Articles | Volume 37, issue 1
https://doi.org/10.5194/jm-37-25-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-37-25-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
“Live” (stained) benthic foraminiferal living depths, stable isotopes, and taxonomy offshore South Georgia, Southern Ocean: implications for calcification depths
Rowan Dejardin
CORRESPONDING AUTHOR
Centre for Environmental Geochemistry, School of Geography, University
of Nottingham, University Park, Nottingham, NG7 2RD, UK
Sev Kender
Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9FE,
UK
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
Claire S. Allen
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Melanie J. Leng
Centre for Environmental Geochemistry, School of Geography, University
of Nottingham, University Park, Nottingham, NG7 2RD, UK
NERC Isotope Geosciences Facilities, British Geological Survey,
Keyworth, Nottingham, NG12 5GG, UK
George E. A. Swann
Centre for Environmental Geochemistry, School of Geography, University
of Nottingham, University Park, Nottingham, NG7 2RD, UK
Victoria L. Peck
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Related authors
No articles found.
Qiang Zhang, George Edward Alexander Swann, Vanessa Pashley, and Matthew S. A. Horstwood
EGUsphere, https://doi.org/10.5194/egusphere-2024-3686, https://doi.org/10.5194/egusphere-2024-3686, 2024
Short summary
Short summary
We presents the first coupled record of radiolarian silicon isotopes (δ30Sirad) from paired water column and surface sediment samples in the South China Sea. No significant discrepancies in δ30Sirad values were observed between plankton and sediment samples, implying a minimal impact of dissolution on δ30Sirad during deposition of radiolarian shells. This demonstrates the faithful preservation of the δ30Sirad signature and its potential for studying past changes in the marine silicon cycle.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Philip Meister, Anne Alexandre, Hannah Bailey, Philip Barker, Boris K. Biskaborn, Ellie Broadman, Rosine Cartier, Bernhard Chapligin, Martine Couapel, Jonathan R. Dean, Bernhard Diekmann, Poppy Harding, Andrew C. G. Henderson, Armand Hernandez, Ulrike Herzschuh, Svetlana S. Kostrova, Jack Lacey, Melanie J. Leng, Andreas Lücke, Anson W. Mackay, Eniko Katalin Magyari, Biljana Narancic, Cécile Porchier, Gunhild Rosqvist, Aldo Shemesh, Corinne Sonzogni, George E. A. Swann, Florence Sylvestre, and Hanno Meyer
Clim. Past, 20, 363–392, https://doi.org/10.5194/cp-20-363-2024, https://doi.org/10.5194/cp-20-363-2024, 2024
Short summary
Short summary
This paper presents the first comprehensive compilation of diatom oxygen isotope records in lake sediments (δ18OBSi), supported by lake basin parameters. We infer the spatial and temporal coverage of δ18OBSi records and discuss common hemispheric trends on centennial and millennial timescales. Key results are common patterns for hydrologically open lakes in Northern Hemisphere extratropical regions during the Holocene corresponding to known climatic epochs, i.e. the Holocene Thermal Maximum.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Dieter R. Tetzner, Elizabeth R. Thomas, Claire S. Allen, and Mackenzie M. Grieman
Clim. Past, 18, 1709–1727, https://doi.org/10.5194/cp-18-1709-2022, https://doi.org/10.5194/cp-18-1709-2022, 2022
Short summary
Short summary
Changes in the Southern Hemisphere westerly winds are drivers of recent environmental changes in West Antarctica. However, our understanding of this relationship is limited by short and sparse observational records. Here we present the first regional wind study based on the novel use of diatoms preserved in Antarctic ice cores. Our results demonstrate that diatom abundance is the optimal record for reconstructing wind strength variability over the Southern Hemisphere westerly wind belt.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Andrew L. A. Johnson, Annemarie M. Valentine, Bernd R. Schöne, Melanie J. Leng, and Stijn Goolaerts
Clim. Past, 18, 1203–1229, https://doi.org/10.5194/cp-18-1203-2022, https://doi.org/10.5194/cp-18-1203-2022, 2022
Short summary
Short summary
Determining seasonal temperatures demands proxies that record the highest and lowest temperatures over the annual cycle. Many record neither, but oxygen isotope profiles from shells in principle record both. Oxygen isotope data from late Pliocene bivalve molluscs of the southern North Sea basin show that the seasonal temperature range was at times much higher than previously estimated and higher than now. This suggests reduced oceanic heat supply, in contrast to some previous interpretations.
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Short summary
Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on geological and glaciological records and suggest ways in which future studies could detect such changes. Determining timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future climate-warming-induced changes.
Dieter R. Tetzner, Claire S. Allen, and Elizabeth R. Thomas
The Cryosphere, 16, 779–798, https://doi.org/10.5194/tc-16-779-2022, https://doi.org/10.5194/tc-16-779-2022, 2022
Short summary
Short summary
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly understood. Here we present a detailed analysis of the spatial and temporal distribution of the diatom record preserved in a set of Antarctic ice cores. Our results reveal that the timing and amount of diatoms deposited present a strong geographical division. This study highlights the potential of the diatom record preserved in Antarctic ice cores to provide useful information about past environmental changes.
Anson W. Mackay, Vivian A. Felde, David W. Morley, Natalia Piotrowska, Patrick Rioual, Alistair W. R. Seddon, and George E. A. Swann
Clim. Past, 18, 363–380, https://doi.org/10.5194/cp-18-363-2022, https://doi.org/10.5194/cp-18-363-2022, 2022
Short summary
Short summary
We investigated the diversity of algae called diatoms in Lake Baikal, the oldest and deepest lake in the world, because algae sit at the base of aquatic foodwebs and provide energy (in the form of primary production) for other organisms to use. Diatom diversity and primary production have been influenced by both long-term and abrupt climate change over the past 16 000 years. The shape of these responses appears to be time-period specific.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
James M. Russell, Philip Barker, Andrew Cohen, Sarah Ivory, Ishmael Kimirei, Christine Lane, Melanie Leng, Neema Maganza, Michael McGlue, Emma Msaky, Anders Noren, Lisa Park Boush, Walter Salzburger, Christopher Scholz, Ralph Tiedemann, Shaidu Nuru, and the Lake Tanganyika Scientific Drilling Project (TSDP) Consortium
Sci. Dril., 27, 53–60, https://doi.org/10.5194/sd-27-53-2020, https://doi.org/10.5194/sd-27-53-2020, 2020
Short summary
Short summary
Our planet experienced enormous environmental changes in the last 10 million years. Lake Tanganyika is the oldest lake in Africa and its sediments comprise the most continuous terrestrial environmental record for this time period in the tropics. This workshop report identifies key research objectives in rift processes, evolutionary biology, geomicrobiology, paleoclimatology, paleoecology, paleoanthropology, and geochronology that could be addressed by drilling this globally important site.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Short summary
Antarctic marine calcifying organisms are threatened by regional climate change and ocean acidification. Future projections of regional carbonate production are challenging due to the lack of historical data combined with complex climate variability. We present a 6-year record of flux, morphology and geochemistry of an Antarctic planktonic foraminifera, which shows that their growth is most sensitive to sea ice dynamics and is linked with the El Niño–Southern Oscillation.
