Articles | Volume 39, issue 1
https://doi.org/10.5194/jm-39-41-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-39-41-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dinocyst and acritarch biostratigraphy of the Late Pliocene to Early Pleistocene at Integrated Ocean Drilling Program Site U1307 in the Labrador Sea
Aurélie Marcelle Renée Aubry
CORRESPONDING AUTHOR
Geotop, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
Stijn De Schepper
NORCE Climate, NORCE Norwegian Research Centre, Bjerknes Centre for Climate
Research, Jahnebakken 5, 5007 Bergen, Norway
Anne de Vernal
Geotop, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
Related authors
No articles found.
Anna Hauge Braaten, Kim A. Jakob, Sze Ling Ho, Oliver Friedrich, Eirik Vinje Galaasen, Stijn De Schepper, Paul A. Wilson, and Anna Nele Meckler
Clim. Past, 19, 2109–2125, https://doi.org/10.5194/cp-19-2109-2023, https://doi.org/10.5194/cp-19-2109-2023, 2023
Short summary
Short summary
In the context of understanding current global warming, the middle Pliocene (3.3–3.0 million years ago) is an important interval in Earth's history because atmospheric carbon dioxide concentrations were similar to levels today. We have reconstructed deep-sea temperatures at two different locations for this period, and find that a very different mode of ocean circulation or mixing existed, with important implications for how heat was transported in the deep ocean.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
Paul E. Bachem, Bjørg Risebrobakken, Stijn De Schepper, and Erin L. McClymont
Clim. Past, 13, 1153–1168, https://doi.org/10.5194/cp-13-1153-2017, https://doi.org/10.5194/cp-13-1153-2017, 2017
Short summary
Short summary
We present a high-resolution multi-proxy study of the Norwegian Sea, covering the 5.33 to 3.14 Ma time window within the Pliocene. We show that large-scale climate transitions took place during this warmer than modern time, most likely in response to ocean gateway transformations. Strong warming at 4.0 Ma in the Norwegian Sea, when regions closer to Greenland cooled, indicate that increased northward ocean heat transport may be compatible with expanding glaciation and Arctic sea ice growth.
Sina Panitz, Ulrich Salzmann, Bjørg Risebrobakken, Stijn De Schepper, and Matthew J. Pound
Clim. Past, 12, 1043–1060, https://doi.org/10.5194/cp-12-1043-2016, https://doi.org/10.5194/cp-12-1043-2016, 2016
Short summary
Short summary
This paper presents the first late Pliocene high-resolution pollen record for the Norwegian Arctic, covering the time period 3.60 to 3.14 million years ago (Ma). The climate of the late Pliocene has been widely regarded as relatively stable. Our results suggest a high climate variability with alternating cool temperate forests during warmer-than-presen periods and boreal forests similar to today during cooler intervals. A spread of peatlands at the expense of forest indicates long-term cooling.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
F. Klein, H. Goosse, A. Mairesse, and A. de Vernal
Clim. Past, 10, 1145–1163, https://doi.org/10.5194/cp-10-1145-2014, https://doi.org/10.5194/cp-10-1145-2014, 2014
C. V. Dylmer, J. Giraudeau, F. Eynaud, K. Husum, and A. De Vernal
Clim. Past, 9, 1505–1518, https://doi.org/10.5194/cp-9-1505-2013, https://doi.org/10.5194/cp-9-1505-2013, 2013
Related subject area
Stratigraphy
Bio-sequence stratigraphy of the Neogene: an example from El-Wastani gas field, onshore Nile Delta, Egypt
Astronomical calibration of late middle Eocene radiolarian bioevents from ODP Site 1260 (equatorial Atlantic, Leg 207) and refinement of the global tropical radiolarian biozonation
Liberating microfossils from indurated carbonates: comparison of three disaggregation methods
New composite bio- and isotope stratigraphies spanning the Middle Eocene Climatic Optimum at tropical ODP Site 865 in the Pacific Ocean
Identification of the Paleocene–Eocene boundary in coastal strata in the Otway Basin, Victoria, Australia
Ramadan M. El-Kahawy, Nabil Aboul-Ela, Ahmed N. El-Barkooky, and Walid G. Kassab
J. Micropalaeontol., 42, 147–169, https://doi.org/10.5194/jm-42-147-2023, https://doi.org/10.5194/jm-42-147-2023, 2023
Short summary
Short summary
In this biostratigraphic study of the Middle Miocene–Early Pliocene sequence in the El-Wastani gas field, Egypt, microscopic inspection of the samples enabled the designation of six foraminiferal zones and subzones. Seven stratigraphic sequences have been identified based on the foraminiferal and calcareous nannofossil diversity. Depositional sequences and sequence boundaries are recognized by the integration between the seismic data, biostratigraphic zones, and wireline logs (gamma rays).
