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Distribution of modern coccolithophore assemblages in the southwest
Indian Ocean off southern Africa

PETER J. J. FRIEDINGER & AMOS WINTER
Marine Geoscience Unit, University of Cape Town,
Rondebosch 7700, Republic of South Africa

ABSTRACT-Living coccolithophore assemblages were investigated in 35 surface water
samples taken from the Natal Valley (southwest Indian Ocean) in January and November,
1983 and February, 1984. Fifty-nine species were recognised using a scanning electron
microscope (S.E.M.). Cluster analysis revealed four different species assemblages domin-
ated by Emiliania huxleyi, Umbilicosphaera hulburtiana, Umbellosphaera tenuis and
Gephyrocapsa oceanica. Significant differences in species composition between the sampling
periods are attributed to seasonal fluctuations. The regional distribution of the assemblages
reflects two different oceanographic regimes: 1) The Agulthas Current, which is a nearly
stable feature and 2) the area of the Agulhas Return Current. characterised by rapidly
changing hydrographic and ecological conditions.

INTRODUCTION

Coccolithophores are restricted to the mixed layer of
the world’s oceans, except in polar regions, but are
most abundant in the uppermost 50m of the water
column (Mclntyre & Bé 1967). Biogeographical floral
zones have been established on the basis of their
distribution, which is predominantly influenced by
temperature, salinity and fertility of surface water
(McIntyre & Bé, 1967; Honjo & Okada 1974). Thus,
the distribution pattern of coccolithophore assemblages
in the oceans reflects water-mass and current distribu-
tions. Coccoliths compose 30-60% of deep sea cal-
careous sediments since the Jurassic (Berger & Roth,
1975) and can therefore be used as proxy indicators for
palaecoceanographic research (Honjo, 1976; Roth &
Coulbourn, 1982; Winter, 1982).

This study is an attempt to relate the distribution of
living coccolithophores in surface waters of the south-
west Indian Ocean (southern part of the Natal Valley)
to the oceanographic conditions of the Aguthas Current
region and comprises part of a larger project now being
undertaken to reconstruct the palaeoceanographic
history of the southwest Indian Ocean off southern
Africa.

OCEANOGRAPHY

The dominant oceanographic feature of the study
area is the Agulhas Current (Fig. 1). It divides at 27°S
into a coastal branch (route a), which follows the
continental shelf edge and a cyclonic branch (route b)
which has the Mozambique Ridge as its eastern
boundary. At about 32°S, route b turns westward to
merge with the coastal main current east of East
London (Grundlingh, 1977; Pearce, 1977). This situa-

tion is thought to have been relatively stable since the
Miocene/Pliocene boundary (5 my Bp, Martin, 1981).
South of 34°S, the current diverges from the continen-
tal shelf edge and turns east at about 15°E to form the
Agulhas Return Current (Grindlingh, 1977; Harris
et al., 1978). The interaction of the western boundary
currents with the upwelling regime occurring around
the south and southwest coast produces a region of
complicated dynamic interaction and eddy formation
(retroflexion regime) that is in a continuous state of
flux (Lutjeharms, 1981). The northern boundary of the
retroflexion region reaches the Mozambique Ridge
(Grindlingh & Lutjeharms, 1979) and should therefore
also influence the study area.

SAMPLES AND METHODS

For logistical reasons, it was only possible to collect
surface water samples. Nevertheless. coccolithophore
assemblages encountered in surface water samples
appear to be representative of the upper photic layer
down to 50m (Okada & Honjo. 1973). Fifty-six
samples were taken together with salinity and tempera-
ture measurements during three cruises to the Natal
Valley. Nine of these were collected between January 3
to 27, 1983 and twenty between February 12 to 25, 1984
aboard R. V. “Thomas B. Davie™ (cruises 434 and
446). Twenty-seven stations were also sampled be-
tween November 8 to 23, 1983 aboard R. V. “Meiring
Naud€” (cruise 83/19) (Fig. 2, Table 1). All water
samples were prefiltered on board with a 63 um sieve
and then passed through 47 mm millipore-filters with a
nominal pore size of 0.8 um. A small section of the
filter paper was mounted on a glass slide, rendered
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Fig. 1 Oceanography of the southwest Indian Ocean modified after Martin (1981) and Lutjeharms

(1981).

transparent using immersion oil and observed under
crossed nicols with a Leitz Laborlux 12-Pol microscope
at X 1000 magnification. Standing crop was then
calculated by counting the number of cells correspond-
ing to an area on the filter representing 10 ml of filtered
sea water.

