuating environmen-
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tal conditions can hinder morphological changes, leading
species to remain in morphological stasis or experience only
occasional evolutionary shifts, particularly in shallow-water
taxa and temperate zones (Cronin, 1985; Sheldon, 1996).
When environmental conditions exceed critical thresholds
(Sheldon, 1996), the surviving lineages may have a greater
potential to develop novel phenotypes (Regan et al., 2003).

This theoretical framework is applied here to the Miocene
long-lived Lake Pannon fauna. We focus on the morphomet-
ric traits of calcitic ostracod valves, examining both intrinsic
and extrinsic factors that influence their morphological vari-
ability in terms of outline and hingement, particularly in the
brackish-water mussel-shrimp Cyprideis. This genus first ap-
peared in the Central Paratethys region at the end of the Mid-
dle Miocene and subsequently established itself in Lake Pan-
non during the Late Miocene (Kollmann, 1960). Our analysis
covers a period of approximately 2.0 million years, during
which Cyprideis exhibited adaptive processes while the ge-
ographical region underwent two significant ecological and
geographical transformations.

2 The ostracod genus Cyprideis

Cyprideis is a benthic, euryhaline genus primarily adapted
to brackish environments but capable of tolerating a wide
range of salinity conditions (Van Harten, 1990). It rapidly
became cosmopolitan following its emergence in the Late
Oligocene (Malz and Triebel, 1970; Kadolsky, 2008) and
has been found in numerous endemic and morphologically
highly variable populations in non-marine basins across
South America, Europe, and Tiirkiye (Bassiouni, 1979;
Jificek, 1985; Krsti¢, 1985; Whatley et al., 1998; Ligios and
Gliozzi, 2012; Gross et al., 2013, 2014). The morphologi-
cally most spectacular species radiation is known from Lake
Tanganyika (Wouters and Martens, 2001).

In Europe, Cyprideis spread in the Middle Miocene, form-
ing the Mediterranean phyletic lineage and the Paratethyan
phyletic lineage represented by the endemic species of Lake
Pannon (Gliozzi et al., 2017).

The living species, Cyprideis torosa (Jones, 1850), origi-
nated in the Late Miocene Mediterranean from the Mediter-
ranean phyletic lineage (Gliozzi et al., 2017) and is now
widely distributed in coastal oligo-miohaline (brackish) wa-
ters across Europe, Asia, and Africa (Wouters, 2002, 2017).
As a “pioneer” species, it possesses a highly efficient os-
moregulatory system, enabling it to survive in both freshwa-
ter and hypersaline environments where salinity can reach
up to 200 gL_1 (Aladin and Potts, 1996; Gamenick et al.,
1996). Its ability to tolerate a wide range of temperatures,
oxygen, salinity, and substrate conditions (De Deckker and
Lord, 2017) significantly influences the shape, size, and or-
namentation of the valve. These variations are phenotypic
responses to environmental conditions or may be induced
by physiological and genetic changes (Kilenyi, 1972; Van
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Harten, 1975, 2000; Bodergat, 1983, 1985). Consequently,
they are not considered reliable diagnostic characteristics for
C. torosa (Wouters, 2002, 2017). However, some of these
characteristics, such as details of the hinge and posteroven-
tral spines, can be significant for the taxonomy of endemic
species (Gross et al., 2008, 2014).

C. torosa reproduces sexually, exhibiting pronounced sex-
ual dimorphism in valve morphology. Females possess a
brood pouch within the carapace, which protects eggs and
juveniles during the first ontogenetic stage (Meisch, 2000).
Ontogenetic development is positively correlated with wa-
ter temperature, and under optimal conditions, Cyprideis can
form dense local populations. As a microphagous detritus
feeder, its abundance depends on the bacterial decomposition
of organic matter (Heip, 1976).

3 Origin of Lake Pannon

At the end of the Middle Miocene, a semi-isolated epicon-
tinental sea — the Sarmatian Sea — developed in the Cen-
tral and Eastern Paratethys regions, characterized by an en-
demic and significantly impoverished fauna lacking most
stenohaline taxa (Harzhauser et al., 2007; Fig. 1). In the
Central Paratethys, fine siliciclastic sedimentation gave way
to alkaline, carbonate-oversaturated deposition. Oolites and
coquina-dominated sands spread across nearshore environ-
ments and shallow shoals (Harzhauser and Piller, 2004a, b).
The early Sarmatian polychaete—bryozoan communities col-
lapsed and were replaced by unique foraminiferal build-ups,
contributed by the sessile genus Sinzowella (Harzhauser et
al., 2007). The latest Sarmatian was marked by the final oc-
currence of brachyhaline and marine ostracods. During this
time, Cyprideis appeared for the first time in marginal marine
environments (Jificek, 1985; Krsti¢, 1985).

