Articles | Volume 40, issue 1
https://doi.org/10.5194/jm-40-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-40-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Romana Melis
Dipartimento di Matematica e Geoscienze, Università di Trieste,
Via E. Weiss 2, 34127 Trieste, Italy
Lucilla Capotondi
CORRESPONDING AUTHOR
Consiglio Nazionale delle Ricerche–Istituto di Scienze Marine
(CNR-ISMAR), Via Gobetti 101, 40129 Bologna, Italy
Fiorenza Torricella
Dipartimento di Scienze della Terra, Università di Pisa, Via
Santa Maria 53, 56126 Pisa, Italy
Patrizia Ferretti
Dipartimento di Scienze Ambientali, Informatica e Statistica,
Università Ca' Foscari, Via Torino 155, Mestre, 30172 Venice, Italy
Andrea Geniram
Dipartimento di Matematica e Geoscienze, Università di Trieste,
Via E. Weiss 2, 34127 Trieste, Italy
Jong Kuk Hong
Korea Polar Research Institute, Incheon, 21990, South Korea
Gerhard Kuhn
Alfred-Wegener-Institut Helmholtz Zentrum für Polar- und
Meeresforschung, Am Alten Hafen 26, 27568 Bremerhaven, Germany
Boo-Keun Khim
Department of Oceanography, Pusan National University, Busan,
46241, South Korea
Sookwan Kim
Korea Polar Research Institute, Incheon, 21990, South Korea
Elisa Malinverno
Dipartimento di Scienze dell'Ambiente e della Terra, Università
di Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
Kyu Cheul Yoo
Korea Polar Research Institute, Incheon, 21990, South Korea
Ester Colizza
Dipartimento di Matematica e Geoscienze, Università di Trieste,
Via E. Weiss 2, 34127 Trieste, Italy
Related authors
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Aymeric Pierre Marie Servettaz, Yuta Isaji, Chisato Yoshikawa, Yanghee Jang, Boo-Keun Khim, Yeongjun Ryu, Daniel M. Sigman, Nanako O. Ogawa, Francisco J. Jiménez-Espejo, and Naohiko Ohkouchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3687, https://doi.org/10.5194/egusphere-2024-3687, 2024
Short summary
Short summary
Phytoplankton blooms occur after sea ice retreats in the Southern Ocean. In this study we investigate the influence of seasonal cycle of sea ice concentration on nitrate depletion, testing the hypothesis that meltwater release stabilizes the water column and favors nutrient utilization. We find that, at a regional scale, nitrate depletion and vertical mixing are weakly correlated with sea ice cycle. Nitrate depletion is rather linked to other oceanographic processes controlling mixing depth.
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Revised manuscript under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Jisun Shin, Dae-Won Kim, So-Hyun Kim, Gi Seop Lee, Boo-Keun Khim, and Young-Heon Jo
Earth Syst. Sci. Data, 16, 3193–3211, https://doi.org/10.5194/essd-16-3193-2024, https://doi.org/10.5194/essd-16-3193-2024, 2024
Short summary
Short summary
We overcame the limitations of satellite and reanalysis sea surface salinity (SSS) datasets and produced a gap-free gridded SSS product with reasonable accuracy and a spatial resolution of 1 km using a machine learning model. Our data enabled the recognition of SSS distribution and movement patterns of the Changjiang diluted water (CDW) front in the East China Sea (ECS) during summer. These results will further advance our understanding and monitoring of long-term SSS variations in the ECS.
Chinmay Dash, Yeong Bae Seong, Ajay Kumar Singh, Min Kyung Lee, Jae Il Lee, Kyu-Cheul Yoo, Hyun Hee Rhee, and Byung Yong Yu
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-38, https://doi.org/10.5194/cp-2024-38, 2024
Revised manuscript not accepted
Short summary
Short summary
This study explores sediment core RS15-LC47 from the Ross Sea over the past 800,000 years, examining changes in sea-ice dynamics and deposition environments. It integrates various data to reveal shifts related to Circumpolar Deep Water influx and Antarctic currents, particularly during significant climate transitions. Results highlight potential West Antarctic Ice Sheet collapses in warmer periods, offering new insights into the area's paleoclimate and sedimentary processes.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Nuria Bachiller-Jareno, Harold Lovell, Nele Manon Vollmar, and Elisa Malinverno
EGUsphere, https://doi.org/10.5194/egusphere-2023-2801, https://doi.org/10.5194/egusphere-2023-2801, 2023
Short summary
Short summary
In this manuscript we combine micropalaeontology and remote-sensing. We compare the calcium carbonate produced by tiny marine algae called coccolithophores to satellite-derived particulate organic carbon in the Southern Ocean. They show good agreement north of the polar front, but hugely differ south of it. We argue that those highly reflective values could be due to small opal particles and we highlight the need to improve satellite algorithms in this unexplored part of the ocean.
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Helen Eri Amsler, Lena Mareike Thöle, Ingrid Stimac, Walter Geibert, Minoru Ikehara, Gerhard Kuhn, Oliver Esper, and Samuel Laurent Jaccard
Clim. Past, 18, 1797–1813, https://doi.org/10.5194/cp-18-1797-2022, https://doi.org/10.5194/cp-18-1797-2022, 2022
Short summary
Short summary
We present sedimentary redox-sensitive trace metal records from five sediment cores retrieved from the SW Indian Ocean. These records are indicative of oxygen-depleted conditions during cold periods and enhanced oxygenation during interstadials. Our results thus suggest that deep-ocean oxygenation changes were mainly controlled by ocean ventilation and that a generally more sluggish circulation contributed to sequestering remineralized carbon away from the atmosphere during glacial periods.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Erin L. McClymont, Michael J. Bentley, Dominic A. Hodgson, Charlotte L. Spencer-Jones, Thomas Wardley, Martin D. West, Ian W. Croudace, Sonja Berg, Darren R. Gröcke, Gerhard Kuhn, Stewart S. R. Jamieson, Louise Sime, and Richard A. Phillips
Clim. Past, 18, 381–403, https://doi.org/10.5194/cp-18-381-2022, https://doi.org/10.5194/cp-18-381-2022, 2022
Short summary
Short summary
Sea ice is important for our climate system and for the unique ecosystems it supports. We present a novel way to understand past Antarctic sea-ice ecosystems: using the regurgitated stomach contents of snow petrels, which nest above the ice sheet but feed in the sea ice. During a time when sea ice was more extensive than today (24 000–30 000 years ago), we show that snow petrel diet had varying contributions of fish and krill, which we interpret to show changing sea-ice distribution.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Joost de Vries, Fanny Monteiro, Glen Wheeler, Alex Poulton, Jelena Godrijan, Federica Cerino, Elisa Malinverno, Gerald Langer, and Colin Brownlee
Biogeosciences, 18, 1161–1184, https://doi.org/10.5194/bg-18-1161-2021, https://doi.org/10.5194/bg-18-1161-2021, 2021
Short summary
Short summary
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We compile a global dataset of marine coccolithophore abundance to investigate the environmental characteristics of each life cycle phase. We find that both phases contribute to coccolithophore abundance and that their different environmental preference increases coccolithophore habitat. Accounting for the life cycle of coccolithophores is thus crucial for understanding their ecology and biogeochemical impact.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Joo-Eun Yoon, Kyu-Cheul Yoo, Alison M. Macdonald, Ho-Il Yoon, Ki-Tae Park, Eun Jin Yang, Hyun-Cheol Kim, Jae Il Lee, Min Kyung Lee, Jinyoung Jung, Jisoo Park, Jiyoung Lee, Soyeon Kim, Seong-Su Kim, Kitae Kim, and Il-Nam Kim
Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, https://doi.org/10.5194/bg-15-5847-2018, 2018
Short summary
Short summary
Our paper provides an intensive overview of the artificial ocean iron fertilization (aOIF) experiments conducted over the last 25 years to test Martin’s hypothesis, discusses aOIF-related important unanswered open questions, suggests considerations for the design of future aOIF experiments to maximize their effectiveness, and introduces design guidelines for a future Korean Iron Fertilization Experiment in the Southern Ocean.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Liv Heinecke, Steffen Mischke, Karsten Adler, Anja Barth, Boris K. Biskaborn, Birgit Plessen, Ingmar Nitze, Gerhard Kuhn, Ilhomjon Rajabov, and Ulrike Herzschuh
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-34, https://doi.org/10.5194/cp-2016-34, 2016
Revised manuscript not accepted
Short summary
Short summary
The climate history of the Pamir Mountains (Tajikistan) during the last ~29 kyr was investigated using sediments from Lake Karakul as environmental archive. The inferred lake level was highest from the Late Glacial to the early Holocene and lake changes were mainly coupled to climate change. We conclude that the joint influence of Westerlies and Indian Monsoon during the early Holocene caused comparatively moist conditions, while dominating Westerlies yielded dry conditions since 6.7 cal kyr BP.