Mathias Meunier and Taniel Danelian
J. Micropalaeontol., 41, 1–27, https://doi.org/10.5194/jm-41-1-2022, https://doi.org/10.5194/jm-41-1-2022, 2022
Short summary
Short summary
This study presents the biostratigraphic analysis of radiolaria (siliceous zooplankton) from a section of middle Eocene age located in the equatorial Atlantic. Our study allows the refinement of the age of 71 radiolarian bioevents. Based on a comparison with previously reported ages in the equatorial Pacific and northwestern Atlantic, we establish the synchronicity of several bioevents between the two oceans. Some of these synchronous bioevents were used to define seven new subzones.
Charlotte Beasley, Daniel B. Parvaz, Laura Cotton, and Kate Littler
J. Micropalaeontol., 39, 169–181, https://doi.org/10.5194/jm-39-169-2020, https://doi.org/10.5194/jm-39-169-2020, 2020
Short summary
Short summary
We compared three methods of breaking apart well-cemented carbonate rocks in order to obtain liberated fossiliferous material. The first two methods are
traditionaland the third is novel to this field. The novel technique (fragmentation using electric pulses, SELFRAG) proved to be the most efficient and effective at liberating microfossil material from surrounding rock. We suggest best practice for using this technique and further materials in which it could prove successful in future.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Cited articles
Andrews, J. T. and Tedesco, K.: Detrital carbonate-rich sediments,
northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg
rafting (Heinrich) events in the North Atlantic, Geology, 20, 1087–1090,
https://doi.org/10.1130/0091-7613(1992)020<1087:DCRSNL>2.3.CO;2,
1992.
Baldauf, J. G.: Diatom biostratigraphy of the middle- and high-latitude North
Atlantic Ocean, Deep Sea Drilling Project Leg 94, Initial Reports, DSDP, 94,
729–762, 1987.
Baldauf, J. G., Clement, B. G., Aksu, A. E., de Vernal, A., Firth, J. V., Hall, F., Head, M. J., Jarrad, R. D., Kaminski, M. A., Lazarus, D., Monjanel, A. L., Berggren, W. A., Gradstein, F. E., Knüttel, S., Mudie, P. J., and Russel, M. D.: Magnetostratigraphic and biostratigraphic synthesis of ocean drilling program leg 105: Labrador Sea and Baffin Bay, in: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 105, edited by by: Srivastava, S. P., Arthur, M. A., Clement, B., Aksu, A., Baldauf, J., Bohrmann, G., Bush, W., Cederberg, T., Cremer, M., Dadey, K., de Vernal, A., Firth, J., Hall, F., Head, M. J., Hiscott, R., Jarrad, R., Kaminski, M. A., Lazarus, D., Monjanel, A.-L., Bjorslev, O., Stein, R., Thiebault, F., Zachos, J., and Zimmerman, H., College Station, TX, Ocean Drilling Program, 935–956, https://doi.org/10.2973/odp.proc.sr.105.165.1989, 1989.
Berggren, W. A., Kent, D. V., and Van Couvering, J. A.: Neogene geochronology
and chronostratigraphy, in: Geochronology and the
Geologic Time Scale, edited by: Snelling, N. J., Geol. Soc. Mem. (London), 10, 211–250, 1985.
Berggren, W. A., Kent, D. V., Swisher III, C. C., and Aubry, M. P.: A revised
Cenozoic geochronology and chronostratigraphy, Geochronology Times Scales
and global Stratigraphic Correlation, SEPM Spec. P., 54, 129–212,
1995.