A filter section of about 25 mm? was placed on an
aluminium stub and coated with an Au-Pd film in a
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vacuum evaporator. A Cambridge S-200 S.E.M. was
used to identify up to 425 coccolithophores per sample.
Altogether, 59 taxa were identified (Table 1) following
mainly the taxonomy of Okada & McIntyre (1977) and
Winter et al. (1979).

Samples with <100 specimens per stub as well as ol
contaminated ones were considered statistically insigni-
ficant and were excluded leaving 35 samples for
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statistical analysis (Table 1). The similarity between
two cases (stations) or clusters in the variable space was
calculated as the normalised chi-squared test of equal-
ity in the two relevant sets of frequencies using relative
frequencies of the twenty most abundant species. This
analysis was run on the Univac 1100/81 computer at the
University of Cape Town using the BMDP-statistical
package (Programme P2M, Dixon, 1981).

RESULTS

Standing Crop

Standing crop varied between zero and 34 x10°
cells/l in January, 1983; between 8 X 10* and 55 10° in
November, 1983 and between 10x10* and 50 x10°
cells/l in February, 1984. The average abundance of
11x10% for February, 1984 and 15x10* cells/1 for
November, 1983 compares favourably with the most
abundant samples taken world-wide from the open
oceans (17x10° cells/l, Okada & Honjo, 1973).
Stations 6744 (February, 1984) and 6 (November, 1983)
show coccolithophore abundances of 38X 10° and
46x10° cells/l, whereas adjacent stations 6670 and
6687, sampled in January, 1983, are barren. The
highest standing crop values were recorded in an
approximately 125km wide strip parallel to the coast
and in the vicinity of 33°S and 31°E.

Diversity

Species diversity (H’, Pielou, 1966) varied greatly
during each sampling period (Table 1) ranging between
0.78 (station 6747) and 2.6 (6764) in February, 1984;
between 0.73 (18) and 2.04 (7) in November, 1983 and
between 0.44 (6671) and 2.49 (6681) in January, 1983.

Similar ranges were also observed by Honjo & Okada
(1974) between 20°S to 45°N in the eastern Pacific and
by Winter (1985) off the coast of California between 33°
and 34°N. In general, we found that areas of relatively
low species diversity have high coccolithophore abund-
ances and are located close to shore.

Community structure

Cluster analysis was used to determine the degree of
similarity in coccolithophore assemblages between
stations. The matrix of the initial distances (before
clustering) of the 35 relevant stations in the 20
-dimensional species-space (Appendix 1) is the basis
for the clustering process. In this way, four main
assemblages A to D are recognised, characterised by
the dominance of one species. According to the
abundance of subordinate species, the assemblages can
be divided into different cluster types as summarised in
Table 2 (see also Fig. 3). The AE-cluster diverges from
the Al-type in that G. ericsoni is more abundant and
has a relatively high percentage of D. tubifera. The
A-assemblage consists mostly of November, 1983
samples, whereas B, C and D assemblages were found
at February, 1984 stations. Of note is that E. huxleyi
contributes only between 7 and 14% of the February
nannoflora except for stations 6761, 6752 (both AE)
and 6754, 6772 (both D) which show abundant E.
huxleyi. The high percentage of U. hulburtiana (66% in
B1 and 28% in B2) is also noteworthy. This species is
common in the euphotic zone in the equatorial to
transitional region of the Pacific and North Atlantic
Oceans {Okada & Mcintyre, 1977); its dominant
presence in the Indian Ocean has so far been un-
documented.
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Dominant Cluster 2nd most 3rd most Sampling
Assemblage . :
species type abund. sp. abund. sp. period
A E. huxleyi Al G. ericsoni U. hulburtiana N
A2 G. ericsoni U. irregularis N, J
A3 U. tenuis U. hulburtiana N
AE G. ericsoni U. hulburtiana F,J
B U. hulburtiana B1 U. tenuis E. huxleyi F
B2 U. irregularis E. huxleyi F
C U. tenuis C1 U. irregularis U. hulburtiana F
C2 D. tubifera U. irregularis F
D G. oceanica - E. huxleyi U. hulburtiana F

Table 1. Sample parameters and absolute frequency counts of observed coccolithophore species. Asterisks mark oil

contaminated samples.