C. Lavoie, E. W. Domack, E. C. Pettit, T. A. Scambos, R. D. Larter, H.-W. Schenke, K. C. Yoo, J. Gutt, J. Wellner, M. Canals, J. B. Anderson, and D. Amblas
The Cryosphere, 9, 613–629, https://doi.org/10.5194/tc-9-613-2015, https://doi.org/10.5194/tc-9-613-2015, 2015
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
D. Sprenk, M. E. Weber, G. Kuhn, V. Wennrich, T. Hartmann, and K. Seelos
Clim. Past, 10, 1239–1251, https://doi.org/10.5194/cp-10-1239-2014, https://doi.org/10.5194/cp-10-1239-2014, 2014
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Palaeoceanography and palaeoenvironment
Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to sea surface temperature
Transient micropaleontological turnover across a late Eocene (Priabonian) carbon and oxygen isotope shift on Blake Nose (NW Atlantic)
Cambrian Furongian–Middle Ordovician conodonts in the northeastern margin of the South China Block (Chuzhou, Anhui province) and their paleogeographic implications
Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
South Georgia marine productivity over the past 15 ka and implications for glacial evolution
Paleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association
Late Holocene pteropod distribution across the base of the south-eastern Mediterranean margin: the importance of the > 63 µm fraction
Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Bo Hu, Shuangying Li, Cheng Cheng, Min Li, Wei Xie, and Xing Wei
J. Micropalaeontol., 43, 283–302, https://doi.org/10.5194/jm-43-283-2024, https://doi.org/10.5194/jm-43-283-2024, 2024
Short summary
Short summary
This study conducted systematic fieldwork and sample collection for the Cambrian Furongian–Middle Ordovician strata in the northeastern margin of the South China Block to establish a conodont biostratigraphic sequence and discussed the influence of seawater depth, climate, water temperature, and ocean currents on the biogeographic zonation of conodonts and the paleogeographic implications for some conodont species.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Giulia Barbieri and Stefano Claudio Vaiani
J. Micropalaeontol., 37, 203–230, https://doi.org/10.5194/jm-37-203-2018, https://doi.org/10.5194/jm-37-203-2018, 2018
Short summary
Short summary
The challenge between benthic foraminifera and ostracoda is open: which is the most reliable microfossil group for precise palaeoenvironmental reconstructions? Results from a lagoonal succession of the Romagna coast (Italy) reveal that the winner is ostracoda, due to their higher abundance, higher differentiation, and precise relationships between species and ecological parameters. Nevertheless, palaeoenvironmental stress and additional details are provided by benthic foraminifera.
Cited articles
Allen, C. S.: Proxy development: a new facet of morphological diversity in the marine diatom Eucampia antarctica (Castracane) Mangin, J. Micropalaeontol., 33, 131–142, https://doi.org/10.1144/jmpaleo2013-025, 2014.
Alley, R. B., Andrews, J. T., Brigham-Grette, J., Clarke, G. K. C., Cuffey,
K. M., Fitzpatrick, J. J., Funder, S., Marshall, S. J., Miller, G. H.,
Mitrovica, J. X., Muhs, D. R., Otto-Bliesner, B. L., Polyak, L., and White, J.
W. C.: History of the Greenland Ice Sheet: Paleoclimatic insights,
Quaternary Sci. Rev., 29, 1728–1756, https://doi.org/10.1016/j.quascirev.2010.02.007, 2010.
Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S., and Mosola, A.
B.: The Antarctic ice sheet during the last Glacial Maximum and its
subsequent retreat history: a review, Quaternary Sci. Rev., 21, 49–70,
https://doi.org/10.1016/S0277-3791(01)00083-X, 2002.
Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L.,
McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson, M., and
Stone, J. O.: Ross sea paleo-ice sheet drainage and deglacial history during
and since the LGM, Quaternary Sci. Rev., 100, 31–54, 2014.
Anderson, J. B., Simkins, L. M., Bart, P. J., De Santis, L., Halberstadt, A.
R. W., Olivo, E., and Greenwood, S. L.: Seismic and geomorphic records of
Antarctic Ice Sheet evolution in the Ross Sea and controlling factors in its
behaviour, in: Glaciated Margins: The Sedimentary and Geophysical Archive, edited by: Le Heron, D. P., Hogan, K. A., Phillips, E. R.,
Huuse, M., Busfield, M. E., and Graham, A. G. C., Geological Society of London Special Publication, London, UK, https://doi.org/10.1144/SP475.5, 2018.
Andrews, J. T., Domack, E. W., Cunningham, W. L., Leventer, A., Licht, K.
J., Jull, A. J. T., DeMaster, D. J., and Jennings, A. E.: Problems and
possible solutions concerning radiocarbon dating of surface marine
sediments, Ross Sea, Antarct. Quat. Res., 52, 206–216, https://doi.org/10.1006/qres.1999.2047, 1999.