Elizabeth Atar, Christian März, Andrew C. Aplin, Olaf Dellwig, Liam G. Herringshaw, Violaine Lamoureux-Var, Melanie J. Leng, Bernhard Schnetger, and Thomas Wagner
Clim. Past, 15, 1581–1601, https://doi.org/10.5194/cp-15-1581-2019, https://doi.org/10.5194/cp-15-1581-2019, 2019
Short summary
Short summary
We present a geochemical and petrographic study of the Kimmeridge Clay Formation from the Cleveland Basin (Yorkshire, UK). Our results indicate that deposition during this interval was very dynamic and oscillated between three distinct modes of sedimentation. In line with recent modelling results, we propose that these highly dynamic conditions were driven by changes in climate, which affected continental weathering, enhanced primary productivity, and led to organic carbon enrichment.
Dominic A. Hodgson, Kelly Hogan, James M. Smith, James A. Smith, Claus-Dieter Hillenbrand, Alastair G. C. Graham, Peter Fretwell, Claire Allen, Vicky Peck, Jan-Erik Arndt, Boris Dorschel, Christian Hübscher, Andrew M. Smith, and Robert Larter
The Cryosphere, 12, 2383–2399, https://doi.org/10.5194/tc-12-2383-2018, https://doi.org/10.5194/tc-12-2383-2018, 2018
Short summary
Short summary
We studied the Coats Land ice margin, Antarctica, providing a multi-disciplinary geophysical assessment of the ice sheet configuration through its last advance and retreat; a description of the physical constraints on the stability of the past and present ice and future margin based on its submarine geomorphology and ice-sheet geometry; and evidence that once detached from the bed, the ice shelves in this region were predisposed to rapid retreat back to coastal grounding lines.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
V. N. Panizzo, G. E. A. Swann, A. W. Mackay, E. Vologina, M. Sturm, V. Pashley, and M. S. A. Horstwood
Biogeosciences, 13, 147–157, https://doi.org/10.5194/bg-13-147-2016, https://doi.org/10.5194/bg-13-147-2016, 2016
Short summary
Short summary
Lake Baikal, Siberia, is the world's most voluminous lake. Diatoms are the most dominant primary producers in the lake and form the basis of the food chain. This paper investigated the productivity of these organisms over the course of a year with a view to understanding their preservation in sediments and their value for reconstructing past productivity in the lake. This is important when recent climate change and the pressures of pollution are having demonstrable impacts in the region.
K. R. Hendry, G. E. A. Swann, M. J. Leng, H. J. Sloane, C. Goodwin, J. Berman, and M. Maldonado
Biogeosciences, 12, 3489–3498, https://doi.org/10.5194/bg-12-3489-2015, https://doi.org/10.5194/bg-12-3489-2015, 2015
Short summary
Short summary
The stable isotope composition of benthic sponge silica skeletons (spicules) has been shown to be a source of useful palaeoceanographic information about past deep seawater chemistry. Here, we investigate the biological vital effects on silica stable isotope composition in a Southern Ocean carnivorous sponge, Asbestopluma sp. We find significant variations in isotopic composition within the specimen – in both silicon and oxygen isotopes – that appear to be related to unusual spicule growth.
G. E. A. Swann and A. M. Snelling
Clim. Past, 11, 15–25, https://doi.org/10.5194/cp-11-15-2015, https://doi.org/10.5194/cp-11-15-2015, 2015
Short summary
Short summary
New diatom isotope records are presented alongside existing geochemical and isotope records to document changes in the photic zone, including nutrient supply and the efficiency of the soft-tissue biological pump, between MIS 4 and MIS 5e in the subarctic north-west Pacific Ocean. The results provide evidence for temporal changes in the strength and efficiency of the regional soft-tissue biological pump, altering the ratio of regenerated to preformed nutrients in the water.
A. M. Snelling, G. E. A. Swann, J. Pike, and M. J. Leng
Clim. Past, 10, 1837–1842, https://doi.org/10.5194/cp-10-1837-2014, https://doi.org/10.5194/cp-10-1837-2014, 2014
Cited articles
Alekseychik-Mitskevich, L. S.: Towards the classification of the foraminiferal family Haplophragmiidae, Trudy Vsesoyuzznogo neftyanogo Nauchnoissledovatel'skogo Geologorazvedochnogo Instituta, 343, 12–44, 1973.
Andersen, H. V.: Buccella, a new genus of the rotalid foraminifera, Journal of the Washington Academy of Sciences, 42, 143–151, 1952.
Anderson, J. B.: Ecology and distribution of foraminifera in the Weddell Sea of Antarctica, Micropalaeontology, 21, 69–96, 1975.
Bailey, J. W.: Microscopical examination of soundings made by the U.S. Coast Survey of the Atlantic coast of the U.S., Smithsonian Contributions, 2, 1–48, 1851.
Bandy, O. L., Frerichs, W. E., and Vincent, E.: Origin, development, and geologic significance of Neogloboquadrina Bandy, Frerichs, and Vincent, gen. nov., Contributions from the Cushman Foundation for Foraminiferal Research, 18, 152–157, 1967.
Barker, R. W.: Taxonomic notes on the species figured by H.B. Brady in his report of the foraminifera dredged by HMS Challenger during the years 1873–1876, American Association of Petroleum Geologists Special Publication, 9, 10238, 2–240, 1960.
Bernhard, J. M.: Distinguishing live from dead foraminifera: Methods review and proper applications, Micropaleontology, 46, 38–46, 2000.
Brady, H. B.: Contributions to the knowledge of the foraminifera. – On the rhizopodal fauna of the Shetlands, Transactions of the Linnaean Society, 24, 463–476, https://doi.org/10.1111/j.1096-3642.1863.tb00170.x, 1864.
Brady, H. B.: Notes on some of the Reticularian Rhizopoda of the “Challenger” Expedition. I. On new or little known arenaceous types, Q. J. Microsc. Sci., 19, 20–62, 1879.
Brady, H. B.: Notes on some of the Reticularian Rhizopoda of the “Challenger” Expedition. Part III, Q. J. Microsc. Sci., 21, 31–71, 1881.
Brady, H. B.: Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–76, in: Zoology of the Challenger Expedition, edited by: Thompson, C. W. and Murray, J., London, Neill, Edinburgh, 1884.
Brandon, M. A., Murphy, E. J., Whitehouse, M. J., Trathan, P. N., Murray, A. W. A., Bone, D. G., and Priddle, J.: The shelf break front to the east of the sub-Antarctic island of South Georgia, Cont. Shelf Res., 19, 799–819, https://doi.org/10.1016/s0278-4343(98)00112-5, 1999.