Paleogeographical changes between the Middle and Late
Miocene led to a significant reduction and fragmentation into
smaller water bodies, a drop in salinity, faunal turnover, and
the emergence of an isolated brackish Lake Pannon (Geary
et al., 1989; Magyar et al., 1999, 2025). In its early phase
(zones A, B), the lake’s chemical composition remained sim-
ilar to the Sarmatian one in terms of alkalinity, carbonate
content, and sulfur isotopic composition (Matyds et al., 1996;
Harzhauser et al., 2007; Lin et al., 2023). The formation of
Lake Pannon without deep-water subbasins (Magyar et al.,
1999) posed a challenge for molluscs (Miiller et al., 1999)
and ostracods, which evolved from a few surviving marine
and freshwater lineages (Magyar et al., 2025). They adapted
to ecological niches characterized by sandy deltaic and clay-
rich offshore sedimentation in the north half of the lake and
carbonatic precipitation in the south of the lake, with rela-
tively stable brackish salinity (Geary et al., 1989; Magyar et
al., 1999).
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Figure 1. Geographical location of the studied localities. The biozonation of the Pannonian is based on brackish molluscs and is divided into
zones A—H (sensu Papp, 1951), reflecting the ecological preferences of the Lake Pannon meiofauna (Magyar et al., 1999; Harzhauser and
Piller, 2007). Stratigraphic position of the localities based on Geary et al. (2010), Gross et al. (2008), Harzhauser et al. (2002, 2003, 2009),
Harzhauser and Tempfer (2004), Magyar et al. (2007), Pipik (1998, 2007), Pipik et al. (2004), Starek et al. (2010), and §ujan et al. (2021).
Abbreviations: BA: Bratislava; GB: Gbely; HE: Hennersdorf; HO: Hodonin; MA: Mataschen; PEL: Pellendorf; PEZ: Pezinok; SM: Sankt
Margarethen; SKA: Skalica; SO: Sopron; STA: StavéSice; STU: Studienka.

Less than 0.5 million years later (zone C), a regression led
to the deposition of thick sandy sedimentary bodies (Kovac
et al., 1998). However, between approximately 11.04 and 9.8
million years ago, Lake Pannon expanded and reached its
maximum extent due to intensified basin subsidence (zone
E; Magyar et al., 2007). Benthic animal communities, dif-
ferentiated by depth, occupied fully oxic and brackish en-
vironments (Cziczer et al., 2009) under a temperate climate
with distinct seasonality (Harzhauser et al., 2023). In some
areas, riverine discharge and anoxic events influenced the
bottom meiofauna (Harzhauser et al., 2007; Magyar et al.,
2007, Starek et al., 2010).

Following this period, the sudden retreat of Lake Pan-
non (zones F-H) led to the formation of extensive allu-
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vial lowlands, ephemeral lakes, and swamps (Harzhauser
and Tempfer, 2004; Harzhauser et al., 2004). The progres-
sive freshening of the lake (Geary et al., 1989; Neubauer
et al., 2016) resulted in local extinctions and the migration
of the brackish fauna to the southern part of Lake Pannon
and the Eastern Paratethys (Pipik, 2007; Cziczer et al., 2009;
Neubauer et al., 2016).

4 Material and methods

4.1 Sampling and measurement strategy

Our sampling strategy aimed to encompass all types of de-
positional environments with well-defined palaeoecological
settings along the western margin of Lake Pannon, covering
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a stratigraphic range from the pre-lacustrine late Sarmatian to
the lacustrine middle Pannonian (approximately 2.0 million
years; Fig. 1, Table S1). All collected samples were dried
naturally in the laboratory, washed through a 0.09 mm sieve,
and examined under a stereo microscope for species identi-
fication. The relative abundance of Cyprideis was calculated
based on all adult ostracod valves in the sieve residue to de-
termine their dominance in the paleocommunity.

Only well-preserved, transparent, or milky female right
valves were used for outline analysis. Species identification
was based on Kollmann’s revision of the genus (Kollmann,
1960) and on taxonomic studies of Cyprideis from the Vi-
enna and Styrian Basins (Pokorny, 1952; Gross et al., 2008).
A list of the species treated and their descriptions can be
found in Table S2. Typically, more than 20 valves of each
species were selected (Table S3); however, for Cyprideis sp.
1, only 14 valves were available. Valve lengths and heights
(Fig. 2a) were measured using EclipseNET software (version
1.20), determining the maximum distance between two par-
allel lines: one tangential to the lowest point of the ventral
margin and the other tangential to the highest point of the
dorsal margin.