Blake-Mizen, K., Hatfield, R., Stoner, J., Carlson, A., Xuan, C., Walczak,
M., Lawrence, K. T., Channell, J. E. T., and Bailey, I.: Southern Greenland
glaciation and Western Boundary Undercurrent evolution recorded on Eirik
Drift during the late Pliocene intensification of Northern Hemisphere
glaciation, Quaternary Sci. Rev., 209, 40–51, https://doi.org/10.1016/j.quascirev.2019.01.015, 2019.
Channell, J. E. T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone, M. J., and the Expedition 303/306 Scientists: Proc. IODP, 303/306: College Station TX (Integrated Ocean Drilling Program Management International, Inc.), https://doi.org/10.2204/iodp.proc.303306.107.2006, 2006.
Channell, J. E. T., Sato, T., Kanamatsu, T., Stein, R., and Alvarez Zarikian,
C.: Expedition 303/306 synthesis: North Atlantic climate, in: Proc. IODP, 303/306, edited by: Channell,
J. E. T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone,
M. J., and the Expedition 303/306 Scientists, College
Station, TX, Integrated Ocean Drilling Program Management International,
Inc., https://doi.org/10.2204/iodp.proc.303306.214.2010, 2010.
Channell, J. E. T., Hodell, D. A., and Curtis, J. H.: Relative
paleointensity (RPI) and oxygen isotope stratigraphy at IODP Site U1308:
North Atlantic RPI stack for 1.2–2.2 Ma (NARPI-2200) and age of the Olduvai
Subchron, Quaternary Sci. Rev., 131, 1–19, https://doi.org/10.1016/j.quascirev.2015.10.011, 2016.
Clement, B. M., Hall, F. J., and Jarrad, R. D.: The magnetostratigraphy of Ocean Drilliing Program Leg 105 sediments, in: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 105, edited by: Srivastava, S. P., Arthur, M. A., Clement, B., Aksu, A., Baldauf, J., Bohrmann, G., Bush, W., Cederberg, T., Cremer, M., Dadey, K., de Vernal, A., Firth, J., Hall, F., Head, M.J., Hiscott, R., Jarrad, R., Kaminski, M. A., Lazarus, D., Monjanel, A.-L., Bjorslev, O., Stein, R., Thiebault, F., Zachos, J., and Zimmerman, H., College Station, TX, Ocean Drilling Program, 583–596, https://doi.org/10.2973/odp.proc.sr.105.147.1989, 1989.
De Schepper, S.: Plio-Pleistocene dinoflagellate cyst biostratigraphy and
palaeoecology of the eastern North Atlantic and southern North Sea Basin,
PhD Thesis, Wolfson College, University of Cambridge, 2006.
De Schepper, S. and Head, M. J.: New dinoflagellate cyst and acritarch taxa
from the Pliocene and Pleistocene of the eastern North Atlantic (DSDP Site
610), J. Syst. Palaeontol., 6, 101–117,
https://doi.org/10.1017/S1477201907002167, 2008a.
De Schepper, S. and Head, M. J.: Age calibration of dinoflagellate cyst and
acritarch events in the Pliocene–Pleistocene of the eastern North Atlantic
(DSDP Hole 610A), Stratigraphy, 5, 137–161, 2008b.
De Schepper, S. and Head, M. J.: Pliocene and Pleistocene dinoflagellate
cyst and acritarch zonation of DSDP Hole 610A, eastern North
Atlantic, Palynology, 33, 179–218, https://doi.org/10.1080/01916122.2009.9989673,
2009.
De Schepper, S. and Head, M. J.: New late Cenozoic acritarchs: evolution,
palaeoecology and correlation potential in high latitude oceans, J.
Syst. Palaeontol., 12, 493–519, https://doi.org/10.1080/14772019.2013.783883,
2014.
De Schepper, S., Head, M. J., and Louwye, S.: New dinoflagellate cyst and
incertae sedis taxa from the Pliocene of northern Belgium, southern North
Sea Basin, J. Paleontol., 78, 625–644, https://doi.org/10.1666/0022-3360(2004)078<0625:NDCAIS>2.0.CO;2, 2004.
