Articles | Volume 37, issue 1
https://doi.org/10.5194/jm-37-231-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-37-231-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A brief warming event in the late Albian: evidence from calcareous nannofossils, macrofossils, and isotope geochemistry of the Gault Clay Formation, Folkestone, southeastern England
Sudeep Kanungo
CORRESPONDING AUTHOR
University of Utah, Energy & Geoscience Institute (EGI), 423
Wakara Way, # 300, Salt Lake City, Utah 84108, USA
Paul R. Bown
Dept. of Earth Sciences, University College London, Gower Street,
London WC1E 6BT, UK
Jeremy R. Young
Dept. of Earth Sciences, University College London, Gower Street,
London WC1E 6BT, UK
Andrew S. Gale
School of Earth & Environmental Sciences, University of
Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK
Related authors
No articles found.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Sabine Keuter, Jeremy R. Young, Gil Koplovitz, Adriana Zingone, and Miguel J. Frada
J. Micropalaeontol., 40, 75–99, https://doi.org/10.5194/jm-40-75-2021, https://doi.org/10.5194/jm-40-75-2021, 2021
Short summary
Short summary
Coccolithophores are an important group of phytoplankton that produce intricate skeletons of calcium carbonate. They contribute to the base of the marine food web and are important drivers of the global carbon cycle. Here, we describe novel coccolithophores and novel life cycle combinations detected by electron microscopy in samples collected in the Red Sea and the western Mediterranean. Our study advances our understanding of coccolithophore diversity and life cycle complexity.
Marine Fau, Loïc Villier, Timothy A. M. Ewin, and Andrew S. Gale
Foss. Rec., 23, 141–149, https://doi.org/10.5194/fr-23-141-2020, https://doi.org/10.5194/fr-23-141-2020, 2020
Short summary
Short summary
Forcipulatacea is one of the major clades of extant sea stars with 400 extant species described, but with fewer than 25 fossil species known. Thus, the identification of any new fossil representatives is significant. We reappraise Ophidiaster davidsoni from the Tithonian of Boulogne, France, which was assigned to another major extant group, and reassign it within a new forcipulatacean genus Psammaster gen. nov. A phylogenetic analysis does not place it within any existing forcipulatacean family.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Marcus P. S. Badger, Thomas B. Chalk, Gavin L. Foster, Paul R. Bown, Samantha J. Gibbs, Philip F. Sexton, Daniela N. Schmidt, Heiko Pälike, Andreas Mackensen, and Richard D. Pancost
Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, https://doi.org/10.5194/cp-15-539-2019, 2019
Short summary
Short summary
Understanding how atmospheric CO2 has affected the climate of the past is an important way of furthering our understanding of how CO2 may affect our climate in the future. There are several ways of determining CO2 in the past; in this paper, we ground-truth one method (based on preserved organic matter from alga) against the record of CO2 preserved as bubbles in ice cores over a glacial–interglacial cycle. We find that there is a discrepancy between the two.
Rosie M. Sheward, Alex J. Poulton, Samantha J. Gibbs, Chris J. Daniels, and Paul R. Bown
Biogeosciences, 14, 1493–1509, https://doi.org/10.5194/bg-14-1493-2017, https://doi.org/10.5194/bg-14-1493-2017, 2017
Short summary
Short summary
Our culture experiments on modern Coccolithophores find that physiology regulates shifts in the geometry of their carbonate shells (coccospheres) between growth phases. This provides a tool to access growth information in modern and past populations. Directly comparing modern species with fossil coccospheres derives a new proxy for investigating the physiology that underpins phytoplankton responses to environmental change through geological time.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
S. A. Krueger-Hadfield, C. Balestreri, J. Schroeder, A. Highfield, P. Helaouët, J. Allum, R. Moate, K. T. Lohbeck, P. I. Miller, U. Riebesell, T. B. H. Reusch, R. E. M. Rickaby, J. Young, G. Hallegraeff, C. Brownlee, and D. C. Schroeder
Biogeosciences, 11, 5215–5234, https://doi.org/10.5194/bg-11-5215-2014, https://doi.org/10.5194/bg-11-5215-2014, 2014
J. R. Young, A. J. Poulton, and T. Tyrrell
Biogeosciences, 11, 4771–4782, https://doi.org/10.5194/bg-11-4771-2014, https://doi.org/10.5194/bg-11-4771-2014, 2014
A. J. Poulton, M. C. Stinchcombe, E. P. Achterberg, D. C. E. Bakker, C. Dumousseaud, H. E. Lawson, G. A. Lee, S. Richier, D. J. Suggett, and J. R. Young
Biogeosciences, 11, 3919–3940, https://doi.org/10.5194/bg-11-3919-2014, https://doi.org/10.5194/bg-11-3919-2014, 2014
C. V. Davis, M. P. S. Badger, P. R. Bown, and D. N. Schmidt
Biogeosciences, 10, 6131–6139, https://doi.org/10.5194/bg-10-6131-2013, https://doi.org/10.5194/bg-10-6131-2013, 2013
Cited articles
Bomou, B., Deconinck, J.-F., Pucéat, E., Amédro, F., Joachimski, M.
