Articles | Volume 30, issue 2
https://doi.org/10.1144/0262-821X11-011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.1144/0262-821X11-011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Repeated bottom-water oxygenation during OAE 2: timing and duration of short-lived benthic foraminiferal repopulation events (Wunstorf, northern Germany)
Oliver Friedrich
Institut für Geowissenschaften, Goethe-Universität Frankfurt/Main, Altenhöferallee 1, 60438 Frankfurt/Main, Germany
Silke Voigt
Institut für Geowissenschaften, Goethe-Universität Frankfurt/Main, Altenhöferallee 1, 60438 Frankfurt/Main, Germany
Tanja Kuhnt
Institut für Geowissenschaften, Goethe-Universität Frankfurt/Main, Altenhöferallee 1, 60438 Frankfurt/Main, Germany
Mirjam C. Koch
Institut für Geowissenschaften, Goethe-Universität Frankfurt/Main, Altenhöferallee 1, 60438 Frankfurt/Main, Germany
Related authors
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
Oliver Friedrich, Sietske J. Batenburg, Kazuyoshi Moriya, Silke Voigt, Cécile Cournède, Iris Möbius, Peter Blum, André Bornemann, Jens Fiebig, Takashi Hasegawa, Pincelli M. Hull, Richard D. Norris, Ursula Röhl, Thomas Westerhold, Paul A. Wilson, and IODP Expedition
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-51, https://doi.org/10.5194/cp-2016-51, 2016
Manuscript not accepted for further review
Short summary
Short summary
A lack of knowledge on the timing of Late Cretaceous climatic change inhibits our understanding of underlying causal mechanisms. Therefore, we used an expanded deep ocean record from the North Atlantic that shows distinct sedimentary cyclicity suggesting orbital forcing. A high-resolution carbon-isotope record from bulk carbonates allows to identify global trends in the carbon cycle. Our new carbon isotope record and the established cyclostratigraphy may serve as a future reference site.
Cited articles
M. A., Arthur, W. E., Dean and L. M., Pratt: Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, 335, 714-717, 1988.
A., Bornemann, R. D., Norris and O., Friedrich: Isotopic evidence for glaciation during the Cretaceous supergreenhouse, Science, 319, 189-192, 2008.
M., Böttcher, A., Hetzel, H., Brumsack and A., Schipper: Sulfur-Iron-Carbon Geochemistry in Sediments of the Demerara Rise, ODP Scientific Results, 207, 1-23, 2006.
H., Brumsack: The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344-361, 2006.
J. S. L., Casford, E. J., Rohling and R. H., Abu-Zied: A dynamic concept for eastern Mediterranean circulation and oxygenation during sapropel formation, Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 103-119, 2003.
R., Coccioni and S., Galeotti: Orbitally induced cycles in benthic foraminiferal morphogroups and trophic structure distribution patterns from the Late Albian ‘Amadeus Segment’ (Central Italy), Journal of Micropaleontology, 12, 227-239, 1993.
R., Coccioni, S., Galeotti and M., Gravili: Latest Albian–earliest Turonian deep-water agglutinated foraminifera in the Bottachione section (Gubbio, Italy) – Biostratigraphy and paleoecological implications, Revista Espanola de Paleontologia, 135-152, 1995.
A. J., Dickson, M. J., Leng, M. A., Maslin and U., Röhl: Oceanic, atmospheric and ice-sheet forcing of South East Atlantic Ocean productivity and South African monsoon intensity during MIS-12 to 10, Quaternary Science Reviews, 29, 3936-3947, 2010.
D., Eicher and R., Diner: Foraminifera as indicators of water mass in the Cretaceous Greenhorn Sea, Western Interior, Society of Economic Paleontologists and Mineralogists Field Trip Guidebook, 4, 60-71, 1985.
D. L., Eicher and P., Worstell: Cenomanian and Turonian foraminifera from the Great Plains, United States, Micropaleontology, 16, 269-324, 1970.
J., Erbacher, O., Friedrich, P. A., Wilson, H., Birch and J., Mutterlose: Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic, Geochemistry, Geophysics, Geosystems, 6, 2005.