SEM images of left valves in the internal lateral view were
analysed to examine the arrangement and subtle variations of
the hinge structure (Table S2), following the terminology of
Van Morkhoven (1962, p. 79). The maximum width of the
anterior socket (Fig. 2b) was measured from SEM images,
spanning from the proximal part of the anterior slip bar to
the distal part of the anterior socket, which is bordered by a
shallow groove above it.

4.2 Computation of the outline

Valves were photographed in external lateral view using a
Nikon light microscope and a Nikon digital camera, then pro-
cessed with TPS-dig software (version 1.40; Rohlf, 2004;
Fig. 2a). Morphometric analysis of the outlines was sub-
sequently conducted using Morphomatica software (version
1.6; see Brauneis et al., 2006a, b for details), which is based
on the B-splines approach. This method is particularly suited
for smoothing and analysing slightly ornamented ostracods
that lack distinct landmarks (for a detailed methodological
approach, see Minati et al., 2008).

Mean shape outlines of the original TPS data were com-
puted using Morphomatica 1.6, allowing the valve outlines
to be displayed in a format suitable for visualizing shape
differences. Multivariate statistical analyses were performed
using the Primer 6 software package (Clarke and Gorley,
2006). Non-metric multidimensional scaling (n-MDS) was
used to display differences between the normalized and
non-normalized mean shape outlines. Additionally, analy-
sis of similarities (ANOSIM) was conducted with a one-
way layout to test the null hypothesis that no differences ex-
ist between Cyprideis species in the approximated B-spline
curves.
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Figure 2. (a) Measured parameters of the right valve (external
view). The anterior and posterior spines were removed using graph-
ical software. (b) The anterior socket and its hingement on the left
valve (internal view). (¢) Approximation of the valve outline using
Morphomatica software with B-splines drawn over the outline. The
control points of the corresponding control polygon are numbered
and used to display differences between species for total area (all
points), ventral area (points v1-v7), and dorsal area (points d1-d7).

The R value in ANOSIM ranges from 1, indicating com-
plete separation of samples, to 0, meaning no significant dif-
ferences among samples. According to Clarke and Gorley
(2001), R values of R > 0.75 indicate well-separated groups,
0.5 < R <0.75 suggest overlapping but distinct groups, and
R < 0.5 denotes barely separable groups.

Since the general shape of the ostracod valve is influenced
by the extension and arrangement of its inner soft parts (Van
Morkhoven, 1962), a one-way layout ANOSIM test is also
applied to assess differences between species at the same
stratigraphic level for total area, ventral area, and dorsal area
(Brauneis et al., 2006a; Fig. 2a, c). A standardized principal
component analysis (PCA) eliminates the horseshoe effect
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and illustrates the morphometric space occupied by all anal-
ysed specimens and its shift over time.

5 Results

5.1 Shape differences

Mean outlines, normalized for area and placed in a multi-
dimensional space, display an increasing trend in variability
from the Sarmatian to the middle Pannonian (Fig. 3a). This
variation is evident along the entire outline (Fig. 4b, d, f, h,
j)- The early Pannonian normalized outlines of C. kapfen-
steinensis, C. pannonica, C. tuberculata, and C. mataschen-
sis closely resemble those of the Sarmatian C. pannon-
ica, but morphospace variability increases within the group
(Fig. 3a). Middle Pannonian taxa exhibit significant variabil-
ity, occupying nearly the entire multidimensional space de-
fined for the studied Cyprideis species. Cyprideis sp. 2, C.
macrostigma, and C. sublittoralis are closely related to the
Sarmatian and early Pannonian Cyprideis groups, while C.
obesa, C. alberti, C. aff. obesa, C. heterostigma, Cyprideis
sp. 1, and C. seminulum differ considerably, showing a large
morphometric distance from the older taxa.

Sarmatian C. pannonica are closely grouped in the nor-
malized n-MDS plot but are relatively distant in the non-
normalized for area n-MDS plot, which separates the species
into two clusters based on mean species size and water
depth (Fig. 3b). The upper-right corner of the plot regroups
larger species found in sublittoral deposits, alongside C. aff.
obesa and Cyprideis sp. 1, which are known from littoral/-
sublittoral environments. In contrast, the lower-left corner
regroups smaller species from littoral sediments character-
ized by fluctuating environmental conditions. Interestingly,
Sarmatian C. pannonica shows an inverse position concern-
ing water depth (Table S1). The mean outline differs in size
(Fig. 4c) and exhibits variation along the ventral and dorsal
margins, remaining parallel at the posterior and nearly iden-
tical at the anterior (Fig. 4d).