M., and Quillévéré, F.: Isotopic seawater temperatures in the
Albian Gault Clay of the Boulonnais (Paris Basin): palaeoenvironmental
implications, P. Geologist. Assoc., 127, 699–711, 2016.
Bown, P. R. and Concheyro, A.: Lower Cretaceous calcareous nannoplankton from
the Neuquén Basin, Argentina, Mar. Micropaleontol., 52, 51–84, 2004.
Bown, P. R. and Young, J. R.: Techniques, in: Calcareous Nannofossil
Biostratigraphy, edited by: Bown, P. R., Kluwer Academic, Cambridge
University Press, 16–28, 1998.
Bown, P. R., Rutledge, D., Crux, J. A., and Gallagher, L. T.: Lower
Cretaceous, in: Calcareous Nannofossil Biostratigraphy, edited by:
Bown, P. R., Kluwer Academic, Cambridge University Press, 86–131, 1998.
Casey, R.: The stratigraphical palaeontology of the Lower Greensand,
Palaeontology, 3, 487–621, 1961.
Coccioni, R., Sabatino, N., Frontalini, F., Gardin, S., Sideri, M., and
Sprovieri, M.: The neglected history of Oceanic Anoxic Event 1b: insights and
new data from the Poggio le Guaine section (Umbria-Marche Basin).
Stratigraphy, 11, 245–282, 2014.
Crux, J. A.: Albian calcareous nannofossils from the Gault Clay of Munday's
Hill (Bedfordshire, England), J. Micropalaeontology, 10, 203–221,
https://doi.org/10.1144/jm.10.2.203, 1991.
Erba, E.: Mid-Cretaceous cyclic pelagic facies from the Umbria-Marche Basin:
What do calcareous nannofossils suggest?, INA Newsletter, 9, 52–53, 1987.
Erba, E.: Middle Cretaceous calcareous nannofossils from the western Pacific
(Leg 129): Evidence for paleoequatorial crossings, Proceedings of the ODP,
Scientific Results, 129, 189–201, 1992.
Erba, E., Castradori, D., Guasti, G., and Ripepe, M.: Calcareous nannofossils
and Milanktovitch cycles: the example of the Albian Gault Clay Formation
(Southern England), Palaeogeogr. Palaeocl., 93, 47–69, 1992.
Erbacher, J., Hemleben, C., Huber, B. T., and Markey, M.: Correlating
environmental changes during early Albian oceanic anoxic event 1B using
benthic foraminiferal paleoecology, Mar. Micropaleontol., 38, 7–28, 1999.
Erbacher, J., Huber, B. T., Norris, R. D., and Markey, M.: Increased
thermohaline stratification as a possible cause for an oceanic anoxic event
in the Cretaceous period, Nature, 409, 325–327, 2001.
Erbacher, J., Friedrich, O., Wilson, P. A., Lehmann, J., and Weiss, W.:
Short-term warming events during the boreal Albian (mid-Cretaceous), Geology,
39, 223–226, https://doi.org/10.1130/G31606.1, 2011.
Fenner, J.: Middle and Late Albian geography, oceanography, and climate and
the setting of the Kirchrode I and II borehole sites, Palaeogeogr. Palaeocl.,
174, 5–32, 2001.
Fisher, C. G. and Arthur, M. A.: Water mass characteristics in the Cenomanian
US Western Interior seaway as indicated by stable isotopes of calcareous
organisms, Palaeogeogr. Palaeocl., 188, 189–213, 2002.