DISCUSSION

The coccolithophore assemblages in the study area
are dominated by placolith-bearing epipelagic species.
Cluster analysis clearly separates stations of the two
main sampling periods, November, 1983 and February,
1984 (Fig. 3). E. huxleyi, which was dominant in
samples taken in November, 1983, is only a subordinate
component in most of the February, 1984 samples. This
striking difference in species composition cannot solely
be explained by the fact that station positions were
different for both periods because stations 7(A2) and
6764(C2), 9(A2) and 6770(B2), 10(A3) and 6747(B1)
collected at almost the same locations are also charac-
terised by different coccolithophore composition
(Fig. 2).

Since most of our samples were taken during
November and February, i.e. at beginning and end of
summer time, the difference in the species composition
is probably related to seasonal fluctuations. Seasonal
changes in coccolithophore assemblages have also been
observed in the western North Atlantic (Okada &
Mclntyre, 1979), the Bermudas (McIntyre & Bé, 1967)
and the North Pacific (Reid, 1980). In these regions,
the relative abundances of U. hulburtiana, U. irregular-
ais and U. tenuis were found to be highest during the
summer months and positively correlated with the
surface water temperature, whereas E. huxleyi was
dominant in colder water during winter due to the
reduced presence of the former three species, which
flourish in warmer water (Okada & Mclntyre, 1979).
The close relationship between these species and water
temperature is also reflected by our results, if the
dominant species of the assemblage or cluster types are
considered. Clusters Al to A3 occur in water of
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relatively low temperature of less than 22.6°C.
Assemblages and clusters C, D and AE were found
in water of 23.7-24.6°C, whereas the B assemblage
was associated with slightly higher temperatures of
24.6-24.9°C.

It seems that the main sampling periods of Novem-
ber, 1983 and February, 1984 are further distinguished
by the regional distribution of individual cluster types.
The February, 1984 samples (triangles, Fig. 2) are
distributed in a distinctive pattern: stations charac-
terised by C cluster types are located over the
Mozambique Ridge; AE clusters occur in the area
influenced by the cyclonic route b of the Agulhas
Current; stations with B2 clusters are aligned horizon-
tally over the Natal Valley and B1 clusters occur in the
western part of the study area near the confluence of
the two routes a and b of the Agulhas Current. On the
other hand, individual cluster types (e.g. Al) of
samples collected in November, 1983 (circles) appear
to be more randomly distributed, even though the
sampling grid was of similar width to that used in
February, 1984.

We suspect that the differences in the regional
distribution between stations of November, 1983 and
February, 1984 are due mainly to the rapidly fluctuat-
ing currents and eddies in the retroflexion area of the
Agulhas Current. The changing pattern of surface
waters in this region influences ecological conditions
and consequently the coccolithophore population. The
continuous instability may generate a number of
patterns in the distribution of coccolithophore assemb-
lages, two of which have been recorded: 1) dispersed
(e.g. November, 1983) and 2) coherent (e.g. February,
1984) distribution of cluster types.
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A. quatrosphina
D, tubifera