The early Pannonian Cyprideis species (Fig. 4e, f) exhibit
variations in size, with noticeable differences in shape along
the dorsal, posterior, and ventral margins. This variability is
particularly pronounced in C. mataschensis, C. tuberculata,
and C. pannonica, whereas the mean outline of C. kapfen-
steinensis falls within the calculated range of shape differ-
ences. A trend of increasing differentiation in size and shape
continues into the middle Pannonian taxa, where variations
are also observed along the anterior margin (Fig. 4g—j). The
greatest area of deviation occurs among littoral taxa, with all
species in this group contributing to the variability (Fig. 4g,
h). Among sublittoral taxa, C. aff. obesa, C. obesa GB, and
Cyprideis sp. 1 are primarily responsible for variability along
the posterior and ventral margins, while C. macrostigma con-
tributes to variations along the dorsal, anterior, and ventral
margins (Fig. 4j). The ANOSIM (Fig. 5) of species from the
same stratigraphic level reveals a decrease in variability in
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the total area from the late Sarmatian (R = 0.6) to the early
Pannonian (R = 0.521), followed by a sharp increase in the
middle Pannonian (R = 0.654).

Superimposed mean outlines of all taxa display variations
in size (a) and in differences in outline shape (b). The time
slices indicate an increase in shape disparity (right column)
and the area of deviation (left column) over time (c—j). Sym-
bols representing mean normalized outlines indicate only the
species contributing to variability in specific outline areas.
For better readability of the large taxa outlines (i), the non-
normalized outline of C. macrostigma is plotted alongside
the small middle Pannonian taxa (g).

This trend is also observed in the dorsal and ventral areas,
with a significant rise in variability in the ventral area (R =
0.573) from the early to middle Pannonian.

The differences between Cyprideis species at the same
stratigraphic level, as represented by approximated B-spline
curves for total, ventral, and dorsal areas, are evident. There-
fore, the null hypothesis can be rejected.

5.2 Size changes of the anterior socket

The size and morphology of the anterior socket vary, with
the most significant differentiation observed in middle Pan-
nonian species (Fig. 6). This parameter exhibits non-linear
growth over time, forming a flower-like shape. The socket
size in Sarmatian species ranges from 28-30 um, while in
early Pannonian species, it increases, ranging from 27—
44 um.

In littoral species from zone E/F, the anterior socket size
varies between 30 and 37 um, whereas sublittoral taxa from
the same zone show the highest variability, ranging from
25-51 pum. The largest anterior sockets are found in the
sublittoral species C. obesa HE, C. macrostigma, and C.
mataschensis. However, two other large sublittoral species,
C. sublittoralis and C. kapfensteinensis, have narrower ante-
rior sockets.

The socket width does not correlate with species size or
water depth. Instead, it has an independent taxonomic and
evolutionary significance.

5.3 Polymorphism in the Sarmatian Sea

Sarmatian paleopopulations of C. pannonica likely occurred
in the marginal facies of the late Sarmatian Sea (Cernajsek,
1974; Krsti¢, 1985). The two studied paleopopulations of
C. pannonica, originating from different environments (Ta-
ble S1, Fig. 7b), exhibit a relatively high statistical separation
(R = 0.6), indicating some overlap but also clear species dif-
ferentiation (Clarke and Gorley, 2001, 2006). However, this
differentiation is not supported by variations in hingement
composition. Both Sarmatian paleopopulations share iden-
tical hingements, with only minor variations in the antero-
median element — very fine crenulations in the lacustrine-
brackish environment (Table S2, Fig. 8a, Table S1, Sankt
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Figure 3. n-MDS plot for mean Cyprideis specimens: (a) normalized for area, (b) non-normalized for area.

Margarethen) and a bilobate structure in the brachyhaline

environment (Fig. 8b, Skalica). These differences are inter-
preted here as intraspecific variations.

5.4 Emergence of Lake Pannon — loss of morphometric
variability

C. pannonica shares the same hinge arrangement as its Sar-
matian ancestors and exhibits distinct morphometric differ-
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ences from contemporaneous sublittoral Cyprideis species
(Figs. 3, 9). The early Pannonian sublittoral taxa (C. tuber-
culata, C. kapfensteinensis, C. mataschensis) show minimal
morphometric variation and a hinge pattern similar to that of
the Sarmatian C. pannonica (Fig. 8c—f). Notably, C. tuber-
culata displays morphometric similarity to both Sarmatian
morphotypes of C. pannonica (Figs. 7, 9).
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Figure 5. ANOSIM pairwise test of approximated B-spline curves
comparing species within the same stratigraphical level for total
area, ventral area, and dorsal area, as well as their changes over
time. The significance level for all tests is p<0.1 %.