De Schepper, S., Head, M. J., and Groeneveld, J.: North Atlantic Current
variability through marine isotope stage M2 (circa 3.3 Ma) during the
mid-Pliocene, Paleoceanogr. Paleocl., 24, PA4206,
https://doi.org/10.1029/2008PA001725, 2009.
De Schepper, S., Fischer, E. I., Groeneveld, J., Head, M. J., and
Matthiessen, J.: Deciphering the palaeoecology of Late Pliocene and Early
Pleistocene dinoflagellate cysts, Palaeogeogr. Palaeocl., 309, 17–32, https://doi.org/10.1016/j.palaeo.2011.04.020, 2011.
De Schepper, S., Groeneveld, J., Naafs, B. D. A., Van Renterghem, C., Hennissen, J., Head, M. J., Louwye, S., and Fabian, K.: Northern hemisphere glaciation during the globally warm early late Pliocene, PloS one, 8, 12, https://doi.org/10.1371/journal.pone.0081508, 2013.
De Schepper, S., Schreck, M., Beck, K. M., Matthiessen, J., Fahl, K., and
Mangerud, G.: Early Pliocene onset of modern Nordic Seas circulation related
to ocean gateway changes, Nat. Commun., 6, 8659, https://doi.org/10.1038/ncomms9659, 2015.
De Schepper, S., Beck, K. M., and Mangerud, G.: Late Neogene dinoflagellate
cyst and acritarch biostratigraphy for Ocean Drilling Program Hole 642B,
Norwegian Sea, Rev. Palaeobot. Palyno., 236, 12–32, https://doi.org/10.1016/j.revpalbo.2016.08.005, 2017.
de Vernal, A. and Mudie, P. J.: Pliocene and Pleistocene palynostratigraphy
at ODP Sites 646 and 647, eastern and southern Labrador Sea, in: Proceedings
of the Ocean Drilling Program, Scientific Results, Vol. 105, 401–422,
Ocean Drilling Program Texas A & M University, College Station,
Texas, https://doi.org/10.2973/odp.proc.sr.105.134.1989, 1989.
de Vernal, A. and Marret, F.: Organic-walled dinoflagellate cysts: tracers
of sea-surface conditions, in: Developments in marine geology, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier, 1, 371–408,
https://doi.org/10.1016/S1572-5480(07)01014-7, 2007.
de Vernal, A., Larouche, A., and Richard, P. J. H.: Evaluation of
palynomorph concentrations: do the aliquot and the marker-grain methods
yield comparable results?, Pollen et Spores, 29, 291–304, 1987.
de Vernal, A., Henry, M., and Bilodeau, G.: Techniques de préparation et
d'analyse en micropaléontologie, Les cahiers du GEOTOP, 3, 20–31, 1999.
de Vernal, A., Radi, T., Zaragosi, S., Van Nieuwenhove, N., Rochon,
A., Allan, E., Eynaud, F., Head, M., Limoges, A., Londeix, L., Marret,
F., Matthiessen, J., Penaud, A., Pospelova, V., Price, A., and Richerol, T.:
Distribution of common modern dinocyst taxa in surface sediment of the
Northern Hemisphere in relation to environmental parameters: the updated
n=1968 database, Mar. Micropaleontol., https://doi.org/10.1016/j.marmicro.2019.101796, online first, 2019.
Dybkjær, K. and Piasecki, S.: Neogene dinocyst zonation for the eastern
North Sea Basin, Denmark, Rev. Palaeobot. Palyno., 161,
1–29, https://doi.org/10.1016/j.revpalbo.2010.02.005, 2010.
Expedition 303 Scientists: Site U1307, in: Proc. IODP, 303/306, edited by: Channell, J. E. T., Kanamatsu, T.,
Sato, T., Stein, R., Alvarez Zarikian, C. A., Malone, M. J., and the
Expedition 303/306 Scientists, College Station, TX,
Integrated Ocean Drilling Program Management International, Inc.,
https://doi.org/10.2204/iodp.proc.303306.107.2006, 2006.
Harland, R.: Dinoflagellate biostratigraphy of Neogene and Quaternary
sediments at holes 400/400A in the Bay of Biscay (Deep Sea Drilling Project
Leg 48), Initial Rep. Deep Sea, 48, 531–545,
1979.
