Articles | Volume 41, issue 1
https://doi.org/10.5194/jm-41-29-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-41-29-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Taxonomic review of living planktonic foraminifera
Geert-Jan A. Brummer
Department of Ocean
Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
MARUM Center for Marine Environmental Sciences, University of Bremen,
Leobener Strasse 8, 28359 Bremen, Germany
Related authors
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, https://doi.org/10.5194/bg-2018-484, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Michèlle van der Does, Laura F. Korte, Chris I. Munday, Geert-Jan A. Brummer, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 16, 13697–13710, https://doi.org/10.5194/acp-16-13697-2016, https://doi.org/10.5194/acp-16-13697-2016, 2016
Short summary
Short summary
We studied seasonal and spatial variations in particle size of Saharan dust deposition along a transect in the Atlantic Ocean, using an array of moored submarine sediment traps. We show a downwind decrease in particle size, but seasonal changes are also prominent. In addition, the dust is much coarser than previously suggested and incorporated into climate models.
Dana Felicitas Christine Riechelmann, Jens Fohlmeister, Rik Tjallingii, Klaus Peter Jochum, Detlev Konrad Richter, Geert-Jan A. Brummer, and Denis Scholz
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-18, https://doi.org/10.5194/cp-2016-18, 2016
Revised manuscript not accepted
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. Steinhardt, C. Cléroux, L. J. de Nooijer, G.-J. Brummer, R. Zahn, G. Ganssen, and G.-J. Reichart
Biogeosciences, 12, 2411–2429, https://doi.org/10.5194/bg-12-2411-2015, https://doi.org/10.5194/bg-12-2411-2015, 2015
Short summary
Short summary
In this paper we present, for the first time, results from single-chamber Mg/Ca analyses combined with single-shell δ18O and δ13C for four planktonic foraminiferal species from a sediment trap in the Mozambique Channel. Eddy-induced hydrographic variability is reflected in test carbonate chemistry of these different species. A species-specific depth-resolved mass balance model confirms distinctive migration and calcification patterns for each species as a function of hydrography.
Miriam Pfeiffer, Hideko Takayanagi, Lars Reuning, Takaaki Konabe Watanabe, Saori Ito, Dieter Garbe-Schönberg, Tsuyoshi Watanabe, Chung-Che Wu, Chuan-Chou Shen, Jens Zinke, Geert-Jan Brummer, and Sri Yudawati Cahyarini
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-25, https://doi.org/10.5194/cp-2024-25, 2024
Revised manuscript accepted for CP
Short summary
Short summary
A coral reconstruction of past climate shows changes in the seasonal cycle of sea surface temperature in the SE tropical Indian Ocean. An enhanced seasonal cycle suggests that the tropical rainfall belt shifted northwards between 1855–1917. We explain this with greater warming in the NE Indian Ocean relative to the SE, which strengthens surface winds and coastal upwelling, leading to greater cooling in the eastern Indian Ocean south of the Equator.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Maike Leupold, Miriam Pfeiffer, Takaaki K. Watanabe, Lars Reuning, Dieter Garbe-Schönberg, Chuan-Chou Shen, and Geert-Jan A. Brummer
Clim. Past, 17, 151–170, https://doi.org/10.5194/cp-17-151-2021, https://doi.org/10.5194/cp-17-151-2021, 2021
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Geert-Jan A. Brummer, Brett Metcalfe, Wouter Feldmeijer, Maarten A. Prins, Jasmijn van 't Hoff, and Gerald M. Ganssen
Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, https://doi.org/10.5194/cp-16-265-2020, 2020
Short summary
Short summary
Here, mid-ocean seasonality is resolved through time, using differences in the oxygen isotope composition between individual shells of the commonly used (sub)polar planktonic foraminifera species in ocean-climate reconstruction, N. pachyderma and G. bulloides. Single-specimen isotope measurements during the deglacial period revealed a surprising bimodality, the cause of which was investigated.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Haruka Takagi, Katsunori Kimoto, Tetsuichi Fujiki, Hiroaki Saito, Christiane Schmidt, Michal Kucera, and Kazuyoshi Moriya
Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019, https://doi.org/10.5194/bg-16-3377-2019, 2019
Short summary
Short summary