Brandon, M. A., Murphy, E. J., Trathan, P. N., and Bone, D. G.: Physical oceanographic conditions to the northwest of the sub-Antarctic Island of South Georgia, J. Geophys. Res.-Oceans, 105, 23983–23996, 10.1029/2000jc900098, 2000.
Brönnimann, P.: Two new genera of Recent Trochamminidae (Foraminiferida), Achives des Sciences, Geneve, 29, 215–218, 1976.
Brönnimann, P. and Beurlen, G.: Recent benthonic foraminifera from Brasil. Morphology and ecology. Part I, Achives des Sciences, Geneve, 30, 77–89, 1977.
Brönnimann, P. and Whittaker, J. E.: The Trochamminacea of the Discovery Reports, British Museum, London, 1988.
Brönnimann, P., Zaninetti, L., and Whittaker, J. E.: On the classification of the Trochamminacea (Foraminiferida), J. Foramin. Res., 13, 202–218, 1983.
Caralp, M. H.: Abundance of Bulimina exilis and Melonis barleeanum – relationship to the quality of marine organic-matter, Geo-Marine Letters, 9, 37–43, https://doi.org/10.1007/bf02262816, 1989.
Carpenter, W. B.: On the rhizopodal fauna of the deep sea, Proceedings of the Royal Society of London, 18, 59–62, 1869.
Carpenter, W. B., Parker, W. K., and Jones, T. R.: Introduction to the study of the Foraminifera, Ray Society, London, 1862.
Caulle, C., Mojtahid, M., Gooday, A. J., Jorissen, F. J., and Kitazato, H.: Living (Rose-Bengal-stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea), Biogeosciences, 12, 5005–5019, https://doi.org/10.5194/bg-12-5005-2015, 2015.
Chapman, F.: Report on the Foraminifera and Ostracoda from elevated deposits on the shores of the Ross Sea, British Antarctic Expedition 1907–9 under the command of Sir E. H. Shackleton, C.V.O.: Reports on the scientific investigations, Geology, Vol. II – Contributions to the palaeontology and petrology of South Victoria Land, edited by: Benson, W. N., Chapman, F., Cohen, F., Cotton, L. A., Hedley, C., Jensen, H. I., Mawson, D., Skeats, E. W., Thomson, J. A., Walkom, A. B., and Woolnough, W. G., William Heinemann, London, 1916.
Chapman, F., Parr, W. J., and Collins, A. C.: Tertiary Foraminifera of Victoria, Australia. The Balcombian deposits of Port Phillip, Journal of the Linnaean Society, 38, 553–576, 1934.
Clark, F. E., Patterson, R. T., and Fishbein, E.: Distribution of Holocene benthic foraminifera from the tropical southwest Pacific Ocean, J. Foramin. Res., 24, 241–267, 1994.
Corliss, B. H. and Emerson, S.: Distribution of Rose-Bengal stained deep-sea benthic foraminifera from the Nova Scotian continental-margin and Gulf of Maine, Deep-Sea Res. Pt. A, 37, 381–400, https://doi.org/10.1016/0198-0149(90)90015-n, 1990.
Cushman, J. A.: A monograph of the Foraminifera of the North Pacific Ocean. Part I. Astrorhizidae and Lituolidae, Bulletin of the United States National Museum, 71, 1–134, 1910.
Cushman, J. A.: A monograph of the foraminifera of the North Pacific Ocean. Pt. III. Lagenidae, Bulletin of the United States National Museum, 71, 1–125, 1913.
Cushman, J. A.: The foraminifera of the Atlantic Ocean, Part 4. Lagenidae, Bulletin United States National Museum, 104, 1–228, 1923.
Cushman, J. A.: Foraminifera of the typical Monerey of California, Cushman Foundation for Foraminiferal Research Special Publication, 2, 53–69, 1926.
Cushman, J. A.: An outline of a re-classification of the foraminifera, Contributions from the Cushman laboratory for foraminiferal research, 3, 1–105, 1927.
Cushman, J. A.: The foraminifera of the Atlantic Ocean, Part 7, Nonionidae, Camerinidae, Peneroplidae and Alveolinellidae, Bulletin United States National Museum, 104, 1–79, 1930.
Cushman, J. A.: Foraminifera, their classification and economic use Cushman Lab. Foram. Res., Special Publications Cushman Laboratory for Foraminiferal Research, 4, 1–349, 1933.
Cushman, J. A.: Foraminifera of the United States Antarctic Service Expedition 1939–1941, Proceedings, American Philosophical Society, 89, 285–288, 1945.
Cushman, J. A. and Edwards, P. G.: Astrononion a new genus of the foraminifera and its species, Contributions from the Cushman laboratory for foraminiferal research, 13, 29–36, 1937.
d'Orbigny, A.: Tableau méthodique de la classe des Céphalopodes, Ann. Sci. Nat., 7, 245–314, 1826.
d'Orbigny, A.: Foraminifères, in: Histoire Physique, Politique et Naturelle de l'île de Cuba, edited by: de la Sagra, R., A. Bertrand, Paris, 1–224, 1839a.
d'Orbigny, A.: Voyage dans l'Amérique Méridionale (le Brésil, la République orientale de l'Uruquay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la République du Pérou) éxécuté pendant les années 1826, 1827, 1832 et 1833 in: Foraminifères, edited by: Levrault, S., Bertrand, Paris, 1–86, 1839b.
Defrance, J. L. M.: Dictionnaire des Sciences Naturelles, F. G. Levrault, Strasbourg, 1824.
DeLaca, T. E.: The morphology and ecology of Astrammina rara, J. Foramin. Res., 16, 216–233, 1986.
Earland, A.: Foraminifera, Part II, South Georgia, London, 27–138, 1933.
Earland, A.: Foraminifera. Part III. The Falklands sector of the Antarctic (excluding South Georgia), London, 1–208, 1934.
Echols, R. J.: Distribution of foraminifera in sediments of the Scotia Sea area, Antarctic waters, in: Antarctic Oceanography I, edited by: Reid, J. L., American Geophysical Union, Washington, D.C., 93–168, 1971.
Ehrenberg, C. G.: Uber die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen, Physikalische Abhandlungen der Koniglichen Akademie der Wissenschaften zu Berlin, 1838, 59–147, 1838.
Ehrenberg, C. G.: Elemente des tiefen Meeresgrundes im Mexikanishen Golfstrome bei Florida: uber die Tiefgrund-Verhaltnisse des Oceans am eingange der Davisstrasse und bei Island, Monatsbericht der Koniglichen Preussichen Akademie der Wissenschaften zu Berlin, 1861, 275–315, 1861.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibrations for benthic foraminiferal Mg ∕ Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sc. Lett., 250, 633–649, https://doi.org/10.1016/j.epsl.2006.07.041, 2006.