Harrison, J. C., Mayr, U., McNeil, D. H., Sweet, A. R., McIntyre, D. J.,
Eberle, J. J., Harington, C. R., Chalmers, J. A., Dam, G., and Nohr-Hansen, H.:
Correlation of Cenozoic sequences of the Canadian Arctic region and
Greenland; implications for the tectonic history of northern North
America, B. Can. Petrol. Geol., 47, 223–254, 1999.
Head, M. J.: Dinoflagellates, sporomorphs, and other palynomorphs from the
Upper Pliocene St. Erth Beds of Cornwall, southwestern England, Memoir (The
Paleontological Society), 31, 1–62, https://doi.org/10.1017/S0022336000061126, 1993.
Head, M. J.: Late Cenozoic dinoflagellates from the Royal Society borehole
at Ludham, Norfolk, eastern England, J. Paleontol., 70,
543–570, 1996.
Head, M. J.: Thermophilic dinoflagellate assemblages from the mid Pliocene
of eastern England, J. Paleontol., 71, 165–193, https://doi.org/10.1017/S0022336000039123, 1997.
Head, M. J. and Norris, G.: New species of dinoflagellate cysts and other
palynomorphs from the latest Miocene and Pliocene of DSDP Hole 603C, western
North Atlantic, J. Paleontol., 77, 1–15, https://doi.org/10.1666/0022-3360(2003)077<0001:NSODCA>2.0.CO;2, 2003.
Head, M. J., Norris, G., and Mudie, P. J.: Palynology and dinocyst
stratigraphy of the upper Miocene and lowermost Pliocene, ODP Leg 105, Site
646, Labrador Sea, in: Proceedings of the Ocean Drilling Program, Scientific
Results, Vol. 105, 423–451, Ocean Drilling Program Texas A & M
University, College Station, Texas, Palynology and dinocyst stratigraphy of
the upper Miocene and lowermost Pliocene, ODP, https://doi.org/10.2973/odp.proc.sr.105.135.1989, 1989.
Head, M. J., Riding, J. B., Eidvin, T., and Chadwick, R. A.: Palynological and foraminiferal biostratigraphy of (Upper Pliocene) Nordland Group mudstones at Sleipner, northern North Sea, Mar. Petrol. Geol., 21, 277–297, https://doi.org/10.1016/j.marpetgeo.2003.12.002, 2004.
Hennissen, J. A., Head, M. J., De Schepper, S., and Groeneveld, J.:
Palynological evidence for a southward shift of the North Atlantic Current
at ∼2.6 Ma during the intensification of late Cenozoic
Northern Hemisphere glaciation, Paleoceanogr.
Paleocl., 29, 564–580, https://doi.org/10.1002/2013PA002543, 2014.
Hennissen, J. A., Head, M. J., De Schepper, S., and Groeneveld, J.:
Increased seasonality during the intensification of Northern Hemisphere
glaciation at the Pliocene–Pleistocene boundary ∼2.6 Ma, Quaternary
Sci. Rev., 129, 321–332, https://doi.org/10.1016/j.quascirev.2015.10.010, 2015.
Hennissen, J. A., Head, M. J., De Schepper, S., and Groeneveld, J.:
Dinoflagellate cyst paleoecology during the Pliocene–Pleistocene climatic
transition in the North Atlantic, Palaeogeogr. Palaeocl., 470, 81–108, https://doi.org/10.1016/j.palaeo.2016.12.023, 2017.
Hilgen, F. J., Lourens, L. J., and Van Dam, J. A.: Chapter 29 – The Neogene
Period, in: The Geologic Time Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Boston, 923–978, 2012.
Knies, J., Matthiessen, J., Vogt, C., Laberg, J. S., Hjelstuen, B. O., Smelror, M., Larsen, E., Andreassen, K., Eidvin, T., and Vorren, T. O.: The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy, Quaternary Sci. Rev., 28, 812–829, https://doi.org/10.1016/j.quascirev.2008.12.002, 2009.