Armand, L. K.: The use of diatom transfer functions in estimating
sea-surface temperature and sea-ice in cores from the southeast Indian
Ocean, PhD thesis, Australian National University, Canberra, Australia,
537 pp., 1997.
Armand, L. K., Crosta, X., Romero, O., and Pichon, J.-J.: The biogeography
of major diatom taxa in Southern Ocean sediments. 1. Ice-related species,
Palaeogeogr. Palaeocl., 223, 93–126, https://doi.org/10.1016/j.palaeo.2005.02.015, 2005.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F., Buys, G., Goleby,
B., Rebesco, M., Bohoyo, F., Hong, J. K., Black, J., Greku, R., Udintsev,
G., Barrios, F., Reynoso-Peralta, W., Morishita, T., and Wigley, R.: The
International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 –
A new bathymetric compilation covering circum-Antarctic waters, Geophys.
Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413,
2013.
Barbara, L., Crosta, X., Leventer, A., Schmidt, S., Etourneau, J., Domack,
E., and Massé, G.: Environmental responses of the Northeast Antarctic
Peninsula to the Holocene climate variability, Paleoceanography, 31,
131–147, https://doi.org/10.1002/2015PA002785, 2016.
Bart, P. J., Coquereau, L., Warny, S., and Majewski, W.: In situ
foraminifera in grounding zone diamict: a working hypothesis, Antarct. Sci.,
28, 313–321, https://doi.org/10.1017/S0954102016000055, 2016.
Bart, P. J., DeCesare, M., Rosenheim, B. E., Majewski, W., and McGlannan, A.: A centuries‐long delay between a paleo‐ice‐shelf collapse and grounding‐line retreat in the Whales Deep Basin, eastern Ross Sea, Antarctica, Sci. Rep., 8, 12392, https://doi.org/10.1038/s41598-018-29911-8, 2018.
Bentley, M. J., Cofaigh, C. Ó., Anderson, J. B., Conway, H., Davies, B.,
Graham, A. G. C., Hillebrand, C.-D., Hodgson, D. A., Jamieson, S. S. R.,
Larter, R. D., Mackintosh, A., Smith, J. A., Verleyen, E., Ackert, R. P.,
Bart, P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E. A., Crosta,
X., Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W.,
Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K.,
Golledge, N. R., Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L.,
Hall, K., Hedding, D. W., Hein, A. S., Hocking, E. P., Jakobsson, M.,
Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P., Kristoffersen, Y.,
Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S.
J., Massé, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H.,
Mulvaney, R., Nel, W., Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts,
S. J., Saunders, K. M., Selkirk, P. M., Simms, A. R., Spiegel, C.,
Stolldorf, T. D., Sugden, D. E., van der Putten, N., van Ommen, T.,
Verfaillie, D., Vyverman, W., Wagner, B., White, D. A., Witus, A. E., and
Zwartz, D., the RAISED consortium: A community-based geological
reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial
Maximum, Quaternary Sci. Rev., 100, 1–9, https://doi.org/10.1016/j.quascirev.2014.06.025, 2014.
Bergami, C., Capotondi, L., Sprovieri, M., Tiepolo, M., Langone, L., Giglio,
F., and Ravaioli, M.: Mg Ca ratios in the planktonic foraminifer
Neogloboquadrina pachyderma (sinistral) from plankton tows in the Ross Sea and the Pacific sector of
the Southern Ocean (Antarctica): comparison of different methodological
approaches, Chem. Ecol., 24, 39–46, https://doi.org/10.1080/02757540801963303, 2008.
Bergami, C., Capotondi, L., Langone, L., Giglio, F., and Ravaioli, M.:
Distribution of living planktonic foraminifera in the Ross Sea and the
Pacific sector of the Southern Ocean (Antarctica), Mar. Micropaleontol., 73,
37–48, https://doi.org/10.1016/j.marmicro.2009.06.007, 2009.
Blaauw, M.: Methods and code for “classical” age-modelling of radiocarbon
sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Bonaccorsi, R., Quaia, T., Burckle, L. H., Anderson, R. F., Melis, R., and
Brambati, A.: C-14 age control of pre- and post-LGM events using N. pachyderma preserved
in deep-sea sediments (Ross Sea, Antarctica), in: Proceedings of the 10th ISAES X, USGS, Santa Barbara, USA, 26 September–1 October 2007, 2007–1047,
https://doi.org/10.3133/of2007-1047, 2007.
Borchers, A., Dietze, E., Kuhn, G., Esper, O., Voigt, I., Hartmann, K., and
Diekmann, B.: Holocene ice dynamics and bottom-water formation associated
with Cape Darnley polynya activity recorded in Burton Basin, East
Antarctica, Mar. Geophys. Res., 37, 49–70, https://doi.org/10.1007/s11001-015-9254-z, 2016
Brambati, A., Melis, R., Quaia, T., and Salvi, G.: Late Quaternary climatic
changes in the Ross Sea area, Antarctica, in: Proceedings of the 8th International Symposium on Antarctic
Earth Sciences, Wellington, New Zealand, 5–9 July 1999,
359–364, 2002.
Budillon, G., Castagno, P., Aliani, S., Spezie, G., and Padman, L.:
Thermohaline variability and Antarctic bottom water formation at the Ross
Sea shelf break, Deep-Sea Res., 58, 1002–1018, https://doi.org/10.1016/j.dsr.2011.07.002, 2011
Buffen, A., Leventer, A., Rubin, A., and Hutchins, T.: Diatom assemblages in
surface sediments of the northwestern Weddell Sea, Antarctic Peninsula, Mar.
Micropaleontol., 62, 7–30, https://doi.org/10.1016/j.marmicro.2006.07.002, 2007.
Burckle, L. H.: Ecology and paleoecology of the marine diatom Eucampia antarctica (Castr.)
Mangin, Mar. Micropaleontol., 9, 77–86, https://doi.org/10.1016/0377-8398(84)90024-0, 1984.
Campagne, P., Crosta, X., Schmidt, S., Noëlle Houssais, M., Ther, O., and Massé, G.: Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica, Biogeosciences, 13, 4205–4218, https://doi.org/10.5194/bg-13-4205-2016, 2016.
Capotondi, L., Bonomo, S., Budillon, G., Giordano, P., and Langone, L.:
Living and dead benthic foraminiferal distribution in two areas of the Ross
Sea (Antarctica), Rend. Lincei-Sci. Fis., 31, 1037–1053, https://doi.org/10.1007/s12210-020-00949-z, 2020.
Castagno, P., Capozzi, V., DiTullio, G. R., Falco, P., Fusco, G., Rintoul,
S. R., Spezie, G., and Budillon, G.: Rebound of shelf water salinity in the
Ross Sea, Nat. Commun., 10, 5441, https://doi.org/10.1038/s41467-019-13083-8, 2019.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J.,
Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W.,
and McCabe, A. M.: The Last Glacial Maximum, Science, 325,
710–714, https://doi.org/10.1126/science.1172873, 2009.