Fisher, C. G. and Hay, W. W.: Calcareous nannofossils as indicators of
mid-Cretaceous paleofertility along an ocean front, U. S. Western Interior.
Geol. S. Am. S., 332, 161–180, 1999.
Föllmi, K. B.: Early Cretaceous life, climate and anoxia, Cretaceous
Res., 35, 230–257, https://doi.org/10.1016/j.cretres.2011.12.005, 2012.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late
Cretaceous oceans – A 55 m.y. record of Earth's temperature and carbon
cycle, Geol. Soc. Am., 40, 107–110, https://doi.org/10.1130/G32701.1, 2012.
Gale, A. S. and Owen, H. G.: Introduction to the Gault, in: Fossils of the
Gault Clay, edited by: Young, J. R., Gale, A. S., Knight, R. I., and Smith,
A. B., Palaeontological Association Field Guide to Fossils, 12, 1–16, 2010.
Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray,
D. S., and Huggett, J. M.: Marine biodiversity through the Late
Cenomanian-Early Turonian: palaeoceanographic controls and sequence
stratigraphic biases, J. Geol. Soc. London, 157, 745–757, 2000.
Galeotti, S., Sprovieri, M., Coccioni, R., Bellanca, A., and Neri, R.:
Orbitally modulated black shale deposition in the upper Albian Amadeus
Segment (central Italy): a multi-proxy reconstruction, Palaeogeogr.
Palaeocl., 190, 441–458, 2003.
Giraud, F., Olivero, D., Baudin, F., Reboulet, S., Pittet, B., and Proux, O.:
Minor changes in surface-water fertility across the oceanic anoxic event 1d
(latest Albian, SE France) evidenced by calcareous nannofossils, Int. J.
Earth Sci., 92, 267–284, 2003.
Hancock, J. M.: Sea-level changes in the British region during the Late
Cretaceous, P. Geologist. Assoc., 100, 565–594, 1989.
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, Th., de Graciansky,
P.-C., and Vail, P. R.: Mesozoic and Cenozoic sequence chronostratigraphic
framework of European basins, in: Mesozoic-Cenozoic Sequence Stratigraphy of
European Basins, edited by: de Graciansky, P.-C., Hardenbol, J., Jacquin,
Th., and Vail, P. R., SEPM Spec. P., 60, 3–13, 763–781 (and chart
supplements), 1998.
Herrle, J. O. and Mutterlose, J.: Calcareous nannofossils from the
Aptian-early Albian of SE France: paleoecological and biostratigraphic
implications, Cretaceous Res., 24, 1–22, 2003.
Herrle, J. O., Pross, J., Friedrich, O., Kößler, P., and Hemleben,
C.: Forcing mechanisms for mid-Cretaceous black shale formation: evidence
from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France),
Palaeogeogr. Palaeocl., 190, 399–426, 2003.
Herrle, J. O., Kößler, P., Friedrich, O., Erlenkeuser, H., and
Hemleben, C.: High-resolution carbon isotope records of the Aptian to Lower
Albian from SE France and the Mazagan Plateau (DSDP Site 545): a
stratigraphic tool for paleoceanographic and paleobiologic reconstruction,
Earth Planet. Sc. Lett., 218, 149–161, 2004.
Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway,
J. M., and Fath, J.: Mid-Cretaceous High Arctic Stratigraphy, Climate, and
Oceanic Anoxic Events, Geology, 43, 403–406, https://doi.org/10.1130/G36439.1, 2015.
Huber, B. T. and Leckie, R. M.: Planktic foraminiferal species turnover
across deep-sea Aptian/Albian boundary sections, J. Foramin. Res., 41,
53–95, 2011.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophy.
Geosy., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Jeremiah, J.: A proposed Albian to Lower Cenomanian nannofossil biozonation
for England and the North Sea Basin, J. Micropalaeontology, 15, 97–129,
https://doi.org/10.1144/jm.15.2.97, 1996.
Kanungo, S.: Biostratigraphy and palaeoceanography of mid-Cretaceous
calcareous nannofossils: studies from the Cauvery Basin, SE India; the Gault
Clay Formation, SE England; ODP Leg 171B, western North Atlantic and ODP Leg
198, NW Pacific Ocean, PhD thesis, University College London, London, 260
pp., 2005.