J., Erbacher, W., Gerth, G., Schmiedl and C., Hemleben: Benthic foraminiferal assemblages of Late Aptian–Early Albian black shale intervals in the Vocontian Basin, SE France, Cretaceous Research, 19, 805-826, 1998.
J., Erbacher, C., Hemleben, B. T., Huber and M., Markey: Correlating environmental changes during Early Albian oceanic anoxic event 1B using benthic foraminiferal paleoecology, Marine Micropaleontology, 38, 7-28, 1999.
J., Erbacher, B. T., Huber, R. D., Norris and M., Markey: Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period, Nature, 409, 325-327, 2001.
J., Erbacher, D., Mosher and M., Malone: Drilling probes past carbon cycle perturbations on the Demerara Rise, EOS, 85, 57-68, 2004.
K. B., Föllmi: The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits, Earth-Science Reviews, 40, 55-124, 1996.
A., Forster, S., Schouten, K., Moriya, P. A., Wilson and J. S., Sinninghe Damsté: Tropical warming and intermettent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic, Paleoceanography, 22, 2007.
O., Friedrich: Benthic foraminifera and their role to decipher paleoenvironment during mid-Cretaceous Oceanic Anoxic Events – the ‘anoxic benthic foraminifera’ paradox, Revue de Micropaleontologie, 53, 175-192, 2010.
O., Friedrich, J., Erbacher, K., Moriya, P. A., Wilson and H., Kuhnert: Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean, Nature Geoscience, 1, 453-457, 2008a.
O., Friedrich, J., Erbacher and J., Mutterlose: Paleoenvironmental changes across the Cenomanian/Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207), Revue de Micropaleontologie, 49, 121-139, 2006.
O., Friedrich, H., Nishi, J., Pross, G., Schmiedl and C., Hemleben: Millennial- to centennial-scale interruptions of the Oceanic Anoxic Event 1b (Early Albian, mid-Cretaceous) inferred from benthic foraminiferal repopulation events, Palaios, 20, 64-77, 2005.
O., Friedrich, R. D., Norris and A., Bornemann: Cyclic changes in Turonain to Coniacian planktic foraminferal assemblages from the tropical Atlantic Ocean, Marine Micropaleontology, 68, 299-313, 2008b.
O., Friedrich, K., Reichelt, J. O., Herrle, J., Lehmann, J., Pross and C., Hemleben: Formation of the Late Aptian Niveau Fallot black shales in the Vocontian Basin (SE France): evidence from foraminifera, palynomorphs, and stable isotopes, Marine Micropaleontology, 49, 65-85, 2003.
H., Gebhardt, O., Friedrich, B., Schenk, L., Fox, M., Hart and M., Wagreich: Paleoceanographic changes at the northern Tethyan margin during the Cenomanian–Turonian oceanic anoxic event (OAE-2), Marine Micropaleontology, 77, 25-45, 2010.
P., Hardas and J., Mutterlose: Calcareous nannofossil assemblages of Oceanic Anoxic Event 2 in the equatorial Atlantic: Evidence of an eutrophication event, Marine Micropaleontology, 66, 52-69, 2007.
M., Hart: Recovery of the food chain after the Late Cenomanian extinction eventIn: (Ed.), Biotic Recovery From Mass Extinction EventsGeological Society, London, Special Publications, 102: 265–277., 1996.
T., Hasegawa: Cenomanian–Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan, Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 251-273, 1997.
J. O., Herrle, J., Pross, O., Friedrich and C., Hemleben: Short-term environmental changes in the Cretaceous Tethyan Ocean: micropaleontological evidence from the Early Albian Oceanic Anoxic Event 1b, Terra Nova, 15, 14-19, 2003a.
J. O., Herrle, J., Pross, O., Friedrich, P., Kößler and C., Hemleben: Forcing mechanisms for mid-Cretaceous black shale formation: evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France), Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 399-426, 2003b.
A., Hetzel, M., Böttcher, U., Wortmann and H., Brumsack: Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207), Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 302-328, 2009.
H., Hilbrecht and D., Dahmer: Sediment dynamics during the Cenomanian–Turonian (Cretaceous) Oceanic Anoxic Event in Northwestern Germany, Facies, 30, 63-84, 1994.