5.5 The maximal extent of Lake Pannon and species
diversity

Cyprideis sp. 1 and C. aff. obesa appeared after the re-
flooding of the basin in the middle Pannonian, exhibiting
similar outlines (R = 0.352) and comparable anterior socket
widths. However, C. aff. obesa possesses striae at its socket.
Sublittoral Cyprideis from zone E inhabited fully oxygenated
basinal clayey environments (C. sublittoralis, C. obesa HE)
and silty environments (C. obesa GB) influenced by riverine
input. C. macrostigma was found in clayey and silty deposits
of the open lake facies (Cziczer et al., 2009).

ANOSIM separates C. obesa HE from C. obesa GB (R =
0.667), supporting their classification as separate species
based on the wider anterior socket, the presence of striae
(Fig. §j, 1), and differences at the dorsal and ventral mar-
gins. In contrast, C. obesa HE is morphometrically identical
to C. aff. obesa (R = 0.052, p<10.3 %). Both taxa have very
similar hinges differing in the fine elevations of the poste-
rior socket and the width of the posteromedian groove. They
probably represent a single species (Table S4).

The outlines of sublittoral taxa were linked to Sarmatian
sublittoral and brachyhaline C. pannonica, as well as to early
Pannonian sublittoral Cyprideis (Fig. 9). Most of these rela-
tionships involve C. macrostigma and C. sublittoralis, whose
outlines statistically overlap (R = 0.327) but exhibit signifi-
cantly different hingement (Fig. 8n, p). This suggests minor
morphometric differences and a slow gradualistic evolution
in outline within the sublittoral habitat.

While sublittoral species are morphometrically conserva-
tive, littoral species exhibit a high diversity of outlines. C.
heterostigma is closely related to the littoral/sublittoral C.
aff. obesa. Cyprideis sp. 2, characterized by a fairly robust
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segmented anteromedian tooth and striae above the anterior
socket, shows similarities to sublittoral Sarmatian, early Pan-
nonian, and contemporaneous sublittoral species. C. alberti
is the most distinct among all species (R = <0.685,0.991>),
possessing a hinge structure without an apparent posterior
socket and with the same width as the posteromedian groove
(Fig. 80). In contrast, C. heterostigma and C. seminulum ex-
hibit very low statistical separation (R = 0.253) and an al-
most identical hingement; therefore, their species status is
based on the sigmoidal ventral margin and narrow furrows in
posterior socket observed in C. seminulum (Table S2).

6 Discussion

6.1 The ancestor of Lake Pannon Cyprideis

Due to its broad paleoenvironmental tolerance, Sarmatian C.
pannonica exhibited notable intraspecific variation in both
valve outline and size. A morphometric approach, combined
with hingement as an independent taxonomic characteristic,
indicates the absence of reproductive barriers and suggests a
shared gene pool among Sarmatian C. pannonica paleopop-
ulations.

According to this study, based on the biostratigraphic find-
ings of Kollmann (1960) and Jifi¢ek (1985), C. pannonica
was the ancestor of the Cyprideis Paratethyan lineage. Spec-
imens from low-energy brackish marsh environments were
bigger and dominated over the freshwater genera Notodro-
mas, Potamocypris, Candonopsis, and Heterocypris (Pipik et
al., 2009). Specimens from the brachyhaline sublittoral outer
estuary were smaller and associated with Cyamocytheridea,
Hemicytheria, Loxoconcha, and Euxinocythere (Fordinal and
Zlinska, 1998). It exhibited the same negative size—salinity
relationship (Van Harten, 1975; Boomer et al., 2017; Fig. 10)
and occurred in ostracod associations with a composition
similar to that of C. torosa (Frenzel, 1991; Pint and Frenzel,
2017).

Based on hinge anatomy, only one species — C. pannon-
ica — inhabited the Sarmatian Sea, displaying significant size
variation (SD of length: £36.02 for C. pannonica SKA and
+35.85 for C. pannonica SM; Table S3). The large C. pan-
nonica SM thrived in the low-energy brackish marsh, com-
prising 53 % of the sieve residuum. In contrast, smaller spec-
imens (C. pannonica SKA) were subdominant in the brachy-
haline sublittoral outer estuary, making up only 13 % of the
sieve residuum.

Lake Tanganyika is a model example of adaptive radiation.
The ancestor of Cyprideis is believed to have originated from
an estuarine stock, from which ecological segregation has
led to a wide variety of valve ornamentation, while the soft
body parts have remained relatively conservative (Wouters
and Martens, 2001). However, molecular data indicate that
the Cyprideis species flock in Lake Tanganyika is approxi-
mately 15 million years old, predating the lake’s formation
(Schon and Martens, 2012).
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Figure 6. Maximum width of the anterior socket of Cyprideis and its tendency for size differentiation from the late Sarmatian to the middle

Pannonian, to relative lake-level changes.