Knüttel, S., Russell Jr., M. D., and Firth, J. V.: Neogene calcareous
nannofossils from ODP Leg 105: implications for Pleistocene
paleoceanographic trends, in: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 105, edited by: Srivastava, S. P., Arthur, M. A., Clement, B., Aksu, A., Baldauf, J., Bohrmann, G., Bush, W., Cederberg, T., Cremer, M., Dadey, K., de Vernal, A., Firth, J., Hall, F., Head, M. J., Hiscott, R., Jarrad, R., Kaminski, M. A., Lazarus, D., Monjanel, A.-L., Bjorslev, O., Stein, R., Thiebault, F., Zachos, J., and Zimmerman, H., College Station, TX, Ocean Drilling Program, 245–262, https://doi.org/10.2973/odp.proc.sr.105.130.1989, 1989.
Limoges, A., Londeix, L., and de Vernal, A.: Organic-walled dinoflagellate
cyst distribution in the Gulf of Mexico, Mar. Micropaleontol., 102,
51–68, https://doi.org/10.1016/j.marmicro.2013.06.002, 2013.
Limoges, A., de Vernal, A., and Van Nieuwenhove, N.: Long-term hydrological
changes in the northeastern Gulf of Mexico (ODP-625B) during the Holocene
and late Pleistocene inferred from organic-walled dinoflagellate cysts,
Palaeogeogr. Palaeocl., 414, 178–191, 2014.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20,
PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Louwye, S., Head, M. J., and de Schepper, S.: Dinoflagellate cyst
stratigraphy and palaeoecology of the Pliocene in northern Belgium, southern
North Sea Basin, Geol. Mag., 141, 353–378, https://doi.org/10.1017/S0016756804009136, 2004.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton
zonation, in: Proc. II Planktonic Conference, Roma 1970, Roma, Tecnoscienza,
2, 739–785, 1971.
Matthews, J.: The assessment of a method for the determ
ination of absolute
pollen frequencies, New Phytol., 68, 161–166, 1969.
Matthiessen, J., Knies, J., Vogt, C., and Stein, R.: Pliocene palaeoceanography of the Arctic Ocean and subarctic seas, Philos. T. R. Soc. A, 367, 21–48, https://doi.org/10.1098/rsta.2008.0203, 2009.
Matthiessen, J., Schreck, M., De Schepper, S., Zorzi, C., and de Vernal, A.:
Quaternary dinoflagellate cysts in the Arctic Ocean: Potential and
limitations for stratigraphy and paleoenvironmental reconstructions,
Quaternary Sci. Rev., 192, 1–26, https://doi.org/10.1016/j.quascirev.2017.12.020,
2018.
Mertens, K. N., Verhoeven, K., Verleye, T., Louwye, S., Amorim, A., Ribeiro,
S., Deaf, A. S., Harding, I. C., De Schepper, S., Gonzalez, C., Kodrans-Nsiah,
M., de Vernal, A., Henry, M., Radi, T., Dybkjær, K., Poulsen, N. E.,
Feist-Burkhardt, S., Chitolie, J., Heilmann-Clausen, C., Londeix, L., Turon,
J.-L., Marret, F., Matthiessen, J., McCarthy, F. M. G., Prasad, V., Pospelova,
V., Kyffin Highes, J. E., Riding, J. B., Rochon, A., Sangiorgo, F., Welters,
N., Sinclair, N., Thun, C., Soliman, A., Van Nieuwenhove, N., Vink,
A., and Young, M.: Determining the absolute abundance of
dinoflagellate cysts in recent marine sediments: the Lycopodium marker-grain
method put to the test, Rev. Palaeobot. Palyno., 157,
238–252, https://doi.org/10.1016/j.revpalbo.2009.05.004, 2009.
Mudie, P. J.: Palynology and dinoflagellate biostratigraphy of
Deep-Sea Drilling Project Leg 94, Sites 607 and 611, North-Atlantic Ocean,
Initial Rep. Deep Sea, 94, 785,
https://doi.org/10.2973/dsdp.proc.94.118.1987, 1987.
Mudie, P. J.: Palynology and dinocyst biostratigraphy of the late Miocene to
Pleistocene, Norwegian Sea: ODP Leg 104, Sites 642 to 644, in: Proceedings of
the Ocean Drilling Program, Scientific Results, 104, 587–610, https://doi.org/10.2973/odp.proc.sr.104.174.1989, 1989.