A., Holbourn and W., Kuhnt: Cenomanian–Turonian paleoceanographic change on the Kerguelen Plateau: a comparison with Northern Hemisphere records, Cretaceous Research, 23, 333-349, 2002.
A., Holbourn, W., Kuhnt and J., Erbacher: Benthic foraminifers from Lower Albian black shales (Site 1049, ODP Leg 171): Evidence for a non ‘uniformitarian’ record, Journal of Foraminiferal Research, 31, 60-74, 2001a.
A., Holbourn, W., Kuhnt and E., Soeding: Atlantic paleobathymetry, paleoproductivity and paleocirculation in the late Albian: the benthic foraminiferal record, Palaeogeography, Palaeoclimatology, Palaeoecology, 170, 171-196, 2001b.
B. T., Huber, R. D., Norris and K. G., MacLeod: Deep-sea paleotemperature record of extreme warmth during the Cretaceous, Geology, 30, 123-126, 2002.
I., Jarvis, G., Carson and K., Cooper: Microfossil assemblages and the Cenomanian–Turonian (Late Cretaceous) oceanic anoxic event, Cretaceous Research, 9, 3-103, 1988.
A., Jiménez Berrocoso, K. G., MacLeod, S. E., Calvert and J., Elorza: Bottom water anoxia, inoceramid colonization, and bentho-pelagic coupling during black shale deposition on Demerara Rise (Late Cretaceous western tropical North Atlantic), Paleoceanography, 23, 2008.
G., Keller, Z., Berner, T., Adatte and D., Stueben: Cenomanian–Turonian and d13C, and d18O, sea level and salinity variations at Pueblo, Colorado, Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 19-43, 2004.
S., Kolonic, T., Wagner and A., Forster: Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial, Paleoceanography, 20, 2005.
E., Koutsoukos and M., Hart: Cretaceous foraminiferal morphogroup distribution patterns, paleocommunities and trophic structures: a case study from the Sergipe Basin, Brazil, Transactions of the Royal Society of Edinburgh, Earth Sciences, 81, 221-246, 1990.
E. A. M., Koutsoukos, P. M., Leary and M. B., Hart: Latest Cenomanian–earliest Turonian low-oxygen tolerant benthonic foraminifera: a case study from the Sergipe Basin (N.E. Brazil) and the western Anglo-Paris Basin (southern England), Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 145-177, 1990.
T., Kuhnt, G., Schmiedl, W., Ehrmann, Y., Hamann and C., Hemleben: Deep-sea ecosystem variability of the Aegean Sea during the past 22 kyr as revealed by benthic foraminifera, Marine Micropaleontology, 64, 141-162, 2007.
W., Kuhnt: Abyssal recolonization by benthic foraminifera after the Cenomanian/Turonian boundary anoxic event in the North Atlantic, Marine Micropaleontology, 19, 257-274, 1992.
W., Kuhnt, F., Luderer, A. J., Nederbragt, J., Thurow and T., Wagner: Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco), International Journal of Earth Sciences, 94, 147-159, 2005.
W., Kuhnt and J., Wiedmann: Cenomanian–Turonian source rocks: Paleobiogeographic and paleoenvironmental aspects, American Association of Petroleum Geologists, Studies in Geology, 40, 213-232, 1995.
M. M. M., Kuypers, R. D., Pancost, I. A., Nijenhuis and J. S., Sinninghe Damsté: Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event, Paleoceanography, 17, 2002.
R., Leckie: Foraminifera of the Cenomanian–Turonian boundary interval, Greenhorn Formation, Rock Canyon Anticline, Pueblo, Colorado, Society of Economic Paleontologists and Mineralogists, Field Trip Guidebook, 4, 139-155, 1985.
R. M., Leckie, T. J., Bralower and R., Cashman: Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous, Paleoceanography, 17, 2002.
R. M., Leckie, R. F., Yuretich, O. L. O., West, D., Finkelstein and M., Schmidt: Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian–Turonian boundary (Late Cretaceous), Society of Economic Paleontologists and Mineralogists, Concepts in Sedimentology and Paleontology, 6, 101-126, 1998.
K., Moriya, P. A., Wilson, O., Friedrich, J., Erbacher and H., Kawahata: Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from the mid-Cenomanian tropics on Demerara Rise, Geology, 35, 615-618, 2007.