The similarity in hingement patterns between late Sarma-
tian and early Pannonian Cyprideis (Fig. 8) suggests that the
observed Cyprideis diversity in Lake Pannon resulted from
a single colonization event followed by successive radiation.
This hypothesis aligns more closely with the model of the
Cytherissa species flock — a genus in the same subfamily
(Cytherideinae) as Cyprideis — which radiated after the for-
mation of Lake Baikal (Schon and Martens, 2012).

6.2 Adaptation and radiation of Cyprideis in Lake
Pannon

Well adapted to brackish and unstable lacustrine environ-
ments, C. pannonica survived intensive but short-lived paleo-
geographical changes between the Middle and Late Miocene.
Over time, it became dominant in shallow, brackish sandy
littoral habitats transitioning towards the freshwater environ-
ment, comprising 83 % of the sieve residuum (locality Pel-
lendorf). C. kapfensteinensis and C. mataschensis coexisted
in a sublittoral mesohaline environment. However, C. kapfen-
steinensis thrived during the interval of highest ostracod di-
versity, which coincided with the lake deepening and clay
sedimentation and salinity above 13 psu (Gitter et al., 2015).
In contrast, C. mataschensis was associated with prograding
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prodelta deposits composed of clay and fine sand (Gross et
al., 2008; Gitter et al., 2015) and salinity below 13 psu. Com-
prising 10 % of the sieve residuum, C. fuberculata inhabited
a prodeltaic calcareous silt deposited during a lowstand pe-
riod (Kovac et al., 1998).

A brackish early Pannonian lacustrine environment led to
the segregation of polymorphic Sarmatian paleopopulations
along a continuous environmental gradient, primarily rep-
resented by water depth and salinity changes (Gross et al.,
2011). Early Pannonian taxa inhabited littoral and sublittoral
biotopes, and despite this adaptation, their overall morpho-
metric variability declined compared to their ancestor (Fig. 5)
because subsidence of the peripheral subbasins had ceased,
and Lake Pannon consisted of relatively shallow, occasion-
ally dry, and temporarily fragmented water bodies (Magyar
et al., 1999).

The bottle-necked Middle Miocene paleopopulations
adapted to the diverse habitats of Lake Pannon, marking the
first phase of the founder effect. A second environmental
fluctuation in the Late Miocene (zone C), occurring shortly
after the lake’s formation, coincided with the retreat of Lake
Pannon. This event led to the disappearance of the pre-Lake
Pannon littoral Cyprideis morphotype and other species that
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Figure 7. A graphical representation of the morphospace occupied by all analysed specimens using PCA (a). The morphospace of the
Sarmatian Cyprideis (b) expanded with the formation of Lake Pannon in the early Pannonian, although the general valve outline remained
conservative (c¢). A subsequent shift in morphospace variability occurred in response to the basin’s re-flooding and the increased ecological

heterogeneity of middle Pannonian Lake Pannon (d—f).

had persisted since the Sarmatian, such as Hemicytheria om-
phalodes (Pipik, 2007).

During the subsequent transgression (the second phase
of the founder effect) and rapid subsidence, which formed
multiple deep subbasins (Magyar et al., 1999; Sujan et
al., 2021), the lake expanded, flooding the vast area inside
the forming Carpathian arc. This expansion allowed sig-
nificant species radiation of all ostracod genera, including
Cyprideis, throughout the entire area of Lake Pannon (Sokac,
1972; Krsti¢, 1985). This process isolated surviving sublit-
toral early Pannonian Cyprideis and led to the speciation
of new sublittoral taxa with low morphometric variability —
C. obesa, C. macrostigma, and C. sublittoralis. The trans-
gression created new habitats, fostering the adaptive radi-
ation of littoral neoendemics (Fig. 9). The resulting vacant
littoral environment increased the speciation rate, leading to
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the emergence of four species — C. alberti, C. seminulum,
C. heterostigma, and Cyprideis sp. 2. One of them, C. al-
berti, formed a hinge (Fig. 80) that differs from the typi-
cal Cyprideis plan, and its anteroventral margin is covered
with numerous densely spaced short spines. This species
may represent a new Cyprideis subgenus or genus. These
taxa appeared suddenly at the onset of the transgressive cy-
cle, displaying limited morphometric similarity to sublittoral
species. They replaced C. pannonica in the littoral com-
munity, becoming dominant in eutrophic estuaries (C. het-
erostigma, comprising 60 % of the sieve residue) and brack-
ish shallow lagoons (C. seminulum, C. alberti, and Cyprideis
sp. 2, collectively comprising 83 % of the sieve residue;
Pipik, 1998, 2007; Pipik et al., 2004). Thus, the number of
Cyprideis species increased in the entire area of Lake Pan-
non.
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changes included small elevations within the crenulation (C. mataschensis) and smoothening to slight crenulation (C. tuberculata) (c—f).
In middle Pannonian taxa, the hingement became more robust and coarser, displaying a segmented anteromedian tooth (C. macrostigma,
Cyprideis sp. 2, C. alberti), a thinner structure with fine denticulation (C. sublittoralis, Cyprideis sp. 1), or the presence of striae above the
anterior socket on the outer lamella (C. obesa HE, C. aff. obesa, Cyprideis sp. 2) (g—p). Abbreviations: amt — anteromedian tooth; as —
anterior socket; el — elevations; pmg — posteromedian groove; ps — posterior socket; st — striae; vr — ventral rim. Scale bar 0.1 mm.