Colleoni, F., De Santis, L., Montoli, E., Olivo, E., Sorlien, C. C., Bart,
P. J., Gasson, E. G. W., Bergamasco, A., Sauli, C., Wardell, N., and Prato,
S.: Past continental shelf evolution increased Antarctic ice sheet
sensitivity to climatic conditions, Sci. Rep.-UK, 8, 11323,
https://doi.org/10.1038/s41598-018-29718-7, 2018.
Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the
ocean and the marine atmosphere, in: Stable Isotopes in Oceanographic
Studies and Paleotemperatures, edited by: Tongiorgi E., Laboratorio di
Geologia Nucleare, Pisa, Italy, 9–130, 1965.
Crosta, X. and Koç, N.: Chapter Eight Diatoms: from micropaleontology to
isotope geochemistry, in: Development in Marine Geology, 1, Proxies in late
Cenozoic palaeoceanography, edited by: Hillaire-Marcel, C. and De Vernal,
A., Elsevier, Amsterdam, The Nederlands, 327–369, https://doi.org/10.1016/S1572-5480(07)01013-5, 2007.
Crosta, X., Pichon, J.-J., and Labracherie, M.: Distribution of Chaetoceros
resting spores in modern peri-Antarctic sediments, Mar. Micropaleontol., 29,
283–299, https://doi.org/10.1016/S0377-8398(96)00033-3, 1997.
Crosta, X., Romero, O., Armand, L. K., and Pichon, J. J.: The biogeography
of the major diatom taxa in Southern Ocean sediments: 2. Open ocean related
species, Palaeogeogr. Palaeocl., 223, 66–92, https://doi.org/10.1016/j.palaeo.2005.03.028, 2005.
Crosta, X., Denis, D., and Ther, O.: Sea ice seasonality during the Holocene,
Adélie Land, East Antarctica, Mar. Micropaleontol., 66, 222–232,
https://doi.org/10.1016/j.marmicro.2007.10.001, 2008.
Cunningham, W. L., Leventer, A., Andrews, J. T., Jennings, A. E., and Licht,
K. J.: Late Pleistocene-Holocene marine conditions in the Ross Sea,
Antarctica: evidence from the diatom record, Holocene, 9, 129–139, 1999.
DeJong, H. B., Dunbar, R. B., Mucciarone, D., and Koweek, D. A.: Carbonate saturation state of surface waters in the Ross Sea and Southern Ocean: controls and implications for the onset of aragonite undersaturation, Biogeosciences, 12, 6881–6896, https://doi.org/10.5194/bg-12-6881-2015, 2015.
Dieckmann, G. S., Spindler, M., Lange, M. A., Ackley, S. F., and Eicken, H.:
Antarctic sea ice: a habitat for the foraminifer Neogloboquadrina pachyderma, J. Foram. Res., 21,
182–189, https://doi.org/10.2113/gsjfr.21.2.182, 1991.
Dinniman, M. S., Klinck, J. M., and Smith Jr., W. O.: A model study of
Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea
continental shelves, Deep-Sea Res., 58, 1508–1523, https://doi.org/10.1016/j.dsr2.2010.11.013, 2011.
Domack, E. W., Jacobson, E. A., Shipp, S., and Anderson, J. B.: Late
Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the
Ross Sea: Part 2 – sedimentologic and stratigraphic signature, Geol. Soc.
Am. Bull., 111, 1517–1536, https://doi.org/10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2, 1999.
Erez, J.: The influence of differential production and
dissolution on the stable isotope composition of planktonic foraminifera,
PhD thesis, MIT-WHOI, Woods Hole, USA, 119 pp.,
1978.
Esper, O. and Gersonde, R.: Quaternary surface water temperature
estimations: New diatom transfer functions for the Southern Ocean,
Palaeogeogr. Palaeocl., 414, 1–19, https://doi.org/10.1016/j.palaeo.2014.08.008, 2014.
Esper, O., Gersonde, R., and Kadagies, N.: Diatom distribution in
southeastern Pacific surface sediments and their relationship to modern
environmental variables, Palaeogeogr. Palaeocl., 287, 1–27,
https://doi.org/10.1016/j.palaeo.2009.12.006, 2010.
Etourneau, J., Collins, L. G., Willmott, V., Kim, J.-H., Barbara, L., Leventer, A., Schouten, S., Sinninghe Damsté, J. S., Bianchini, A., Klein, V., Crosta, X., and Massé, G.: Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability, Clim. Past, 9, 1431–1446, https://doi.org/10.5194/cp-9-1431-2013, 2013.
Farmer, G. L., Licht, K., Swope, R. J., and Andrews, J. T.: Isotopic
constraints on the provenance of fine-grained sediment in LGM tills from the
Ross Embayment, Antarctica, Earth Planet. Sc. Lett., 249, 90–107,
https://doi.org/10.1016/j.epsl.2006.06.044, 2006.
Folk, R. L. and Ward, W. C.: Brazos River bar: a study in the significance
of grain size parameters, J. Sediment. Petrol., 27, 3–26, 1957.
Frank, T. D., James, N. P., Bone, Y., Malcolm, I., and Bobak, L. E.: Late
Quaternary carbonate deposition at the bottom of the world, Sediment. Geol.,
305, 1–16, https://doi.org/10.1016/j.sedgeo.2014.02.008, 2014.
Friedman, G. M. and Sanders, J. E.: Principles of Sedimentology, Wiley, New
York, USA, 1978.
Frignani, M., Giglio, F., Langone, L., Ravaioli, M., and Mangini, A.:
Late-Pleistocene – Holocene sedimentary fluxes of organic carbon and biogenic
silica in the northwestern Ross Sea, Antarctica, Ann. Glaciol., 27,
697–703, https://doi.org/10.3189/1998AoG27-1-697-703, 1998.
Gersonde, R. and Zielinski, U.: The reconstruction of Late Quaternary
Antarctic sea-ice distribution – the use of diatoms as a proxy for sea-ice,
Palaeogeogr. Palaeocl., 162, 263–286, https://doi.org/10.1016/S0031-0182(00)00131-0, 2000.
Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H.,
Cortese, G., and Levy, R. H.: Antarctic contribution to meltwater pulse 1A
from reduced Southern Ocean overturning, Nat. Commun., 5, 5107, https://doi.org/10.1038/ncomms6107, 2014.
Gooday, A. J.: Deep-sea benthic foraminiferal species whichexploit
phytodetritus – characteristic features and controls on distribution, Mar.
Micropaleontol., 22, 187–205, https://doi.org/10.1016/0377-8398(93)90043-W, 1993
Grobe, H. and Mackensen, A.: Late Quaternary climatic cycles as recorded in
sediments from the Antarctic continental margin, in: The Antarctic
Paleoenvironment: A Perspective on Global Change, edited by: Kennett, J. P. and Warkne, D. A., American Geophysical Union, Washington, D.C., United States,
349–376, 1992.
Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L., and Anderson, J. B.: Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica, The Cryosphere, 10, 1003–1020, https://doi.org/10.5194/tc-10-1003-2016, 2016.
Hall, B. L., Henderson, G. M., Baroni, C., and Kellogg, T. B.: Constant
Holocene southern-ocean 14C reservoir ages and ice-shelf flow rates, Earth
Planet. Sc. Lett., 296, 115–123, https://doi.org/10.1016/j.epsl.2010.04.054, 2010.
Hauck, J., Gerdes, D., Hillenbrand, C.-D., Hoppema, M., Kuhn, G., Nehrke,
G., Völker, C., and Wolf-Gladrow, D. A.: Distribution and mineralogy of
carbonate sediments on Antarctic shelves, J. Marine Syst., 90, 77–87,
https://doi.org/10.1016/j.jmarsys.2011.09.005, 2012.
Hendry, K. R., Rickaby, R. E., Meredith, M. P., and Elderfield, H.: Controls
on stable isotope and trace metal uptake in Neogloboquadrina pachyderma (sinistral) from an Antarctic
sea-ice environment, Earth Planet. Sci. Lett., 278, 67–77, https://doi.org/10.1016/j.epsl.2008.11.026, 2009.
Heroy, D. C. and Anderson, J. B.: Radiocarbon constraints on Antarctic
Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM),
Quaternary Sci. Rev., 26, 3286–3297, https://doi.org/10.1016/j.quascirev.2007.07.012, 2007.
Hillenbrand, C.-D., Smith, J. A., Kuhn, G., Esper, O., Gersonde, R., Larter,
R. D., Maher, B., Moreton, S. G., Shimmield, T. M., and Korte, M.: Age
assignment of a diatomaceous ooze deposited in the western Amundsen Sea
Embayment after the Last Glacial Maximum, J. Quatern. Sci., 25,
280–295, https://doi.org/10.1002/jqs.1308, 2009.
Hodell, D. A., Kanfoush, S. L., Shemesh, A., Crosta, X., Charles, C. D., and
Guilderson, T. P.: Abrupt cooling of Antarctic surface waters and sea ice
expansion in the South Atlantic sector of the Southern Ocean at 5000 cal yr B.P., Quaternary Res., 56, 191–198, https://doi.org/10.1006/qres.2001.2252, 2001.
Igarashi, A., Numanami, H., Tsuchiya, Y., and Fukucki, M.: Bathymetric
distribution of fossil foraminifera within marine sediment cores from the
eastern part of Lutzow Holm Bay, East Antarctica, and its paleoceanographic
implications, Mar. Micropaleontol., 42, 125–162, https://doi.org/10.1016/S0377-8398(01)00004-4, 2001.
Ishman, S. E. and Szymcek, P.: Foraminiferal distributions in the former
Larsen-A Ice Shelf and Prince Gustav Channel region, eastern Antarctic
Peninsula margin: a baseline for Holocene paleoenvironmental change, in:
Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental
Perspectives, edited by: Domack, E.,
Levente, A., Burnet, A., Bindschadler, R., Convey, P., and Kirby, M., American Geophysical Union, Washington, D.C., United States, 239–260, https://doi.org/10.1029/AR079p0239, 2003.
Jacobs, S. S.: Marine controls on modern sedimentation on the Antarctic
continental shelf, Mar. Geol., 85, 121–153, https://doi.org/10.1016/0025-3227(89)90151-5, 1989.
Jacobs, S. S.: Bottom water production and its links with the thermohaline
circulation, Antarct. Sci., 16, 427–437, https://doi.org/10.1017/S095410200400224X, 2004.
Jordan, R. W. and McCartney, K.: Stephanocha nom. nov., a replacement name for the
illegitimate silicoflagellate genus Distephanus (Dictyochophyceae), Phytotaxa, 201,
177–187, https://doi.org/10.11646/phytotaxa.201.3.1, 2015.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Paleoceanographical proxies
based on deep-sea benthic foraminiferal assemblage characteristics, in:
Proxies in Late Cenozoic, Paleoceanography, Developments in Marine Geology,
edited by: Hillaire-Marcel, C. and De Vernal, A., Elsevier, Amsterdam, the Netherlands,
263–325,
https://doi.org/10.1016/S1572-5480(07)01012-3, 2007.
Jouzel, J., Masson, V., Cattani, O., Falourd, S., Stievenard, M., Stenni,
B., Longinelli, A., Johnsen, S. J., Steffenssen, J. P., Petit, J. R.,
Schwander, J., Souchez, R., and Barkov, N. I.: A new 27 ky high resolution
East Antarctic climate record, Geophys. Res. Lett., 28, 3199–3202,
https://doi.org/10.1029/2000GL012243, 2001
Kawahata, H., Fujita, K., Iguchi, A., Inoue, M., Iwasaki, S., Kuroyanagi,
A., Maeda, A., Manaka, T., Moriya, K., Takagi, H., Toyofuku, T., Yoshimura,
T., and Suzuki, A.: Perspective on the response of marine calcifiers to
global warming and ocean acidification – Behavior of corals and foraminifera
in a high CO2 world hot house, Progress Earth Planet. Sci., 6, 5, https://doi.org/10.1186/s40645-018-0239-9, 2019.
Kim, S.: Seismic stratigraphy and tomography in the northwestern Ross Sea
outer margin: implications for late Cenozoic Antarctic ice-sheet evolution
and bottom-current activity, PhD thesis, University of Science and
Technology, Daejeon, Republic of Korea, 117 pp., 2018.
Kim, S., Lee, J. I., McKay, R. M., Yoo, K.-C., Bak, Y.-S., Lee, M. K., Roh,
Y. H., Yoon, H. I., Moon, H. S., and Hyun, C.-U.: Late pleistocene
paleoceanographic changes in the Ross Sea e Glacial-interglacial variations
in paleoproductivity, nutrient utilization, and deep-water formation,
Quaternary Sci. Rev., 239, 106356, https://doi.org/10.1016/j.quascirev.2020.106356, 2020.
Leventer, A.: Sediment trap diatom assemblages from the northern Antarctic
Peninsula region, Deep-Sea Res., 38, 1127–1143, https://doi.org/10.1016/0198-0149(91)90099-2, 1991.
Licht, K. J., Jennings, A. E., Andrews, J. T., and Williams, K. M.:
Chronology of late Wisconsin ice retreat from the western Ross Sea,
Antarctica, Geology, 24, 223–226, https://doi.org/10.1130/0091-7613(1996)024<0223:COLWIR>2.3.CO;2,
1996.
Lipps, J. H. and Krebbs, W. N.: Planktonic Foraminifera associated with
Antarctic sea ice, J. Foram. Res., 4, 80–85, https://doi.org/10.2113/gsjfr.4.2.80, 1974.