Munsterman, D. and Kerstholt, S.: Sodium polytungstate, a new non-toxic
alternative to bromoform in heavy liquid separation, Rev. Palaeobot.
Palyno., 91, 417–422, https://doi.org/10.1016/0034-6667(95)00093-3, 1996.
Murphy, M. A. and Salvador, A.: International Stratigraphic Guide-an
abridged version, Episodes, 22, 255–271, 1999.
Nooteboom, P. D., Bijn, P. K., van Sebille, I., von der Heydt, A. S., and
Dijkstra, H. A.: Transport bias by ocean currents in sedimentary
microplankton assemblages: implications for paleoceanographic
reconstructions, Paleoceanogr. Paleocl., 34, 1178–1194, https://doi.org/10.1029/2019PA003606, 2019.
Price, A. M., Baustian, M. M., Turner, R. E., Rabalais, N. N., and Chmura, G. L.:
Melitasphaeridium choanophorum – a living fossil dinoflagellate cyst in the
Gulf of Mexico, Palynology, 41, 351–358, 2017.
Rochon, A., Vernal, A. D., Turon, J. L., Matthießen, J., and Head, M.
J.: Distribution of recent dinoflagellate cysts in surface sediments from
the North Atlantic Ocean and adjacent seas in relation to sea-surface
parameters, American Association of Stratigraphic Palynologists Contribution
Series, 35, 1–146, 1999.
Sarnthein, M., Bartoli, G., Prange, M., Schmittner, A., Schneider, B., Weinelt, M., Andersen, N., and Garbe-Schönberg, D.: Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates, Clim. Past, 5, 269–283, https://doi.org/10.5194/cp-5-269-2009, 2009.
Schreck, M., Matthiessen, J., and Head, M. J.: A magnetostratigraphic
calibration of Middle Miocene through Pliocene dinoflagellate cyst and
acritarch events in the Iceland Sea (Ocean Drilling Program Hole 907A),
Rev. Palaeobot. Palyno., 187, 66–94, https://doi.org/10.1016/j.revpalbo.2012.08.006, 2012.
Schreck, M., Meheust, M., Stein, R., and Matthiessen, J.: Response of marine
palynomorphs to Neogene climate cooling in the Iceland Sea (ODP Hole
907A), Mar. Micropaleontol., 101, 49–67, 2013.
Schreck, M., Nam, S. I., Clotten, C., Fahl, K., De Schepper, S., Forwick,
M., and Matthiessen, J.: Neogene dinoflagellate cysts and acritarchs from
the high northern latitudes and their relation to sea surface
temperature, Mar. Micropaleontol., 136, 51–65, https://doi.org/10.1016/j.marmicro.2017.09.003, 2017.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: 19 February 2020), 2018.
Smelror, M.: Pliocene–Pleistocene and redeposited dinoflagellate cysts from the western Svalbard Margin (Site 986): biostratigraphy, paleoenvironments and sediment provenance, in: Proceedings of the Ocean Drilling Program, scientific results, 162, 83–97, 1999.
Stockmarr, J.: Tablets with spores used in absolute pollen analysis, Pollen
et Spores, 13, 615–621, 1971.
Thiede, J., Jessen, C., Knutz, P., Kuijpers, A., Mikkelsen, N.,
Nørgaard-Pedersen, N., and Spielhagen, R. F.: Millions of years of
Greenland Ice Sheet history recorded in ocean
sediments, Polarforschung, 80, 141–159, 2011.
Verhoeven, K. and Louwye, S.: Palaeoenvironmental reconstruction and
biostratigraphy with marine palynomorphs of the Plio–Pleistocene in
Tjörnes, Northern Iceland, Palaeogeogr. Palaeocl., 376, 224–243, https://doi.org/10.1016/j.palaeo.2013.03.002, 2013.
Verhoeven, K., Louwye, S., Paez-Reyes, M., Mertens, K. N., and Vercauteren, D.: New acritarchs from the late Cenozoic of the southern North Sea Basin and the North Atlantic realm, Palynology, 38, 38–50, https://doi.org/10.1080/01916122.2013.793626, 2014.