Elderfield, H., Greaves, M., Barker, S., Hall, I. R., Tripati, A., Ferretti, P., Crowhurst, S., Booth, L., and Daunt, C.: A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg ∕ Ca of benthic foraminiferal Uvigerina spp, Quaternary Sci. Rev., 29, 160–169, https://doi.org/10.1016/j.quascirev.2009.07.013, 2010.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., and Piotrowski, A. M.: Evolution of Ocean Temperature and Ice Volume Through the Mid-Pleistocene Climate Transition, Science, 337, 704–709, https://doi.org/10.1126/science.1221294, 2012.
Enge, A. J., Nomaki, H., Ogawa, N. O., Witte, U., Moeseneder, M. M., Lavik, G., Ohkouchi, N., Kitazato, H., Kucera, M., and Heinz, P.: Response of the benthic foraminiferal community to a simulated short-term phytodetritus pulse in the abyssal North Pacific, Mar. Ecol.-Prog. Ser., 438, 129–142, https://doi.org/10.3354/meps09298, 2011.
Fontanier, C., Jorissen, F. J., Chaillou, G., David, C., Anschutz, P., and Lafon, V.: Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay, Deep-Sea Res. Pt. I, 50, 457–494, https://doi.org/10.1016/s0967-0637(02)00167-x, 2003.
Fontanier, C., Jorissen, F., Anschutz, P., and Chaillou, G.: Seasonal variability of benthic foraminiferal faunas at 1000 m depth in the Bay of Biscay, J. Foramin. Res., 36, 61–76, https://doi.org/10.2113/36.1.61, 2006a.
Fontanier, C., Mackensen, A., Jorissen, F. J., Anschutz, P., Licari, L., and Griveaud, C.: Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: Microhabitat impact and seasonal variability, Mar. Micropaleontol., 58, 159–183, https://doi.org/10.1016/j.marmicro.2005.09.004, 2006b.
Fontanier, C., Jorissen, F. J., Michel, E., Cortijo, E., Vidal, L., and Anschutz, P.: Stable oxygen and carbon isotopes of live (stained) benthic foraminifera from Cap-Ferret Canyon (Bay of Biscay), J. Foramin. Res., 38, 39–51, https://doi.org/10.2113/gsjfr.38.1.39, 2008.
Fontanier, C., Garnier, E., Brandily, C., Dennielou, B., Bichon, S., Gayet, N., Eugene, T., Rovere, M., Grémare, A., and Deflandre, B.: Living (stained) benthic foraminifera from the Mozambique Channel (eastern Africa): Exploring ecology of deep-sea unicellular meiofauna, Deep-Sea Res. Pt. I, 115, 159–174, https://doi.org/10.1016/j.dsr.2016.06.007, 2016.
Frerichs, W. E.: Recent arenaceous foraminifers from Gulf of Mexico, Palaeontological Contributions, University of Kansas, 46, 1–2, 1969.
Galloway, J. J.: A manual of Foraminifera, Principia Press, Bloomington, 1933.
Gaździcki, A. and Majewski, W.: Recent foraminifera from Goulden Cove of King George Island, Antarctica, Pol. Polar Res., 24, 3–12, 2003.
Gehlen, M., Mucci, A., and Boudreau, B.: Modelling the distribution of stable carbon isotopes in porewaters of deep-sea sediments, Geochim. Cosmochim. Ac., 63, 2763–2773, https://doi.org/10.1016/s0016-7037(99)00214-8, 1999.
Geslin, E., Heinz, P., Jorissen, F., and Hemleben, C.: Migratory responses of deep-sea benthic foraminifera to variable oxygen conditions: laboratory investigations, Mar. Micropaleontol., 53, 227–243, https://doi.org/10.1016/j.marmicro.2004.05.010, 2004.
Glaessner, M. F.: Die Entfaltung der Foraminiferenfamilie Buliminidae, Problemy Palaeontologii, Palaeontologicheskaya Laboratoriya Moskovskogo Gosudarstvennogo Universiteta, 2–3, 411–422, 1937.
Goes, A.: A synopsis of the Arctic and Scandinavian Recent marine Foraminifera hitherto discovered, Kongl. svenka vetenskaps-Akademiens handlinger 25, 1–127, 1894.
Gooday, A. J.: A response by benthic foraminifera to the deposition of phytodetritus in the deep-sea, Nature, 332, 70–73, https://doi.org/10.1038/332070a0, 1988.
Gooday, A. J. and Hughes, J. A.: Foraminifera associated with phytodetritus deposits at a bathyal site in the northern Rockall Trough (NE Atlantic): seasonal contrasts and a comparison of stained and dead assemblages, Mar. Micropaleontol., 46, 83–110, https://doi.org/10.1016/s0377-8398(02)00050-6, 2002.
Gooday, A. J., da Silva, A. A., Koho, K. A., Lecroq, B., and Pearce, R. B.: The “mica sandwich”; a remarkable new genus of Foraminifera (Protista, Rhizaria) from the Nazare Canyon (Portuguese margin, NE Atlantic), Micropaleontology, 56, 345–357, 2010.
Griffith, J. W. and Henfrey, A.: The Micrographic Dictionary, van Voorst, London, 1875.
Gross, O.: Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments, Hydrobiologia, 426, 123–137, https://doi.org/10.1023/a:1003930831220, 2000.
Haeckel, E.: Systematische Phylogenie. Entwurf eines Naturlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. Theil 1, Systematische Phylogenie der Protisten und Pflanzen, Georg Reimer, Berlin, 1894.
Hayward, B. W., Kawagata, S., Sabaa, A. T., Grenfell, H. R., van Kerckhoven, L., Johnson, K., and Thomas, E.: The last global extinction (Mid-Pleistocene) of deep-sea benthic foraminifera (Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleursostomellidae, Stilostomellidae), their Late Cretaceous-Cenozoic history and taxonomy, Cushman Foundation for Foraminiferal Research Special Publication, 43, 1–410, 2012.
Heron-Allen, E. and Earland, A.: On some Foraminifera from the North Sea, etc., dredged by the Fisheries Cruiser “Goldseeker” (International North Sea Investigations – Scotland). I. On some new Astrorhizidae and their shell-structure, Journal of the Royal Microscopical Society, 1912, 382–389, 1912.
Heron-Allen, E. and Earland, A.: Les Foraminifères des “Sables Rouges” du golfe de Ajaccio (Côte Nord), Bulletin de la Société des sciences historiques et naturelles de la Corse, 42, 109–149, 1922.
Heron-Allen, E. and Earland, A.: XXVII. – Some new Foraminifera from the South Atlantic, Journal of the Royal Microscopical Society, 49, 324–334, https://doi.org/10.1111/j.1365-2818.1929.tb00787.x, 1929.