Livingstone, S. J., Cofaigh, C. Ó., Stokes, C. R., Hillenbrand, C.-D.,
Vieli, A., and Jamieson, S. S. R.: Antarctic palaeo-ice streams,
Earth-Sci. Rev., 111, 90–128, https://doi.org/10.1016/j.earscirev.2011.10.003, 2012.
Lowry, D. P., Golledge, N. R., Bertler, N. A. N., Jones, R. S., and McKay,
R.: Deglacial grounding-line retreat in the Ross Embayment, Antarctica,
controlled by ocean and atmosphere forcing, Sci. Adv., 5, eaav8754,
https://doi.org/10.1126/sciadv.aav8754, 2019.
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G.:
The influence of air-sea exchange on the isotopic composition of oceanic
carbon: Observations and modeling, Global Biogeochem. Cy., 9, 653–665,
https://doi.org/10.1029/95GB02574, 1995.
Maas, S. M.: Last Glacial Maximum – Holocene glacial and depositional history
from sediment cores at Coulman High beneath the Ross Ice Shelf, Antarctica,
Master thesis, Victoria University of Wellington, Wellington, New Zealand, 114 pp.,
2012.
Mackensen, A., Grobe, H., Kuhn, G., and Fütterer, D. K.: Benthic
foraminiferal assemblages from the eastern Weddell Sea between 68 and 73∘ S: distribution, ecology and fossilization potential, Mar.
Micropaleontol., 16, 241–283, https://doi.org/10.1016/0377-8398(90)90006-8, 1990.
Mackensen, A., Futterer, D. K., Grobe, H., and Schmiedl, G.: Benthic
foraminiferal assemblages from the eastern South Atlantic Polar Front region
between 35 and 57 S: Distribution, ecology and fossilization potential, Mar.
Micropaleontol., 22, 33–69, https://doi.org/10.1016/0377-8398(93)90003-G, 1993.
Mackensen, A., Grobe, H., Hubberten, H. W., and Kuhn, G.: Benthic
foraminiferal assemblages and the δ13C-signal in the Atlantic sector of the
Southern Ocean: Glacial-to-interglacial contrasts, in: Carbon cycling in the
glacial ocean: Constraints on the ocean's role in global change, edited by:
Zahn, R., Kaminski, M., Labeyrie, L., and Pedersen, T.,
Springer, Berlin, Germany, 105–144, 1994.
Mackintosh, A. N., Verleyen, E., O'Brien, P. E., White, D. A., Jones, R. S.,
McKay, R., Dunbar, R., Gore, D. B., Fink, D., Post, A. L., Miura, H.,
Leventer, A., Goodwin, I., Hodgson, D. A., Lilly, K., Crosta, X., Golledge,
N. R., Wagner, B., Berg, S., van Ommen, T., Zwartz, D., Roberts, S. J.,
Vyverman, W., and Masse, G.: Retreat history of the East Antarctic Ice Sheet
since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 10–30, https://doi.org/10.1016/j.quascirev.2013.07.024, 2014.
Maddison, E. J., Pike, J., Leventer, A., and Domack, E. W.: Deglaciation
seasonal and sub-seasonal diatom record from Palmer Deep, Antarctica, J.
Quatern. Sci., 20, 435–446, https://doi.org/10.1002/jqs.947,
2005.
Majewski, W.: Benthic foraminiferal communities: distribution and ecology in
Admiralty Bay, King George Island, West Antarctica, Pol. Polar Res., 26,
159–214, 2005.
Majewski, W. and Pawlowski, J.: Morphologic and molecular diversity of the
foraminiferal genus Globocassidulina in Admiralty Bay, King George Island, Antarct. Sci.,
22, 271–281, https://doi.org/10.1017/S0954102010000106, 2010.
Majewski, W., Wellner, J. S., and Anderson, J. B.: Environmental
connotations of benthic foraminiferal assemblages from coastal West
Antarctica, Mar. Micropaleontol., 124, 1–15, https://doi.org/10.1016/j.marmicro.2016.01.002, 2016.
Majewski, W., Bart, P. J., and McGlannan, A. J.: Foraminiferal assemblages
from ice-proximal paleo-settings in the Whales Deep Basin, Eastern Ross Sea,
Antarctica, Palaeogeogr. Palaeocl., 493, 64–81, https://doi.org/10.1016/j.palaeo.2017.12.041, 2018.
Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J., and
Anderson, J. B.: Foraminiferal patterns in deglacial sediment in the western
Ross Sea, Antarctica: life near grounding lines, Paleoceanogr. Paleocl.,
35, e2019PA003716, https://doi.org/10.1029/2019PA003716, 2020.
Malinverno, E.: Extant morphotypes of Distephanus speculum (Silicoflagellata) from the
Australian sector of the Southern Ocean: Morphology, morphometry and
biogeography, Mar. Micropaleontol., 77, 154–174, https://doi.org/10.1016/j.marmicro.2010.09.002, 2010.
Malinverno, E., Maffioli, P., and Gariboldi, K.: Latitudinal distribution of
extant fossilizable phytoplankton in the Southern Ocean: Planktonic
provinces, hydrographic fronts and palaeoecological perspectives, Mar.
Micropaleontol., 123, 41–58, https://doi.org/10.1016/j.marmicro.2016.01.001, 2016.
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Cias, P.,
Hammer, C., Johnsen, S., Lipenkov, V. Y., Mosley-Thompson, E., Petit, J.,
Steig, E. J., Stievenard, M., and Vaikmae, R.: Holocene climate variability
in Antarctica based on 11 ice-core isotopic records, Quatern. Res., 54,
348–358, https://doi.org/10.1006/qres.2000.2172, 2000.
McCave, I. N., Manighetti, B., and Robinson, S. G.: Sortable silt and fine
sediment size/composition slicing: Parameters for palaeocurrent speed and
palaeoceanography, Paleoceanogr. Paleocl., 10, 593–610, https://doi.org/10.1029/94PA03039, 1995.
McGlannan, A. J., Bart, P. J., Chow, J. M., and DeCesare, M.: On the influence
of post-LGM ice shelf loss and grounding zone sedimentation on West
Antarctic ice sheet stability, Mar. Geol., 392, 151–169, https://doi.org/10.1016/j.margeo.2017.08.005, 2017.
Melis, R. and Salvi, G.: Late Quaternary foraminiferal assemblages from
western Ross Sea (Antarctica) in relation to the main glacial and marine
lithofacies, Mar. Micropaleontol., 70, 39–53, https://doi.org/10.1016/j.marmicro.2008.10.003, 2009.
Melis, R. and Salvi, G.: Foraminifer and Ostracod Occurrence in a Cool-Water
Carbonate Factory of the Cape Adare (Ross Sea, Antarctica): A Key Lecture
for the Climatic and Oceanographic Variations in the Last 30,000 Years,
Geosciences, 10, 413, https://doi.org/10.3390/geosciences10100413, 2020.