N. coccolithomorpha

R. clavigera
R. longistylis
U. irregularis
U, tenuis

A, unicornis
H. adriaticus
S, corolla

S. corugis

S. exigua

S. halldali

S, histrica

S. lamina

S. marsilii

S. mediterranea

S. med. aff. binodata

S. molischii

S. nodosa
S. orbiculis
S. pirus

S. protrudens
S. pulchra

S, rotula

S. sp.

S. variabilis
A. brasiliensis
D. anthos

C. catillifera
C. oblonga

C. arethusae
H. aurisinae
H. cornifera

H. gquatriperforata

H. schilleri

H. triarcha

P. mirabilis

S. papillifera
Z. divergens

C. gracilis

F, profunda

T. heimi
Siliceous
genua? species?

Table 2. Coccolithophore assemblages and their
subdivision in cluster types according to the
abundances of subordinate species. Sampling
periods J, N and F refer to January and
November, 1983 and February, 1984.
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Much more stable hydrographic features are the two
main routes a and b of the Agulhas Current (Fig. 2).
Along these the encountered assemblages are primarily
represented by AE — (stations 6676, 6752, 6681, 6761)
and A2 — (stations 19, 20, 21, 6669) cluster types. Both
clusters contain samples taken about one year apart
(Fig. 3) thus indicating more inherent stability in this
region than in the area of retroflexion. A2 cluster types
occurring in the area of retroflexion might be carried
into this region by the Return Current (Fig. 1).

Analysis of the relevant stations reveals that both
Agulhas Current routes can be characterised by high
relative abundances of E. huxleyi and G. ericsoni.
Stations 6754 and 6772 (Fig. 2, both D-assemblage)
located within the two main routes, also show a high
abundance of E. huxleyi. However, the D-assemblage
is dominated by G. oceanica thus suggesting a different
hydrographic environment. Station 6754 probably rep-
resents the semi-stable water mass encircled by the
cyclonic b-route of the Agulhas Current, whereas the
assemblage of station 6772 off the Great Fish River
mouth could have been transported from the area of
station 6754 by the currents.

Although sample collection over a large area was
limited to the surface using a relatively coarse station
grid, the information obtained suggests that cocco-
lithophores reflect the general oceanographic environ-
ment, and can thus supplement other methods such as
buoy drift experiments (Griindlingh, 1977; Griindlingh
& Lutjeharms, 1979) or satellite image methods (Harris
et al., 1978), in determining hydrographic regimes.
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Fig. 3. Relative frequency distributions for the 20 most
abundant species and the parameters salinity (S),
temperature (T), standing crop (C) and diversity
(D). Sample number prefixes J, N and F refer to

1) E. huxleyi 6) H. carteri

2) G. ericsoni 7) D. tubifera
3) G. oceanica 8) R. clavigera
4) U. hulburtiana 9) R. longistylis

5) U. sibogae 10) U. irregularis

Averaged environmental parameters and fre-
quency counts of cluster characterising species are
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stations sampled in January and November, 1983
and February, 1984. All stations are clustered by
closest distance in the 20-dimensional species
space. Key for histogram bars:

11) U. tenuis 16) S. pulchra
12) S. molischii 17) A. brasiliensis
13) S. nodosa 18) C. arethusae
14) S. pirus 19) P. mirabilis
15) 8. protrudens 20) S. papillifera

displayed on the lower right side. Asterisks denote
the percentage of all residual species.
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Appendix 1. Matrix of distances in the space of the 20 most abundant coccolithophore species for all relevant

samples.
N
-3
-4
- o
2
6669 .00 & _
@
6676 .71 .00 B -
6681 .62 .33 .00 ©
1 .41 .62 .54 .00 ~
6 .45 .52 .45 .30 .00 -