6.3 Speciation in response to biotic factors

Pre-Lake Pannon and Lake Pannon Cyprideis exhibit pro-
nounced sexual dimorphism, which, along with their disper-
sal ability, is closely linked to the evolutionary success of o0s-
tracods in long-lived lakes (Martens et al., 1994). Throughout
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the 7.5-million-year-old history of Lake Pannon, Cyprideis
formed approximately 30 species (Kollmann, 1960; Sokac,
1972; Krsti¢, 1985). Despite being physiologically adapted
to brackish waters, they were outnumbered (Sokac, 1972;
Krsti¢, 1985; Cziczer et al., 2009) by primarily freshwa-
ter candonins (Meisch, 2000) and marine/brackish lepto-
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cytherids (Smith and Horne, 2002), all of which reproduce
sexually and have a benthic mode of life. Although Cyprideis
were abundant and displayed morphologically spectacular
taxa, they were also outnumbered by Candonidae in Lake
Tanganyika (Martens, 1994). Once again, their osmoregula-
tory system did not provide an advantage that would make
them the most diversified taxon in this alkaline lake.

Care for eggs and juveniles of the first stage within a brood
pouch, as observed in Lake Pannon Cyprideis females (see
Van Harten, 1990, p. 195), seems to be less advantageous for
the rate of speciation in long-lived lake environments com-
pared to taxa that lack a brood pouch, do not provide care for
offspring, and have high fecundity (see Cohen and Johnston,
1987). Gross et al. (2013) suggest that this reproductive mode
inherits a reproductive advantage and/or facilitates dispersal
and colonization in a patchy structured fluvio-lacustrine en-
vironment, whereas Martens (1994) emphasizes its role in
interspecies competition. A reduction in competition, linked
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to limited dispersal ability in lake habitats, has been observed
in the brood-pouch-bearing subfamily Timiriaseviinae (Colin
and Danielopol, 1979). The extant Timiriaseviin genus Gom-
phocythere also has a limited number of endemic species in
long-lived lakes (Park and Martens, 2001), whereas the Lim-
nocytherinae, a subfamily of the same family as Timiriase-
viinae but lacking a brood pouch, have undergone extensive
radiation in long-lived lakes (Martens, 1994).

A possible morphological response to predator pressure
(Geary et al., 2002) cannot be effectively tested in Cyprideis
valves, as they do not exhibit significant ornamental modi-
fications, increased calcification, or clear traces of predation
compared to Cyprideis from Lake Tanganyika (Wouters and
Martens, 2001).

We suggest that the Cyprideis salinity tolerance and brood
care were not the main factors in the speciation of the genus
in Lake Pannon.
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Figure 10. Changes in the mean species size of Cyprideis from the late Sarmatian (empty circle) to the middle Pannonian (black triangle).
After the Sarmatian, Cyprideis established themselves in Lake Pannon, undergoing speciation into two groups: smaller littoral taxa and larger
sublittoral taxa. Species size exhibited a positive correlation with water depth.

6.4 Speciation in response to abiotic factors

Lake Pannon, a long-lived lake, was divided by geograph-
ical barriers into a system of depocentres, reaching depths
of up to 1000 m (Balazs et al., 2018). Habitat heterogene-
ity increased significantly during the maximum expansion of
the lake (~ 10 Ma), marked by diverse depositional environ-
ments, including alluvial and fluvial facies, ephemeral lakes,
swamps, and subaquatic delta plains, which gradually transi-
tioned into offshore pelitic facies (Harzhauser and Tempfer,
2004, gujan et al., 2021). In these environments, bottom col-
onization was influenced by oxygen availability (Starek et
al., 2010). Morphologically stagnant gastropod taxa in Lake
Pannon experienced rapid evolutionary changes, primarily
driven by shifts in salinity (Geary, 1990; Geary et al., 1989).
Gitter et al. (2015) also propose that changes in salinity func-
tioned as a major driver of speciation in Cyprideis, as mid-
Pannonian conditions were characterized by oligo- to mioha-
line salinities (Cziczer et al., 2009), which corresponded to
the ecological optimum of Cyprideis (Meisch, 2000). How-
ever, despite these seemingly favourable conditions, mem-
bers of the subfamily Candoninae — primarily freshwater
ostracods (Meisch, 2000) — proliferated at the expense of
Cyprideis.