Versteegh, G. J.: The onset of major Northern Hemisphere glaciations and
their impact on dinoflagellate cysts and acritarchs from the Singa section,
Calabria (southern Italy) and DSDP Holes 607/607A (North Atlantic), Mar.
Micropaleontol., 30, 319–343, https://doi.org/10.1016/S0377-8398(96)00052-7, 1997.
Versteegh, G. J. M. and Zevenboom, D.: New genera and species of
dinoflagellate cysts from the Mediterranean Neogene, Rev. Palaeobot. Palyno., 85, 213–229, https://doi.org/10.1016/0034-6667(94)00127-6, 1995.
Wall, D. and Dale, B.: “Living fossils” in western Atlantic
plankton, Nature, 211, 1025–1026, 1996.
Warny, S., Askin, R. A., Hannah, M. J., Mohr, B. A. R., Raine, J. I., Harwood,
D. M., Florindo, F., and SMS Science Team: Palynomorphs from a sediment core
reveal a sudden remarkably warm Antarctica during the middle
Miocene, Geology, 37, 955–958, https://doi.org/10.1130/G30139A.1,
2009.
Weaver, A. J., Bitz, C. M., Fanning, A. F., and Holland, M. M.: Thermohaline
circulation: High-latitude phenomena and the difference between the Pacific
and Atlantic, Annu. Rev. Earth Pl. Sc., 27, 231–285,
https://doi.org/10.1146/annurev.earth.27.1.231, 1999.
Weaver, P. E. and Clement, B.: Magnetobiostratigraphy of planktonic
foraminiferal datums: Deep Sea Drilling Project Leg 94, North Atlantic, in: Initial Reports of the Deep Sea
Drilling Project, edited by: Ruddiman, W. F., Kidd, R. B., Baldauf, J. G., Clement, B. M., Dolan, J. F., Eggers, M. R., Hill, P. R., Keigwin Jr., L. D., Mitchell, M., Philipps, I., Robinson, F., Salehipour, S. A., Takayama, T., Thomas, E., Unsold, G., and Weaver, P. P. E., U.S. Government Printing Office, Washington, D.C., 94, 815–829, 1987.
Williams, G. L. and Bujak, J. P.: Cenozoic palynostratigraphy of offshore
eastern Canada, American Association of Stratigraphic Palynologists,
Contribution Series, 5, 14–47, 1977.
Williams, G. L., Fensome, R. A., and MacRae, R. A.: DINOFLAJ3. American
Association of Stratigraphic Palynologists, Data Series no. 2, available at:
http://dinoflaj.smu.ca/dinoflaj3 (last access: 19 February 2020), 2017.
Yashayaev, I.: Hydrographic changes in the Labrador Sea, 1960–2005,
Prog. Oceanogr., 73, 242–276, https://doi.org/10.1016/j.pocean.2007.04.015, 2007.
Yashayaev, I., Bersch, M., and van Aken, H. M.: Spreading of the Labrador
Sea Water to the Irminger and Iceland basins, Geophys. Res.
Lett., 34, L10602, https://doi.org/10.1029/2006GL028999, 2007.
Zorzi, C.: Plio-Pleistocene marine palynomorph biostratigraphy of the subartic Pacific, PhD thesis, Université du Québec à Montréal, QC, Canada, 2019.
Zorzi, C., Head, M. J., Matthiessen, J., and de Vernal, A.: Impagidinium
detroitense and I.? diaphanum: Two new dinoflagellate cyst species from the
Pliocene of the North Pacific Ocean, and their biostratigraphic
significance, Rev. Palaeobot. Palynol., 264, 24–37, https://doi.org/10.1016/j.revpalbo.2019.02.005, 2019.
Short summary
We used organic-walled microfossils to better define the Plio–Pleistocene transition (2.56 Ma) that is associated with the intensification of the Northern Hemisphere glaciation. The disappearance of species around 2.75 Ma reflects an ecological response accompanying the Greenland ice sheet growth.
A strong regionalism marks the Labrador Sea and suggests cooler conditions than elsewhere in the North Atlantic, although our zone boundaries are contemporaneous with the eastern North Atlantic.
We used organic-walled microfossils to better define the Plio–Pleistocene transition (2.56 Ma)...