Kennedy, W. J. and Cobban, W. A.: Aspects of ammonite biology, biogeography,
and biostratigraphy, Special Papers in Palaeontology no. 17, 94 pp., 1976.
Knight, R. I.: Phosphates and phosphogenesis in the Gault Clay (Albian) of
the Anglo-Paris Basin, Cretaceous Res., 20, 507–521, 1999.
Lees, J. A.: Calcareous nannofossil biogeography illustrates palaeoclimate
change in the Late Cretaceous Indian Ocean, Cretaceous Res., 23, 537–634,
2002.
Leckie, R. M., Bralower, T. J., and Cashman, R.: Oceanic anoxic events and
plankton evolution: Biotic response to tectonic forcing during the
mid-Cretaceous, Palaeoceanography, 17, 13-1–13-29, https://doi.org/10.1029/2001PA000623,
2002.
Lehmann, J., Friedrich, O., Luppold, F. W., Weiß, W., and Erbacher, J.:
Ammonites and associated macrofauna from around the Middle/Upper Albian
boundary of the Hannover-Lahe core, northern Germany, Cretaceous Res., 28,
719–742, 2007.
Li, X., Wei, Y., Li, Y., and Zhang, C.: Carbon isotope records of the early
Albian oceanic anoxic event (OAE) 1b from eastern Tethys (southern Tibet,
China), Cretaceous Res., 62, 109–121, https://doi.org/10.1016/j.cretres.2015.08.015,
2016.
Linnert, C., Mutterlose, J., and Erbacher, J.: Calcareous nannofossils of the
Cenomanian/Turonian boundary interval from the Boreal Realm (Wunstorf,
northwest Germany), Mar. Micropaleontol., 74, 38–58, 2010.
Linnert, C., Mutterlose, J., and Mortimore, R.: Calcareous nannofossils from
Eastbourne (Southeastern England) and the paleoceanography of the
Cenomanian–Turonian boundary interval, Palaios, 26, 298–313, 2011.
McAnena, A., Flögel, S., Hofmann, P., Herrle, J. O., Griesand, A., Pross,
J., Talbot, H. M., Rethemeyer, J., Wallmann, K., and Wagner, T.: Atlantic
cooling associated with a marine biotic crisis during the mid-Cretaceous
period, Nat. Geosci., 6, 558–561, https://doi.org/10.1038/NGEO1850, 2013.
Miller, K. G., Mountain, G. S., Wright, J. D., and Browning, J. V.: A
180-million-year record of sea level and ice volume variations from
continental margin and deep-sea isotopic records, Oceanography, 24, 40–53,
https://doi.org/10.5670/oceanog.2011.26, 2011.
Mutterlose, J. and Kessels, K.: Early Cretaceous calcareous nannofossils from
high latitudes: implications for palaeobiogeography and palaeoclimate,
Palaeogeogr. Palaeocl., 160, 347–372, 2000.
Mutterlose, J., Bornemann, A., and Herrle, J. O.: The Aptian–Albian cold
snap: Evidence for “mid” Cretaceous icehouse interludes, Neues Jahrb. Geol.
P.-A., 232, 217–225,
2009.
Ogg, J. G. and Hinnov, L. A.: Cretaceous, in: The Geologic Time Scale 2012 –
Volume 2, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg,
G. M., Elsevier, 793–855, 2012.
Owen, H. G.: Middle Albian stratigraphy in the Anglo-Paris Basin, Bulletin of
the British Museum (Natural History) Geology, Supplement 8, 164 pp., 1971.
Owen, H. G.: Ammonite faunal provinces in the Middle and Upper Albian and
their palaeogeographical significance, in: The Boreal Lower Cretaceous:
Proceedings of an International Symposium organized by Queen Mary College
(University of London) and the Institute of Geological Sciences, edited by:
Casey, R. and Rawson, P. F., 17–30 September 1972, 145–154, 1973.
Owen, H. G.: The stratigraphy of the Gault and the Upper Greensand of the
Weald, P. Geologist. Assoc., 86, 475–498,
1975.
Pirrie, D., Marshall, J. D., Doyle, P., and Riccardi, A. C.: Cool early
Albian climates: new data from Argentina, Cretaceous Res., 25, 27–33, 2004.
Roth, P. H. and Bowdler, J. K.: Middle Cretaceous calcareous nannoplankton
biogeography and oceanography of the Atlantic Ocean, SEPM Spec. P., 32,
517–546, 1981.