Regarding the salinity of the water environment and the
degree of morphometric variability, the two most significant
radiations of Cyprideis were observed in the alkaline fresh-
water Lake Tanganyika (Wouters and Martens, 2001) and
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in the Miocene freshwater or episodically saline-influenced
basins of western Amazonia (Whatley et al., 1998; Gross
et al., 2013; Gross and Piller, 2020). Numerous endemic
species are known from Late Miocene basins in Tiirkiye,
where warm temperate conditions (Akgiin et al., 2007) and
the isolation of the basins fostered morphologically diverse
Cyprideis species (Bassiouni, 1979; Rausch et al., 2020). In
contrast, in the modern Ponto-Caspian region — including
the Black Sea, the long-lived Caspian Sea, and Aral Lake —
where Lake Pannon ostracod descendants found favourable
ecological conditions (Pipik, 2007; Boomer, 2012), no new
Cyprideis species evolved, and it did not even become a
refuge for the Paratethyan Cyprideis phyletic lineage. This
region is settled only by the morphologically variable C.
torosa (Boomer, 2012; Wouters, 2017; Tkach, 2024).

This suggests that water salinity is not a primary factor
driving the radiation of this brackish-water genus in lakes.

In the case of Sarmatian C. pannonica, bigger specimens
lived in the shallow stagnant marsh — presumably a warmer
environment — while smaller specimens lived in the estuary
with flowing water. This pattern corresponds to Heip’s (1976)
observation of a positive correlation between ontogenetic de-
velopment and water temperature in C. torosa. The Pannon-
ian Cyprideis were small in various littoral environments and
larger in clay/silt sublittoral environments (Fig. 10). At the
population level, such changes are typically linked to food
supply and temperature (Atkinson and Sibly, 1997; Feniova
etal., 2013).
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This depth—size relationship evolved in Lake Pannon over
1.5 million years. We believe that the temperature of the
aquatic environment played a principal role in the adapta-
tion of Cyprideis. It is known that Lake Pannon was deep,
and faunae inhabited the environment even at depths of up
to 80m (Cziczer et al., 2009). The water temperature in
the 0—100m water column could have been relatively sta-
ble throughout the year, as in the case of tropical Lake Tan-
ganyika (Plisnier et al., 1999), or it could have fluctuated, as
in the case of the Caspian Sea (Jamshidi, 2017), which spans
from a warm dry temperate zone to a cool dry temperate zone
(Duveillera et al., 2020).

The Central Paratethys region gradually transitioned from
a subtropical climate in the Middle Miocene to a warm tem-
perate climate with distinct seasonality in the Late Miocene
(Jiménez-Moreno, 2006; Harzhauser et al., 2023). Therefore,
the climatic conditions of Lake Pannon are comparable to
those of the southern part of the Caspian Sea, where the
thermocline is situated approximately 50 m below the wa-
ter surface (Tuzhilkin and Kosarev, 2005; Jamshidi, 2017).
Above the thermocline, summer temperatures vary from 26
to 14 °C, while below the thermocline, temperatures remain
below 14 °C (Jamshidi, 2017).

Thus, Cyprideis, adapted to different depths, was larger in
the colder sublittoral environment and smaller in the warmer
littoral zone, in accordance with Bergmann’s rule (Atkinson
and Sibly, 1997; Angilletta et al., 2004).

7 Conclusion

Lake Pannon, a long-lived lake, provides an opportunity to
test models of ecologically driven speciation. Morphometric
analysis of valve outlines, combined with measurable taxo-
nomic parameters of the hinge, can yield sufficient data on
species radiation.

During the Middle Miocene, the polymorphic paleopop-
ulations of Cyprideis pannonica occurred in the lacustrine-
brackish to brachyhaline estuary facies of the late Sarmatian
Sea. The studied paleopopulations exhibit a relatively high
statistical separation (R = 0.6) but share an identical hinge
composition. The paleogeographical shift between the Mid-
dle and Late Miocene led to the formation of a brackish lake,
which C. pannonica subsequently colonized. Although the
early Pannonian period facilitated speciation, it was too brief
(approximately 500 ka), and the lake was ecologically unsta-
ble for significant morphometric diversification.

The re-flooding of the basin in the middle Pannonian was
associated with greater ecological heterogeneity and lasted
approximately 1 million years. This event strongly influ-
enced water depth segregation, ultimately leading to the high
morphometric variability of Cyprideis, hinge differentiation,
and species diversity. Thus, the multiphase tectonic history
of the Central Paratethys played a major role in the diversifi-
cation of the endemic ostracod fauna of Lake Pannon.
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