Melis, R., Colizza, E., Pizzolato, F., and Rosso, A.: Preliminary study of
the calcareous taphocoenoses in Late Quaternary glacial marine sequences of
the Ross Sea (Antarctica), Geobios, 35, 207–218, https://doi.org/10.1016/S0016-6995(02)00060-8, 2002.
Mezgec, K.: Palaeoceanographic changes during the post-LGM deglaciation
phase in the polar areas (Ross Sea-Antarctica and Barents Sea-Arctic cases
studies), PhD Thesis, University of Siena, Siena, Italy, 156 pp., 2015.
Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida,
M., Ciardini, V., Colizza, E., Melis, R., Salvatore, M. C., Severi, M.,
Scarchilli, C., Traversi, R., Udisti, R., and Frezzotti, M.: Holocene sea
ice variability driven by wind and polynya efficiency in the Ross Sea, Nat.
Commun., 8, 1334, https://doi.org/10.1038/s41467-017-01455-x,
2017.
Mikis, A., Hendry, K. R., Pike, J., Schmidt, D. N., Edgar, K. M., Peck, V., Peeters, F. J. C., Leng, M. J., Meredith, M. P., Todd, C. L., Stammerjohn, S., and Ducklow, H.: Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study, Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, 2019.
Minzoni, R. T., Anderson, J. B., Fernandez, R., and Wellner, J. S.: Marine
record of Holocene climate, ocean, and cryosphere interactions: Herbert
Sound, James Ross Island, Antarctica, Quaternary Sci. Rev., 129, 239–259,
https://doi.org/10.1016/j.quascirev.2015.09.009, 2015.
Murray, J. W. and Pudsey, C. J.: Living (stained) and dead foraminifera from
the newly ice-free Larsen Ice Shelf, Weddell Sea, Antarctica: ecology and
taphonomy, Mar. Micropaleontol., 53, 67–81, https://doi.org/10.1016/j.marmicro.2004.04.001, 2004.
Nair, A., Mohan, R., Manoj, M. C., and Thamban, M.: Glacial-interglacial
variability in diatom abundance and valve size: Implications for Southern
Ocean paleoceanography, Paleoceanogr. Paleocl., 30, 1245–1260, https://doi.org/10.1002/2014PA002680, 2015.
Pike, J., Allen, C. S., Leventer, A., Stickley, C. E., and Pudsey, C. J.:
Comparison of contemporary and fossil diatom assemblages from the western
Antarctic Peninsula shelf, Mar. Micropaleontol., 67, 274–287, https://doi.org/10.1016/j.marmicro.2008.02.001, 2008.
Pike, J., Crosta, X., Maddison, E. J., Stickley, C. E., Denis, D., Barbara,
L., and Renssen, H.: Observations on the relationship between the Antarctic
coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice
concentrations during the late Quaternary, Mar. Micropaleontol., 73, 14–25,
https://doi.org/10.1016/j.marmicro.2009.06.005, 2009.
Pike, J., Swann, G. E. A., Leng, M. J., and Snelling, A. M.: Glacial
discharge along the west Antarctic Peninsula during the Holocene, Nat.
Geosci., 6, 199–202, https://doi.org/10.1038/ngeo1703, 2013.
Prothro, L. O., Simkins, L. M., Majewski, W., and Anderson, J. B.: Glacial
retreat patterns and processes determined from integrated sedimentology and
geomorphology records, Mar. Geol., 395, 104–119, https://doi.org/10.1016/j.margeo.2017.09.012, 2018.
Prothro, L. O., Majewski, W., Yokoyama, Y., Simkins, L. M., Anderson, J. B.,
Yamane, M., Miyairi, Y., and Ohkouchi, N.: Timing and pathways of East
Antarctic Ice Sheet retreat, Quaternary Sci. Rev., 230, 106166, https://doi.org/10.1016/j.quascirev.2020.106166, 2020.
Pudsey, C. J., Murray, J. W., Appleby, P., and Evans, J.: Ice shelf history
from petrographic and foraminiferal evidence, northeast Antarctic Peninsula,
Quaternary Sci. Rev., 25, 2357–2379, https://doi.org/10.1016/j.quascirev.2006.01.029, 2006.
Quaia, T. and Cespuglio, G.: Oxygen and carbon stable isotopes in
foraminifers from cores ANTA91-8 and ANTA91-2 (Ross Sea), Museo Nazionale
dell'Antartide, Italy, Terra Ant. Rep., 4, 199–210, 2000.
Rathburn, A. E., Pichon, J. J., Ayress, M. A., and De Deckker, P.:
Microfossil and stable-isotope evidence for changes in Late Holocene
palaeoproductivity and palaeoceanographic conditions in the Prydz Bay region
of Antarctica, Palaeogeogr. Palaeocl., 131, 485–510, https://doi.org/10.1016/S0031-0182(97)00017-5, 1997.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Edwards, R. L., Friedrich, M., Grootes, P. M.,
Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning,
S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R.,
Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age
calibration curves, 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887,
https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rigual-Hernández, A. S., Trull, T. W., Bray, S. G., Cortina, A., and Armand, L. K.: Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal zones of the Southern Ocean and their role in the biological pump, Biogeosciences, 12, 5309–5337, https://doi.org/10.5194/bg-12-5309-2015, 2015.
Salvi, C., Salvi, G., Stenni, B., and Brambati, A.: Palaeoproductivity in
the Ross Sea, Antarctica, during the last 15 kyr BP and its link with
ice-core temperature proxies, Ann. Glaciol., 39, 445–451, https://doi.org/10.3189/172756404781814582, 2004.
Schmiedl, G., Mackensen, A., and Mueller, P. J.: Recent benthic foraminifera
from the eastern South Atlantic Ocean: dependence on food supply and water
masses, Mar. Micropaleontol., 32, 249–287, https://doi.org/10.1016/S0377-8398(97)00023-6, 1997.
Shewenell, A. E., Ingalls, A., and Domack, E.: Holocene Southern Ocean
surface temperature variability west of the Antarctic Peninsula, Nature,
470, 250–254, https://doi.org/10.1038/nature09751, 2011.
Shipp, S. S., Anderson, J. B., and Domack, E. W.: Late Pleistocene – Holocene
retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part
1 – Geophysical results, Geol. Soc. Am. Bull., 111, 1486–1516, https://doi.org/10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2,
1999.
Shipp, S. S., Wellner, J. S., and Anderson, J. B.: Retreat signature of a
polar ice stream: sub-glacial geomorphic features and sediments from the
Ross Sea, Antarctica, in: Glacier-influenced Sedimentation on High Latitude
Continental Margins, edited by: Dowdeswell, J. A. and
O'Cofaigh, C., Geological Society of London, London, UK, 277–304, https://doi.org/10.1144/GSL.SP.2002.203.01.15, 2002.