Heron-Allen, E. and Earland, A.: Some new foraminifera from the South Atlantic, Part 3., Journal of the Royal Microscopical Society, 50, 38—45, 1930.
Heron-Allen, E. and Earland, A.: Foraminifera. Part 1. The ice-free area of the Falkland Islands and adjacent seas, Cambridge University Press, London, 291–460, 1932a.
Heron-Allen, E. and Earland, A.: Some new foraminifera from the South Atlantic, IV, Journal of the Royal Microscopical Society, 52, 253–261, 1932b.
Herb, R.: Distribution of Recent Benthonic Foraminifera in the Drake Passage, in: Biology of the Antarctic Seas IV, American Geophysical Union, 251–300, 1971.
Hermelin, J. O. R.: Pliocene benthic foraminifera from the Ontong-Java plateau (western equatorial Pacific Ocean): faunal response to changing paleoenvironments, Cushman Foundation for Foraminiferal Research Special Publication, 26, 1–143, 1989.
Hogg, O. T., Barnes, D. K. A., and Griffiths, H. J.: Highly Diverse, Poorly Studied and Uniquely Threatened by Climate Change: An Assessment of Marine Biodiversity on South Georgia's Continental Shelf, Plos One, 6, e19795, https://doi.org/10.1371/journal.pone.0019795, 2011.
Höglund, H.: Foraminifera in the Gullmar Fjord and the Skagerak, Zoologiska Bidrag fran Uuppsala, 26, 1–328, 1947.
Holsten, J., Stott, L., and Berelson, W.: Reconstructing benthic carbon oxidation rates using δ13C of benthic foraminifers, Mar. Micropaleontol., 53, 117–132, https://doi.org/10.1016/j.marmicro.2004.05.006, 2004.
Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N., and Rickaby, R. E. M.: Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin, Nat. Geosci., 8, 40–43, https://doi.org/10.1038/ngeo2317, 2015.
Hromic, T., Ishman, S., and Silva, N.: Benthic foraminiferal distributions in Chilean fjords: 47° S to 54° S, Mar. Micropaleontol., 59, 115–134, https://doi.org/10.1016/j.marmicro.2006.02.001, 2006.
Igarashi, A., Numanami, H., Tsuchiya, Y., and Fukucki, M.: Bathymetric distribution of fossil foraminifera within marine sediment cores from the eastern part of Lutzow-Holm Bay, East Antarctica, and its paleoceanographic implications, Mar. Micropaleontol., 42, 125–162, https://doi.org/10.1016/s0377-8398(01)00004-4, 2001.
Ishman, S. E. and Domack, E. W.: Oceanographic controls on benthic foraminifers from the Bellingshausen margin of the Antarctic Peninsula, Mar. Micropaleontol., 24, 119–155, https://doi.org/10.1016/0377-8398(94)90019-1, 1994.
Jones, A. F.: The Micrographic Dictionary, edited by: Griffith, J. W. and Henfrey, A., van Voorst, London, 1875.
Jones, R. W.: A revised classification of the unilocular Nodosariida and Buliminida (Foraminifera), Revista Espanola de Micropaleontologia, 16, 91–160, 1984.
Jones, R. W.: The Challenger Foraminifera, Oxford University Press, Oxford, 1994.
Jorissen, F. J., deStigter, H. C., and Widmark, J. G. V.: A conceptual model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, https://doi.org/10.1016/0377-8398(95)00047-x, 1995.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C., and de Vernal, A., Developments in Marine Geology, Elsevier, Amsterdam, 263–325, 2007.
Kaminski, M. A.: The Year 2000 Classification of the Agglutinated Foraminifera, in: Proceedings of the Sixth International Workshop on Agglutinated Foraminifera (Prague, Czech Republic, 1–7 September 2001), edited by: Kaminski, M. A. and Bubik, M., Grzybowski Foundation Special Publication, London, UK, 237–255, 2004.
Kaminski, M. A. and Gradstein, F. M.: Atlas of Paleogene Cosmopolitan deep-water agglutinated foraminifera, Grzybowski Foundation Special Publication, Krakow, 2005.
Kanmacher, F.: Adam's Essays on the Microscope: the Second Edition, with Considerable Additions and Improvements, Dillon & Keating, London, 1798.
Kender, S. and Kaminski, M. A.: Modern deep-water agglutinated foraminifera from IODP Expedition 323, Bering Sea: ecological and taxonomic implications, J. Micropalaeontology, https://doi.org/10.1144/jmpaleo2016-026, 2017.
Kennett, J. P.: New Foraminifera from the Ross Sea, Antarctica, Contributions from the Cushman Foundation for Foraminiferal Research, 18, 133–135, 1967.
Kitazato, H., Shirayama, Y., Nakatsuka, T., Fujiwara, S., Shimanaga, M., Kato, Y., Okada, Y., Kanda, J., Yamaoka, A., Masuzawa, T., and Suzuki, K.: Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal populations in Sagami Bay, Japan: preliminary results from “Project Sagami 1996–1999”, Mar. Micropaleontol., 40, 135–149, https://doi.org/10.1016/s0377-8398(00)00036-0, 2000.
Knight, R.: Apertural characteristics of certain unilocular foraminifera: methods of study, nomenclature and taxonomic significance, J. Micropaleontol., 5, 37–47, 1986.
Lamarck, J. B.: Suite des mémoires sur les fossiles des environs de Paris, Annales du Muséum d'Histoire Naturelle, 5, 105–115, 179-188, 1804.
Lamarck, J. B.: Extrait du course de zoologie du Museum d'Histoire Naturelle, sur les animaux sans vertebres, d'Hautel, Paris, 1812.
Le Coze, F. and Hayward, B.: Lagena striatopunctata Parker & Jones, 1865, in: World Foraminifera Database, edited by: Hayward, B. W., Cedhagen, T., Kaminski, M., and Gross, O., avaiable at: http://www.marinespecies.org/foraminifera./aphia.php?p=taxdetails&id=525593 (last access: 12 July 2017), 2017.
Linke, P. and Lutze, G. F.: Microhabitat preferences of benthic foraminifera – a static concept or a dynamic adaptation to optimize food acquisition, Mar. Micropaleontol., 20, 215–234, https://doi.org/10.1016/0377-8398(93)90034-u, 1993.
Linnaeus, C.: Systema Naturae per Regnia tria Naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Stockholm, 823 pp., 1758.
Lipps, J. H., DeLaca, T. E., Krebs, W. N., and Stockton, W.: Shallow-water foraminifera studies, Antarctic Peninsula, 1971–1972, Foraminiferal ecology, Antarctic Peninsula, Antarctic, Journal of the United States, 7, 82–83, 1972.
Loeblich, A. R. and Tappan, H.: Revision of some recent foraminiferal genera, Smithsonian Miscellaneous Collections, 128, 1–37, 1955.