Photosymbiosis (endosymbiosis with algae) is an evolutionary important ecology for many marine organisms but has poorly been identified among planktonic foraminifera. In this study, we identified and characterized photosymbiosis of various species of planktonic foraminifera by focusing on their photosynthesis–related features. We finally proposed a new framework showing a potential strength of photosymbiosis, which will serve as a basis for future ecological studies of planktonic foraminifera.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Marijke W. de Bar, Jenny E. Ullgren, Robert C. Thunnell, Stuart G. Wakeham, Geert-Jan A. Brummer, Jan-Berend W. Stuut, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 1705–1727, https://doi.org/10.5194/bg-16-1705-2019, https://doi.org/10.5194/bg-16-1705-2019, 2019
Short summary
Short summary
We analyzed sediment traps from the Cariaco Basin, the tropical Atlantic and the Mozambique Channel to evaluate seasonal imprints in the concentrations and fluxes of long-chain diols (LDIs), in addition to the long-chain diol index proxy (sea surface temperature proxy) and the diol index (upwelling indicator). Despite significant degradation, LDI-derived temperatures were very similar for the sediment traps and seafloor sediments, and corresponded to annual mean sea surface temperatures.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, https://doi.org/10.5194/bg-2018-484, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Catarina V. Guerreiro, Karl-Heinz Baumann, Geert-Jan A. Brummer, Gerhard Fischer, Laura F. Korte, Ute Merkel, Carolina Sá, Henko de Stigter, and Jan-Berend W. Stuut
Biogeosciences, 14, 4577–4599, https://doi.org/10.5194/bg-14-4577-2017, https://doi.org/10.5194/bg-14-4577-2017, 2017
Short summary
Short summary
Our study provides insights into the factors governing the spatio-temporal variability of coccolithophores in the equatorial North Atlantic and illustrates how this supposedly oligotrophic and stable open-ocean region actually reveals significant ecological variability. We provide evidence for Saharan dust and the Amazon River acting as fertilizers for phytoplankton and highlight the the importance of the thermocline depth for coccolithophore productivity in the lower photic zone.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Philipp M. Munz, Stephan Steinke, Anna Böll, Andreas Lückge, Jeroen Groeneveld, Michal Kucera, and Hartmut Schulz
Clim. Past, 13, 491–509, https://doi.org/10.5194/cp-13-491-2017, https://doi.org/10.5194/cp-13-491-2017, 2017
Short summary
Short summary
We present the results of several independent proxies of summer SST and upwelling SST from the Oman margin indicative of monsoon strength during the early Holocene. In combination with indices of carbonate preservation and bottom water redox conditions, we demonstrate that a persistent solar influence was modulating summer monsoon intensity. Furthermore, bottom water conditions are linked to atmospheric forcing, rather than changes of intermediate water masses.
Laura F. Korte, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Rick Hennekam, Johannes A. van Hateren, Dirk Jong, Chris I. Munday, Stefan Schouten, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 17, 6023–6040, https://doi.org/10.5194/acp-17-6023-2017, https://doi.org/10.5194/acp-17-6023-2017, 2017
Short summary
Short summary
We collected Saharan dust at the Mauritanian coast as well as in the deep the North Atlantic Ocean, along a transect at 12 °N, using an array of moored sediment traps. We demonstrated that the lithogenic particles collected in the ocean are from the same source as dust collected on the African coast. With increasing distance from the source, lithogenic elements associated with clay minerals become more important relative to quartz which is settling out faster. Seasonality is prominent, but weak.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Michèlle van der Does, Laura F. Korte, Chris I. Munday, Geert-Jan A. Brummer, and Jan-Berend W. Stuut
Atmos. Chem. Phys., 16, 13697–13710, https://doi.org/10.5194/acp-16-13697-2016, https://doi.org/10.5194/acp-16-13697-2016, 2016
Short summary
Short summary
We studied seasonal and spatial variations in particle size of Saharan dust deposition along a transect in the Atlantic Ocean, using an array of moored submarine sediment traps. We show a downwind decrease in particle size, but seasonal changes are also prominent. In addition, the dust is much coarser than previously suggested and incorporated into climate models.