Simkins, L. M., Anderson, J. B., Greenwood, S. L., Gonnermann, H. M.,
Prothro, L. O., Halberstadt, A. R. W., Stearns, L. A., Pollard, D., and
DeConto, R. M.: Anatomy of a meltwater drainage system beneath the ancestral
East Antarctic ice sheet, Nat. Geosci., 10, 691–697, https://doi.org/10.1038/ngeo3012, 2017.
Sjunneskog, C. and Scherer, R.: Mixed diatom assemblages in glacigenic
sediment from the Central Ross Sea, Antarctica, Palaeogeogr. Palaeocl., 218, 287–300, https://doi.org/10.1016/j.palaeo.2004.12.019, 2005.
Smith, J. A., Hillenbrand, C.-D., Pudsey, C. J., Allen, C. S., and Graham, A.
G. C.: The presence of polynyas in the Weddell Sea during the Last Glacial
Period with implications for the reconstruction of sea-ice limits and ice
sheet history, Earth Planet. Sc. Lett., 296, 287–298, https://doi.org/10.1016/j.epsl.2010.05.008, 2010.
Smith, J. A., Graham, A. G. C., Post, A. L., Hillebrand, C.-D., Bart, P. J.,
and Powell, R. D.: The marine geological imprint of Antarctic ice shelves,
Nat. Commun., 10, 5635, https://doi.org/10.1038/s41467-019-13496-5, 2019.
Smith Jr., W. O., Sedwick, P. N., Arrigo, K. R., Ainley, D. G., and Orsi, A.
H.: The Ross Sea in a sea of change, Oceanography, 25, 90–103, https://doi.org/10.5670/oceanog.2012.80, 2012.
Spindler, M. and Dieckmann, G. S.: Distribution and abundance of the
planktic foraminifer N. pachyderma in the sea ice of the Weddell Sea (Antarctica), Polar
Biol., 5, 185–191, https://doi.org/10.1007/BF00441699, 1986.
Stevens, C., Hulbe, C., Brewer, M., Stewart, C., Robinson, N., Ohneiser, C., and Jendersie, S.: Ocean mixing and heat transport processes observed under the
Ross Ice Shelf control its basal melting, P. Natl. Acad. Sci. USA, 117,
16799–16804, https://doi.org/10.1073/pnas.1910760117, 2020.
Taylor, F. and Sjunneskog, C.: Postglacial marine diatom record of the
Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 2. Diatom
assemblages, Paleoceanogr. Paleocl., 17, 8001, https://doi.org/10.1029/2000PA000564, 2002.
Taylor, F., Whitehead, J., and Domack, E.: Holocene paleoclimate change in
the Antarctic Peninsula: evidence from the diatom, sedimentary and
geochemical record, Mar. Micropaleontol., 41, 25–43, https://doi.org/10.1016/S0377-8398(00)00049-9, 2001.
Tesi, T., Belt, S. T., Gariboldi, K., Muschitiello, F., Smik, L.,
Finocchiaro, F., Giglio, F., Colizza, E., Gazzurra, G., Giordano, P.,
Morigi, C., Capotondi, L., Nogarotto, A., Köseoğlu, D., Di Roberto,
A., Gallerani, A., and Langone, L.: Resolving sea ice dynamics in the
north-western Ross Sea during the last 2.6 ka: From season to millennial
timescales, Quaternary Sci. Rev., 237, 106299, https://doi.org/10.1016/j.quascirev.2020.106299, 2020.
Thomas, E., Booth, L., Maslin, M., and Shackleton, N. J.: Northeastern
Atlantic benthic foraminifera during the last 45,000 years: Changes in
productivity seen from the bottom up, Paleoceanogr. Paleocl., 10,
545–562, https://doi.org/10.1029/94PA03056, 1995.
Thomas, E. R., Allen, C. S., Etourneau, J., King, A. C. F., Severi, M.,
Winton, V. H. L., Mueller, J., Crosta, X., and Peck, V. L.: Antarctic Sea
Ice Proxies from Marine and Ice Core Archives Suitable for Reconstructing
Sea Ice over the Past 2000 Years, Geosciences, 9, 506, https://doi.org/10.3390/geosciences9120506, 2019.
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A.,
Das, I., Caratori Tontini, F., Porter, D. F., Frearson, N. P., Howard, S.
L., Siegfried, M. R., Mosbeux, C., Becker, M. K., Bertinato, C., Boghosian,
A., Brady, N., Burton, B. L., Chu, W., Cordero, S. I., Dhakal, T., Dong, L.,
Gustafson, C. D., Keeshin, S., Locke, C., Lockett, A., O'Brien, G., Spergel,
J. J., Starke, S. E., Tankersley, M., Wearing, M. G., and Bell, R. E.: Ross
Ice Shelf response to climate driven by the tectonic imprint on seafloor
bathymetry, Nat. Geosci., 12, 441–449, https://doi.org/10.1038/s41561-019-0370-2, 2019.
Tolotti, R., Salvi, C., Salvi, G., and Bonci, M. C.: Late Quaternary climate
variability as recorded by micropaleontological diatom data and geochemical
data in the Western Ross Sea, Antarctica, Antarct. Sci., 25, 804–820,
https://doi.org/10.1017/S0954102013000199, 2013.
Violanti, D.: Taxonomy and distribution of recent benthic foraminifers from
Terra Nova Bay (Ross Sea, Antarctica), Oceanographic Campaign 1987/1988,
Palaeontogr. Ital., 83, 25–71, 1996.
Wacker, L., Lippold, J., Molnár, M., and Schulz, H.: Towards radiocarbon
dating of single foraminifera with a gas ion source, Nucl. Instrum. Meth. B,
294, 307–310, https://doi.org/10.1016/j.nimb.2012.08.038, 2013.
Wollenburg, J. and Mackensen, A.: Modern benthic foraminifera from the
central Arctic Ocean: faunal composition, standing stock, and diversity,
Mar. Micropaleontol., 34, 153–185, 1998.
Wollenburg, J. E. and Kuhnt, W.: The response of benthic foraminifers to
carbon flux and primary production in the Arctic Ocean, Mar.
Micropaleontol., 40, 189–231, https://doi.org/10.1016/S0377-8398(00)00039-6, 2000.
Xiao, W., Esper, O., and Gersonde, R.: Last Glacial-Holocene climate
variability in the Atlantic sector of the Southern Ocean, Quaternary Sci. Rev., 135, 115–137, https://doi.org/10.1016/j.quascirev.2016.01.023, 2016.
Yokoyama, Y., Esat, T. M., Thompson, W. G., Thomas, A. L., Webster, S. M.,
Miyairi, Y., Sawada, C., Aze, T., Matsuzaki, H., Okuno, J. I., and Fallon,
S.: Rapid glaciations and a two-step sea level plunge into the Last Glacial
Maximum, Nature, 599, 603–607, https://doi.org/10.1038/s41586-018-0335-4, 2018.
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and...