Loeblich, A. R. and Tappan, H.: Suprageneric classification of the Rhizopodea, J. Paleontol., 35, 245–330, 1961.
Loeblich, A. R. and Tappan, H.: Some new proteinaceous and agglutinated genera of Foraminiferida, J. Paleontol., 58, 1158–1163, 1984.
Loeblich, A. R. and Tappan, H.: Some new and redefined genera and families of Textulariina, Fusulinina, Involutinina and Miliolina (Foraminiferida), J. Foramin. Res., 16, 334–346, 1986.
Loeblich, A. R. and Tappan, H.: Foraminiferal genera and their classification, Van Nostrand Reinhold, New York, 1988.
Loeblich, A. R. and Tappan, H.: Foraminifera of the Sahul Shelf and Timor Sea, Cushman Foundation for Foraminiferal Research Special Publication, 31, 1–661, 1994.
Loubere, P., Meyers, P., and Gary, A.: Benthic foraminiferal microhabitat selection, carbon isotope values, and association with larger animals – a test with Uvigerina peregrina, J. Foramin. Res., 25, 83–95, 1995.
Loubere, P., Jacobsen, B., Klitgaard Kristensen, D., Husum, K., Jernas, P., and Richaud, M.: The structure of benthic environments and the paleochemical record of foraminifera, Deep-Sea Res. Pt. I, 58, 535–545, https://doi.org/10.1016/j.dsr.2011.02.011, 2011.
Luo, M., Chen, L. Y., Wang, S. H., Yan, W., Wang, H. B., and Chen, D. F.: Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea, Mar. Petrol. Geol., 48, 247–259, https://doi.org/10.1016/j.marpetgeo.2013.08.018, 2013.
Mackensen, A., Grobe, H., Kuhn, G., and Futterer, D. K.: Benthic Foraminiferal Assemblages from the Eastern Weddell Sea Between 68 and 73° S – Distribution, Ecology and Fossilisation Potential, Mar. Micropaleontol., 16, 241–283, https://doi.org/10.1016/0377-8398(90)90006-8, 1990.
Mackensen, A., Futterer, D. K., Grobe, H., and Schmiedl, G.: Benthic Foraminiferal Assemblages from the Eastern South-Atlantic Polar Front Region Between 35 and 57° S – Distribution, Ecology and Fossilization Potential, Mar. Micropaleontol., 22, 33–69, https://doi.org/10.1016/0377-8398(93)90003-g, 1993.
Majewski, W.: Benthic foraminiferal communities: distribution and ecology in Admiralty Bay, King George Island, West Antarctica, Pol. Polar Res., 26, 159–214, 2005.
Majewski, W.: Benthic foraminifera from West Antarctic fiord environments: An overview, Pol. Polar Res., 31, 61–82, https://doi.org/10.4202/ppres.2010.05, 2010.
Majewski, W.: Benthic foraminifera from Pine Island and Ferrero bays, Amundsen Sea, Pol. Polar Res., 34, 169–200, https://doi.org/10.2478/popore-2013-0012, 2013.
Majewski, W. and Anderson, J. B.: Holocene foraminiferal assemblages from Firth of Tay, Antarctic Peninsula: Paleoclimate implications, Mar. Micropaleontol., 73, 135–147, https://doi.org/10.1016/j.marmicro.2009.08.003, 2009.
Marie, P.: La foraminifères de la Craie à Belemnitella mucronata du Bassin de Paris, Mémoires de Museum Nationale d'Histoire Naturelle, 12, 1–296, 1941.
Maync, W.: Critical taxonomic study and nomenclatural revision of the Lituolidae based upon the prototype of the family, Lituola nautiloidea Lamarck 1804, Contributions from the Cushman Foundation for Foraminiferal Research, 3, 35–56, 1952.
McCorkle, D. C. and Emerson, S. R.: The relationship between pore water carbon isotopic composition and bottom water oxygen concentration, Geochim. Cosmochim. Ac., 52, 1169–1178, https://doi.org/10.1016/0016-7037(88)90270-0, 1988.
McCorkle, D. C., Emerson, S. R., and Quay, P. D.: Stable carbon isotopes in marine porewaters, Earth Planet. Sc. Lett., 74, 13–26, https://doi.org/10.1016/0012-821x(85)90162-1, 1985.
McCorkle, D. C., Keigwin, L. D., Corliss, B. H., and Emerson, S. R.: The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera, Paleoceanography, 5, 161–185, https://doi.org/10.1029/PA005i002p00161, 1990.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.: Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins, Deep-Sea Res. Pt. I, 44, 983–1024, https://doi.org/10.1016/S0967-0637(97)00004-6, 1997.
McCulloch, I.: Qualitative observations on Recent foraminiferal tests with emphasis on the eastern Pacific, University of Southern California, Los Angeles, 1977.
Meredith, M. P., Brandon, M. A., Murphy, E. J., Trathan, P. N., Thorpe, S. E., Bone, D. G., Chernyshkov, P. P., and Sushin, V. A.: Variability in hydrographic conditions to the east and northwest of South Georgia, 1996–2001, J. Marine Syst., 53, 143–167, https://doi.org/10.1016/j.jmarsys.2004.05.005, 2005.
Mikhalevich, V. I.: Systematics and evolution of forminifera in the light of new data on their cytology and ultrastructure, Trudy Zoologicheskogo Instituta Akademiya Nauk SSSR, 94, 42–61, 1980.
Mikhalevich, V. I.: A new classification of the class Astrorhizata, Zoosystematica Rossica, 3, 161–174, 1995.
Mikhalevich, V. I.: The general aspects of the distribution of Antarctic foraminifera, Micropaleontology, 50, 179–194, https://doi.org/10.1661/0026-2803(2004)050[0179:moeoti]2.0.co;2, 2004.
Miklukho-Maklay, A. D.: Upper Palaeozoic of Central Asia, Leningradskiy Universitet, Lenigrad, 1963.
Milam, R. W. and Anderson, J. B.: Distribution and Ecology of Recent Benthonic Foraminifera of the Adelie-George-V Continental-Shelf and Slope, Antarctica, Mar. Micropaleontol., 6, 297–325, 1981.
Montagu, G.: Testacea Britannica or Natural History of British Shells, Marine, Land, and Fresh-Water, Including the Most Minute, J. S. Hollis, Romsey, England, 1803.
Montfort, P. D. d.: Conchyliologie systématique et classification méthodique des coquilles, F. Schoell, Paris, 676 pp., 1808.
Moreman, W. L.: Arenaceous foraminifera from Ordovician and Silurian limestones of Oklahoma, J. Paleontol., 4, 42–59, 1930.
Murphy, E. J., Hofmann, E. E., Watkins, J. L., Johnston, N. M., Pinones, A., Ballerini, T., Hill, S. L., Trathan, P. N., Tarling, G. A., Cavanagh, R. A., Young, E. F., Thorpe, S. E., and Fretwell, P.: Comparison of the structure and function of Southern Ocean regional ecosystems: The Antarctic Peninsula and South Georgia, J. Marine Syst., 109, 22–42, https://doi.org/10.1016/j.jmarsys.2012.03.011, 2013.