Dana Felicitas Christine Riechelmann, Jens Fohlmeister, Rik Tjallingii, Klaus Peter Jochum, Detlev Konrad Richter, Geert-Jan A. Brummer, and Denis Scholz
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-18, https://doi.org/10.5194/cp-2016-18, 2016
Revised manuscript not accepted
B. Metcalfe, W. Feldmeijer, M. de Vringer-Picon, G.-J. A. Brummer, F. J. C. Peeters, and G. M. Ganssen
Biogeosciences, 12, 4781–4807, https://doi.org/10.5194/bg-12-4781-2015, https://doi.org/10.5194/bg-12-4781-2015, 2015
Short summary
Short summary
Iron biogeochemical budgets during the natural ocean fertilisation experiment KEOPS-2 showed that complex circulation and transport pathways were responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. The exchange of iron between dissolved, biogenic and lithogenic pools was highly dynamic, resulting in a decoupling of iron supply and carbon export and controlling the efficiency of fertilisation.
J. Steinhardt, C. Cléroux, L. J. de Nooijer, G.-J. Brummer, R. Zahn, G. Ganssen, and G.-J. Reichart
Biogeosciences, 12, 2411–2429, https://doi.org/10.5194/bg-12-2411-2015, https://doi.org/10.5194/bg-12-2411-2015, 2015
Short summary
Short summary
In this paper we present, for the first time, results from single-chamber Mg/Ca analyses combined with single-shell δ18O and δ13C for four planktonic foraminiferal species from a sediment trap in the Mozambique Channel. Eddy-induced hydrographic variability is reflected in test carbonate chemistry of these different species. A species-specific depth-resolved mass balance model confirms distinctive migration and calcification patterns for each species as a function of hydrography.
L. Jonkers and M. Kučera
Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, https://doi.org/10.5194/bg-12-2207-2015, 2015
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. J. Enge, U. Witte, M. Kucera, and P. Heinz
Biogeosciences, 11, 2017–2026, https://doi.org/10.5194/bg-11-2017-2014, https://doi.org/10.5194/bg-11-2017-2014, 2014
M. F. G. Weinkauf, T. Moller, M. C. Koch, and M. Kučera
Biogeosciences, 10, 6639–6655, https://doi.org/10.5194/bg-10-6639-2013, https://doi.org/10.5194/bg-10-6639-2013, 2013
Y. Milker, R. Rachmayani, M. F. G. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kučera
Clim. Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, https://doi.org/10.5194/cp-9-2231-2013, 2013
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Related subject area
Planktic foraminifera
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Spine-like structures in Paleogene muricate planktonic foraminifera
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Jurassic planktic foraminifera from the Polish Basin
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Ontogenetic disparity in early planktic foraminifers
Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea)
Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows
Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Anieke Brombacher, Alex Searle-Barnes, Wenshu Zhang, and Thomas H. G. Ezard
J. Micropalaeontol., 41, 149–164, https://doi.org/10.5194/jm-41-149-2022, https://doi.org/10.5194/jm-41-149-2022, 2022
Short summary
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary
Short summary
Three well-preserved new species of Middle Jurassic (Bajocian) planktonic foraminifera from the continental margin of northwest Australia are described. This is on the southern shelf of the Tethys Ocean, and these planktonics are the first to be reported from the Jurassic Southern Hemisphere. Described as new are Globuligerina bathoniana australiana n. ssp., G. altissapertura n. sp. and Mermaidogerina loopae n. gen. n. sp. The research is part of a study of regional Jurassic foraminifera.
