Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Abstract. Integrated analyses of multiple groups of microfossils are frequently performed to unravel the palaeoenvironmental evolution of subsurface coastal successions, where the complex interaction among several palaeoecological factors can be detected with benthic assemblages. This work investigates the palaeoenvironmental resolution potential provided by benthic foraminifera and ostracoda within a Pleistocene lagoonal succession of the Romagna coastal plain (northern Italy). Quantitative approaches and statistical techniques have been applied to both groups in order to understand the main factors that controlled the composition of assemblages and compare the palaeoecological record provided by single fossil groups.
The two faunal groups are characterized by the high dominance of opportunistic species (Ammonia tepida–Ammonia parkinsoniana and Cyprideis torosa); however, detailed palaeoecological information is inferred from less common taxa. Benthic foraminiferal assemblages are mainly determined by the frequencies of abnormal individuals and species related to high concentrations of organic matter, showing two assemblages: a stressed assemblage, consistent with a brackish-water environment subject to salinity and oxygen fluctuations, and an unstressed assemblage, which indicates more stable conditions. Despite the lower number of species, ostracoda show more significant differences in terms of species composition and ecological structure between their three assemblages, formed in response to a salinity gradient and indicative of inner, central, and outer lagoon conditions. The stratigraphic distribution of ostracod assemblages shows a general transgressive–regressive trend with minor fluctuations, whereas benthic foraminifera highlight the presence of a significant palaeoenvironmental stress.
In this case, the higher abundance along the stratigraphic succession, the higher differentiation of the assemblages, and the well-defined relationship between taxa and ecological parameters determine Ostracoda as the most reliable fossil group for precise palaeoenvironmental reconstructions. Nevertheless, benthic foraminifera indicate palaeoenvironmental stress and can be used to refine the environmental interpretation in the presence of monospecific ostracod assemblages.