Murray, J. W. and Bowser, S. S.: Mortality, protoplasm decay rate, and reliability of staining techniques to recognize “living” foraminifera: A review, J. Foramin. Res., 30, 66–70, https://doi.org/10.2113/0300066, 2000.
Murray, J. W. and Pudsey, C. J.: Living (stained) and dead foraminifera from the newly ice-free Larsen Ice Shelf, Weddell Sea, Antarctica: ecology and taphonomy, Mar. Micropaleontol., 53, 67–81, https://doi.org/10.1016/j.marmicro.2004.04.001, 2004.
Nomaki, H., Heinz, P., Hemleben, C., and Kitazato, H.: Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: A laboratory feeding experiment in microcosm environments, J. Foramin. Res., 35, 103–113, https://doi.org/10.2113/35.2.103, 2005.
Ohga, T. and Kitazato, H.: Seasonal changes in bathyal foraminiferal populations in response to the flux of organic matter (Sagami Bay, Japan), Terra Nova, 9, 33–37, https://doi.org/10.1046/j.1365-3121.1997.d01-6.x, 1997.
Parker, F. L.: Foraminiferal distribution in the Long Island Sound – Buzzards Bay area, Bulletin of the Museum of Comparative Zoology, Harvard, 106, 428–473, 1952.
Parker, W. K. and Jones, T. R.: On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Straits and Baffin's Bay, Philos. T. R. Soc., 155, 325–441, 1865.
Parr, W. J.: On Torrresina, a new genus of the foraminifera from eastern Australia, Journal of the Royal Microscopical Society, 64, 129–135, 1947.
Parr, W. J.: Foraminifera, in: Reports B.A.N.Z. Antarctic Research Expedition 1929–1931, 232–392, 1950.
Patterson, R. T. and Richardson, R. H.: A taxonomic revision of the unilocular Foraminifera, J. Foramin. Res., 17, 212–226, 1987.
Pearcey, F. G.: Foraminifera of the Scottish National Antarctic Expedition, T. Roy. Soc. Edin., 49, 991–1044, 1914.
Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L., and Hodgson, D.: Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water, Quaternary Sci. Rev., 119, 54–65, https://doi.org/10.1016/j.quascirev.2015.04.002, 2015.
Piña-Ochoa, E., Høgslund, S., Geslin, E., Cedhagen, T., Revsbech, N. P., Nielsen, L. P., Schweizer, M., Jorissen, F., Rysgaard, S., and Risgaard-Petersen, N.: Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida, P. Natl. Acad. Sci. USA, 107, 1148–1153, https://doi.org/10.1073/pnas.0908440107, 2010.
Puri, H. S.: Contribution to the study of the Miocene of teh Florida panhandle, Bulletin Florida State Geological Survey, 36, 1–345, 1954.
Rauzer-Chernousova, D. M. and Reytlinger, E. A.: On the suprageneric systematics of the Order Hormosinida (Foraminifera), Paleontologicheskiy Zhurnal, 1986, 15–20, 1986.
Ravelo, A. C. and Hillaire-Marcel, C.: The use of oxygen and carbon isotopes of foraminifera in paleoceanography, in: Proxies in Late Cenozoic Paleoceanography, edited by: Hillaire-Marcel, C. and De Vernal, A., Developments in Marine Geology, Elsevier, Amsterdam, 735–764, 2007.
Reuss, A. E.: Uber zwei neue Arten von Foraminiferen aus dem Tegel van Baden und Mollersdorf, in: Bericht uder die Mittheilungen Freunden der Naturwissenschaften in Wien, edited by: Czjzek, J., 50–56, 1849.
Reuss, A. E.: Neues Foraminiferen aus den Schichten des Osterreichischen Tertiarbeckens, Denkschriften der Akademie des Wissenschaften, 1, 365–390, 1850.
Reuss, A. E.: Die Foraminiferen der westphälischen Kreideformation, Sitzungsberichte der mathematisch-naturwissenschaflichen Classe der kaiserlichen Akademie der Wissenschaften, 40, 147–238, 1860.
Reuss, A. E.: Entwurf einer systematischen Zusammenstellung der Foraminiferen, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Mathematicsch-Naturwissenschaftliche Classe, 1861, 355–396, 1862.
Reuss, A. E.: Die Foraminiferen, Anthozoen und Bryozoen des deutschen Septarienthones, Denkschriften der Akademie des Wissenschaften, Wien, 25, 117–214, 1866.
Rhumbler, L.: Entwurf eines naturlichen systems der Thalamophoren, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Math-Physik Klasse, 1895, 51–98, 1895.
Rhumbler, L.: Die Foraminiferen (Thalamophoren) der Plankton-Expedition, Erster Teil, Die allgemein Organizationsverhaltnisse der Foraminiferen, Ergebnisse der Plankton-Expedition der Humboldt-Stiftung Kiel u Liepzig, 3, 1–331, 1911.
Rodrigues, A. R., Eichler, P. P. B., and Eichler, B. B.: Foraminifera in two inlets fed by a tidewater glacier, King George Island, Antarctic Peninsula, J. Foramin. Res., 43, 209–220, 2013.
Saidova, K. M.: Bentosnye Foraminifery rayona kurilo-Kamchatskogo zheloba (po materianlam 39-go reysa e/s “Vityaz”) [Benthic foraminifera in the Kurile-Kamchatka region based on the data of the 39th cruise of the R/V “Vityaz.”], Trudy Instituta Okeanologii, 86, 134–161, 1970.
Saidova, K. M.: Bentosniye foraminifery Tikhogo Okeana, P.P. Shirshov Institute of Oceanology, Academy of Sciences of the USSR, Moscow, 1975.
Saidova, K. M.: O sovremennom sostoyanii sistemy nadvidovykh taksonov Kaynozoyskikh bentosnykh foraminifer [On an up-to-date system of supraspecific taxonomy of Cenozoic benthonic foraminifera], Akademiya Nauk SSSR, Moscow, 1981.
Sars, M.: Fortsatte bemerkinger over det dyriske livs udbredning i havets dybder, Förhandlinger i Videnskabsselskabet i Kristiania, 1869, 246–275, 1869.
Schilman, B., Almogi-Labin, A., Bar-Matthews, M., and Luz, B.: Late Holocene productivity and hydrographic variability in the eastern Mediterranean inferred from benthic foraminiferal stable isotopes, Paleoceanography, 18, https://doi.org/10.1029/2002pa000813, 2003.