7 .54 .46 .49 .40 .38 .00

9 .47 .48 .43 .40 .39 .26 .00

10 .52 .54 .47 .45 .44 .45 .46 .00 ~

11 .49 .59 .48 .33 .33 .40 .35 .51 .00 - -

12 .42 .56 .46 .40 .42 ,27 .26 .40 .37 ,00 -

13 .39 .62 .51 .23 .31 .44 .43 .43 .34 .40 .00

14 .62 .49 .49 .56 .54 .47 .51 .22 .61 .48 .55 .00

17 .31 .64 .50 .30 .33 .41 .35 .45 .24 .29 .24 .58 .00

18 .40 .71 .64 .35 .46 .51 .45 .47 .49 .47 .37 .58 .36 .99

19 .25 .66 .58 .39 .45 .43 ,35 .48 .35 .27 .42 .59 .28 .37 .00

20,23 .80 .73 .50 .53 .64 .59 .59 .50 .55 .46 .68 .45 .46 .38 .00 -

21 .49 .56 .57 .40 .42 .40 .32 .44 .49 .39 ,43 .50 ,45 .35 .42 .55 .00 '3
6744 .89 .60 .57 .84 .77 .78 .81 .66 .86 .81 .82 .59 .85 .89 .90 .93 .83 .00
6747 .84 .67 .58 .78 .75 .76 .79 .77 .80 .78 .76 .74 .79 .86 .84 .89 .84 .44 .00
6749 .76 .68 .61 .83 .78 .78 .80 .73 .83 .75 .82 .68 .81 .85 .79 .81 .83 .45 .40 .00
6752 .61 .45 .30 .51 .46 .36 .35 .55 .39 .39 .51 .59 .44 .63 .52 .73 .56 .72 .69 .74 .00
6754 .38 .89 .74 .63 .64 .71 .67 .66 .64 .63 .62 .70 .60 .62 .53 .38 .66 .89 .86 .70 ,75 .00
6755 .84 .65 .68 .79 .78 .67 .73 .49 .84 .67 .80 .42 .87 .78 .79 .89 .71 .59 .83 .76 .74 .86 .00
6758 .84 .56 .59 .77 .72 .64 .70 .48 .81 .67 .77 .37 .80 .79 .80 .88 .68 .47 .73 .66 .69 .85 .23 .09
6760 .99 .52 .69 .81 .72 .69 .74 .67 .84 .77 .86 .61 .87 .85 .86 .94 .70 .65 .85 .79 .75 .91 .58 .51 .00 -
6761 .56 .40 .41 .41 .38 .31 .29 .40 .44 .37 .45 .45 .46 .51 .47 .65 .34 .72 .78 .79 .40 .72 .65 .61 .59 .00 E

10

1M

17
18
19
20

21

6747
6749
6752
6754
6755
6758
6760

6761

6763 .75 .49 .61 .79 .63 ,55 .59 .53 .70 .62 .72 .51 .72 .70 .69 .80 .56 .71 .86 .82 .65 .83 .57 .52 .44 .47 .00 é ©
6764 .83 .52 .65 .75 .64 .63 .68 .61 .76 .70 .78 .57 .79 .82 .78 .88 .69 .67 .83 .80 .69 .88 .58 .52 .38 .55 .37 .00 § ~

0
6766 .82 .38 .48 .74 .65 .55 .62 .59 .76 .64 .74 .50 .77 .78 .77 .B8 .61 .48 .61 .58 .60 .84 .55 .42 .46 .53 .48 .52 .00 G ©
6767 .80 .42 .53 .72 .67 .53 .57 .54 .76 .62 .74 .42 .77 .74 .75 .86 .56 .57 .72 .68 .63 .82 .47 .39 .48 .49 .49 .55 .31 ,00 E o
6768 .73 .58 .57 .72 .68 .52 .59 ,60 .75 .54 .73 .53 .73 .71 .67 .78 .59 .67 .72 .61 .63 .73 .56 .52 .64 .59 .62 .68 .42 .39 .00 é e
6769 .80 .40 .43 .70 .63 .58 .63 .62 .74 .66 .72 .54 .75 .76 .76 .86 .64 .42 .47 .48 .57 .82 .64 .52 .57 .56 .63 .61 .31 .43 .49 .09 5 -
6770 .56 .46 .46 .59 .53 .45 .47 .55 .61 .49 .61 .50 .60 .62 .54 .63 .50 .64 .65 .53 .52 .58 .67 .59 .64 .48 .60 .66 .44 .47 .38 .42 .90 E ~
6771 .77 .47 .45 .73 .65 .58 .60 .63 .74 .63 .73 .55 .74 .76 .73 .83 .63 .45 .45 .40 .58 .79 .66 .53 .63 .59 .65 .66 .32 .42 .42 .23 .36 .00 E
6772 .32 .79 .73 .59 .61 .66 .63 .65 .58 ,59 .59 .70 .56 .59 .46 .31 .63 .91 .87 .76 .72 .24 ,87 .87 .92 .67 .80 .85 .86 .84 .76 .84 .59 .80 .00
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