Roth, P. H. and Krumbach, K. R.: Middle Cretaceous calcareous nannofossil
biogeography and preservation in the Atlantic and Indian oceans: Implications
for paleoceanography, Mar. Micropaleontol., 10, 235–266, 1986.
Shackleton, N. J. and Kennett, J. P.: Paleotemperature history of the
Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon
isotope analysis in DSDP Sites 277, 279, and 280, in: Initial Reports of the
DSDP, edited by: Kennett, J. P., Houtz, R. E., Andrews, P. B., Edwards, A.
R., Gostin, V. A., Hajós, M., Hampton, M. A., Graham Jenkins, D.,
Margolis, S. V., Ovenshine, A. T., and Perch-Nielsen, K., Vol. 29: Washington
D. C., US Govt. Printing Office, 743–755,
https://doi.org/10.2973/dsdp.proc.29.117.1975, 1975.
Street, C. and Bown, P. R.: Palaeobiogeography of Early Cretaceous
(Berriasian-Barremian) calcareous nannoplankton, Mar. Micropaleontol., 39,
265–291, 2000.
Thomsen, E.: Seasonal variation in Boreal Early Cretaceous calcareous
nannofossils, Mar. Micropaleontol., 15, 123–152, 1989.
Tyson, R. V. and Funnel, B. M.: European Cretaceous shorelines, stage by
stage, Palaeogeogr. Palaeocl., 59, 69–91, 1987.
Ufnar, D. F., González, L. A., Ludvigson, G. A., Brenner, R. L., and
Witzke, B. J.: The mid-Cretaceous water bearer: isotope mass balance
quantification of the Albian hydrologic cycle, Palaeogeogr. Palaeocl., 188,
51–71, 2002.
Wagner, T., Wallmann, K., Herrle, J. O., Hofmann, P., and Stuesser, I.:
Consequences of moderate ∼ 25,000 yr lasting emission of light
CO2 into the mid-Cretaceous ocean, Earth Planet. Sc. Lett., 259,
200–211, 2007.
Wagner, T., Herrle, J. O., Sinnighe Damsté, J. S., Schouten, S.,
Stuesser, I., and Hofmann, P.: Rapid warming and salinity changes of
Cretaceous surface waters in the subtropical North Atlantic, Geol. Soc. Am.,
36, 203–206, https://doi.org/10.1130/G24523A.1, 2008.
Watkins, D. K., Cooper, M. J., and Wilson, P. A.: Calcareous nannoplankton
response to late Albian oceanic anoxic event 1d in the western North
Atlantic, Paleoceanography, 20, PA2010, https://doi.org/10.1029/2004PA001097,
2005.
Wilson, P. A., Norris, R. D., and Cooper, M. J.: Testing the Cretaceous
greenhouse hypothesis using glassy foraminiferal calcite from the core of the
Turonian tropics on Demerara Rise, Geol. Soc. Am., 30, 607–610, 2002.
Wise, S. W.: Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP
Leg 71 in the Falkland Plateau region, Southwest Atlantic Ocean, Initial
Reports of the DSDP, 71, 481–550, 1983.
Wise, S. W.: Mesozoic-Cenozoic history of calcareous nannofossils in the
region of the Southern Ocean, Palaeogeogr. Palaeocl., 67, 157–179, 1988.
Young, J. R.: Calcareous nannofossils, in: Palaeontological Association Field
Guide to Fossils, edited by: Young, J. R., Gale, A. S., Knight, R. I., and
Smith, A. B., Palaeontological Association, UK, 12, 16–27, 2010.
Young, J. R., Gale, A. S., Knight, R. I., and Smith, A. B. (Eds.):
Palaeontological Association Field Guide to Fossils, 12, 312 pp.,
Palaeontological Association, UK, 2010.
Short summary
This paper documents a regional warming event in the Albian of the Anglo-Paris Basin and its palaeoclimatic and palaeoceanographic implications. This multi-proxy study utilizes three independent datasets to confirm the warming event that lasted ~ 500 kyr around the middle–upper Albian boundary. The research involved a field study of the Gault Clay (UK) with an in-depth analysis of nannofossils, bulk sediment carbon and oxygen isotopes, and an investigation of ammonites from the formation.
This paper documents a regional warming event in the Albian of the Anglo-Paris Basin and its...