Schmiedl, G., Mitschele, A., Beck, S., Emeis, K. C., Hemleben, C., Schulz, H., Sperling, M., and Weldeab, S.: Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean Sea during times of sapropel S-5 and S-6 deposition, Palaeogeogr. Palaeocl., 190, 139–164, https://doi.org/10.1016/s0031-0182(02)00603-x, 2003.
Schmiedl, G., Pfeilsticker, M., Hemleben, C., and Mackensen, A.: Environmental and biological effects on the stable isotope composition of recent deep-sea benthic foraminifera, from the western Mediterranean Sea, Mar. Micropaleontol., 51, 129–152, https://doi.org/10.1016/j.marmicro.2003.10.001, 2004.
Schultze, M. J. S.: Über den Organismus der Polythalamien (Foraminiferen), nebst Bemerkungen über die Rhizopoden im allgemeinen, Leipzig, Ingelmann, 1854.
Schulze, F. E.: Rhizopodenstudien. III., Archiv für Mikroskopische Anatomie 11, 94–139, 1875.
Schwager, C.: Saggio di una classificazione dei foraminiferi avuto riguardo alle loro famiglie naturali, Bolletino R. Comitato Geologico d'Italia, 7, 475–485, 1876.
Schwager, C.: Quadro del proposto sistema di classificazione dei foraminiferi con guscio, Bolletino R. Comitato Geologico d'Italia, 8, 18–27, 1877.
Seguenza, G.: Dei terreni Terziarii del distretto di Messina: Parte II – Descrizione dei foraminiferi monotalamici delle marne Mioceniche del distretto di Messina, T. Capra, Messina, 1862.
Setoyama, E. and Kaminski, M. A.: Neogene benthic foraminifera from the southern Bering Sea (IODP Expedition 323), Palaeontologia Electronica, 18.2.38A, 1–30, 2015.
Shchedrina, Z. G.: O nekotorykh izmeneniyakh v sisteme semeytv Astrorhizidae i Reophacidae (Foraminifera) [On some changes in the systematics of the families Astrorhizidae and Reopacidae (Foraminifera)], Voprosy Mikropaleontologii, 11, 157–170, 1969.
Silvestri, A.: Lo stipite della Elissoforme e le sue affinita, Memorie della Pontificia Accademia della Scienze, Nouvi Lincei, 6, 231–270, 1923.
Silvestri, O.: Saggio di studi sulla fauna microscopia fossile appartenente al terreno subappenino italiano. Mem. I – monografia delle Nodosarie, Academia Gioenia Scienze Naturali Catania 7, 108, 1872.
Stefanoudis, P. V., Bett, B. J., and Gooday, A. J.: Relationship between “live” and dead benthic foraminiferal assemblages in the abyssal NE Atlantic, Deep-Sea Res. Pt. I, 121, 190–201, https://doi.org/10.1016/j.dsr.2017.01.014, 2017.
Sweetman, A. K., Sommer, S., Pfannkuche, O., and Witte, U.: Retarded response by macrofauna-size foraminifera to phytodetritus in a deep Norwegian fjord, J. Foramin. Res., 39, 15–22, https://doi.org/10.2113/gsjfr.39.1.15, 2009.
Tachikawa, K. and Elderfield, H.: Microhabitat effects on Cd ∕ Ca and δ13C of benthic foraminifera, Earth Planet. Sc. Lett., 202, 607–624, https://doi.org/10.1016/S0012-821X(02)00796-3, 2002.
Thalmann, H. E.: Nomenclator (Um- und Neubennungen) zu den Tafeln 1 bis 115 in H. B. Brady's Werk uber die Foraminferen der Challenger-Expedition, London 1884, Eclogae Geologicae Helvetiae, 25, 293–312, 1932.
Theodor, M., Schmiedl, G., and Mackensen, A.: Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea, Mar. Micropaleontol., 124, 16–28, https://doi.org/10.1016/j.marmicro.2016.02.001, 2016.
Thorpe, S. E., Heywood, K. J., Brandon, M. A., and Stevens, D. P.: Variability of the southern Antarctic Circumpolar Current front north of South Georgia, J. Marine Syst., 37, 87–105, https://doi.org/10.1016/s0924-7963(02)00197-5, 2002.
Uchio, T.: Ecology of living benthonic foraminifera from the San Diego, California area, Special Publications Cushman Laboratory for Foraminiferal Research, 5, 1–72, 1960.
Uchio, T.: Influence of the River Shinano on foraminifera and sediment grain size distribution, Publications of the Seto Marine Biological Laboratory, 10, 363–392, 1962.
Van Marle, L.: Eastern Indonesia Late Cenozoic smaller benthic foraminifera, Verhandeling Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Antuurkunde, Eerste Reeks, 34, 1–328, 1991.
Violanti, D.: Taxonomy and distribution of recent benthic foraminifers from Terra Nova Bay (Ross Sea, Antarctica), oceanographic campaign 1987/1988, Palaeontographica Italica, 83, 25–71, 1996.
Voloshinova, N. A.: Progress in micropalaeontology in the work of studying the inner structure of Foraminifera, Trudy Pervogo Seminara po Mikrofaune, 48–87, 1960.
Wang, F., Gao, M., Liu, J., Pei, S., Li, C., Mei, X., and Yang, S.: Distribution and environmental significance of live and dead benthic foraminiferal assemblages in surface sediments of Laizhou Bay, Bohai Sea, Mar. Micropaleontol., 123, 1–14, https://doi.org/10.1016/j.marmicro.2015.12.006, 2016.
Wedekind, P. R.: Einfuhrung in die Grundlagen der historischen Geologie. Band II. Mikrobiostratigraphie der Korallen- und Foraminiferenzeit, Ferdinand Enke, Stuttgart, 1937.
Weldeab, S., Arce, A., and Kasten, S.: Mg ∕ Ca-Delta CO3pore2-(water)-temperature calibration for Globobulimina spp.: A sensitive paleothermometer for deep-sea temperature reconstruction, Earth Planet. Sc. Lett., 438, 95–102, https://doi.org/10.1016/j.epsl.2016.01.009, 2016.
Wiesner, H.: Die Foraminiferen der Deutschen Südpolar Expedition 1901–1903. Deutschen Südpolar Expedition, Berlin (Zoology), 20, 53–165, 1931.
Williamson, W. C.: On the Recent British species of the genus Lagena, Annals and Magazine of Natural History, 2, 1–20, 1848.
Witte, U., Wenzhofer, F., Sommer, S., Boetius, A., Heinz, P., Aberle, N., Sand, M., Cremer, A., Abraham, W. R., Jorgensen, B. B., and Pfannkuche, O.: In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor, Nature, 424, 763–766, 2003.
Zahn, R., Winn, K., and Sarnthein, M.: Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi, Paleoceanography, 1, 27–42, 1986.
Zheng, S. and Fu, Z.: Fauna Sinica, Phylum Granuloreticulosa, Class Foraminiferea, Agglutinated Foraminifera, Science Press, Beijing, 2001.