P., Myers and E., Rohling: Modeling a 200-yr interruption of the Holocene sapropel S1, Quaternary Research, 53, 98-104, 2000.
R. D., Norris, K. L., Bice, E. A., Magno and P. A., Wilson: Jiggling the tropical thermostat in the Cretaceous hothouse, Geology, 30, 299-302, 2002.
E. E., Nyong and R., Ramanathan: A record of oxygen-deficient paleoenvironments in the Cretaceous of the Calabar Flank, SE Nigeria, Journal of African Earth Sciences, 3, 455-460, 1985.
R. D., Pancost, N., Crawford, S., Magness, A., Turner, H. C., Jenkyns and J. R., Maxwell: Further evidence for the developement of photic-zone euxinic conditions during Mesozoic oceanic anoxic events, Journal of the Geological Society, London, 161, 353-364, 2004.
C., Paul, M., Lamolda, S., Mitchell, M., Vaziri, A., Gorostidi and J., Marshall: The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section, Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 83-121, 1999.
D., Peryt and K., Wyrwicka: The Cenomanian–Turonian oceanic anoxic event in SE Poland, Cretaceous Research, 12, 65-80, 1991.
L. M., Pratt and C. N., Threlkeld: Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, U.S.A., Canadian Society of Petroleum Geologists, Memoir, 9, 305-312, 1984.
E., Rohling, F., Jorissen and H., De Stigter: 200 year interruption of Holocene sapropel formation in the Adriatic Sea, Journal of Micropalaeontology, 16, 97-108, 1997.
B. B., Sageman and T. W., Lyons: Geochemistry of fine-grained sediments and sedimentary rocks, Treatise on Geochemistry, 7, 115-158, 2004.
B. B., Sageman, S. R., Meyers and M. A., Arthur: Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype, Geology, 34, 125-128, 2006.
S. O., Schlanger and H. C., Jenkyns: Cretaceous Oceanic Anoxic Events: Causes and consequences, Geologie en Mijnbouw, 55, 179-184, 1976.
G., Schmiedl, T., Kuhnt and W., Ehrmann: Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years, Quaternary Science Reviews, 29, 3006-3020, 2010.
G., Schmiedl, A., Mitschele and S., Beck: Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean Sea during times of sapropel S5 and S6 deposition, Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 139-164, 2003.
P. A., Scholle and M. A., Arthur: Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, Bulletin of the American Association of Petroleum Geologists, 64, 67-87, 1980.
J. S., Sinninghe Damstè, E. C., van Bentum, G.-J., Reichart, J., Pross and S., Schouten: A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2, Earth and Planetary Science Letters, 293, 97-103, 2010.
F., Surlyk, T., Dons, C. K., Clausen and J., Higham: Upper CretaceousIn: (Eds), The Millennium Atlas: Petroleum Geology of the Central and Northern North SeaGeological Society of London, London, 213–233., 2003.
R., Takashima, H., Nishi and T., Yamanaka: Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic Anoxic Event 2, Nature Communications, 2, 234-2011.
G., Tronchetti and D., Grosheny: Les assemblages de Foraminifères benthiques au passage Cénomanien–Turonien à Vergons, S-E France, Geobios, 24, 13-31, 1991.
S., Voigt, J., Erbacher and J., Mutterlose: The Cenomanian Turonian of the Wunstorf section (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2, Newsletters on Stratigraphy, 43, 65-89, 2008.
S., Voigt, A. S., Gale and T., Voigt: Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis, Cretaceous Research, 27, 836-858, 2006.
K. H., Wedepohl: Environmental influences on the chemical composition of shales and claysIn: (Eds), Physics and Chemistry of the Earth 8Pergamon, Oxford, 305–333., 1971.
O. L. O., West, R. M., Leckie and M., Schmidt: Foraminiferal paleoecology and paleoceanography of the Greenhorn Cycle along the southwestern margin of the Western Interior sea, SEPM Concepts in Sedimentology and Paleontology, 6, 79-99, 1998.
M., Wilmsen: Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany, Cretaceous Research, 24, 525-568, 2003.
P. A., Wilson, R. D., Norris and M. J., Cooper: Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise, Geology, 30, 607-610, 2002.