Sophie Kendall, Felix Gradstein, Christopher Jones, Oliver T. Lord, and Daniela N. Schmidt
J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, https://doi.org/10.5194/jm-39-27-2020, 2020
Short summary
Short summary
Changes in morphology during development can have profound impacts on an organism but are hard to quantify as we lack preservation in the fossil record. As they grow by adding chambers, planktic foraminifera are an ideal group to study changes in growth in development. We analyse four different species of Jurassic foraminifers using a micro-CT scanner. The low morphological variability suggests that strong constraints, described in the modern ocean, were already acting on Jurassic specimens.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Cited articles
Al-Sabouni, N., Fenton, I., Telford, R. J., and Kucera, M.: Reproducibility
of species recognition in modern planktonic foraminifera and its
implications for analyses of community structure, J. Micropalaeontol., 37,
519–534, 2018.
André, A., Weiner, A., Quillévéré, F., Aurahs, R., Morard,
R., Douady, C. J., de Garidel-Thoron, T., Escarguel, G., de Vargas, C., and
Kucera, M.: The cryptic and the apparent reversed: lack of genetic
differentiation within the morphologically diverse plexus of the planktonic
foraminifer Globigerinoides sacculifer, Paleobiology, 39, 21–39, 2013.
André, A., Quillévéré, F., Morard, R., Ujiié, Y.,
Escarguel, G., de Vargas, C., de Garidel-Thoron, T., and Douady, C. J.: SSU
rDNA divergence in planktonic foraminifera: molecular taxonomy and
biogeographic implications, PLoS ONE, 9, e104641, https://doi.org/10.1371/journal.pone.0104641, 2014.
Asano, K.: The foraminifera from the adjacent seas of Japan, collected by
the S. S. Soyo-maru, 1922–1930: Part 3. Planktonic species, The science
reports of the Tohoku University, Second series, Geology, 28, 1–26, 1957.
Aurahs, R., Göker, M., Grimm, G. W., Hemleben, V., Hemleben, C.,
Schiebel, R., and Kučera, M.: Using the multiple analysis approach to
reconstruct phylogenetic relationships among planktonic foraminifera from
highly divergent and length-polymorphic SSU rDNA sequences, Bioinform. Biol. Insights, 3, 155–177, 2009.
Aurahs, R., Treis, Y., Darling, K. F., and Kucera, M.: A revised taxonomic
and phylogenetic concept for the planktonic foraminifer species
Globigerinoides ruber based on molecular and morphometric evidence, Mar. Micropalaeontol., 79,
1–14, 2011.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M.,
Wade, B. S., and Pearson, P. N. P.: A phylogeny of Cenozoic macroperforate
planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, 2011.
Bandy, O. L., Frerichs, W. E., and Vincent, E.: Origin, development, and
geologic significance of Neogloboquadrina Bandy, Frerichs, and Vincent, gen. nov, Cushman
Found. Foram. Res. Contr., 18, 152–157, 1967.
Banner, F. T.: On Hastigerinella digitata (Rhumbler, 1911), Micropaleontology, 11, 114–116,
1965.
Banner, F. T. and Blow, W. H.: The classification and stratigraphic
distribution of the Globigerinacea, Paleontology, 2, 1–27, 1959.
Banner, F. T. and Blow, W. H.: Some primary types of species belonging to
the superfamily Globigerinaceae, Cushman Found. Foram. Res. Contr., 11,
1–41, 1960a.
Banner, F. T. and Blow, W. H.: The taxonomy, morphology and affinities of
the genera included in the subfamily Hastigerininae, Micropaleontology, 6,
19–31, 1960b.
Banner, F. T. and Blow, W. H.: The origin, evolution and taxonomy of the
foraminiferal genus Pulleniatina Cushman, 1927, Micropaleontology, 13, 133–162, 1967.
Barraclough, T. G.: The evolutionary biology of species, Oxford, Oxford
University Press, https://doi.org/10.1093/oso/9780198749745.001.0001, 2019.
Bé, A. W. H.: Foraminifera families: Globigerinidae and Globorotaliidae,
Zooplankton, Fiches d'Indentification du Zooplancton, Cons. Perm. Intern.
Eplor. de la Mer, Sheet 108, Charlottenlund Slot, Danemark, 1–9, 1967a.
Bé, A. W. H.: Globorotalia cavernula, a new species of planktonic foraminifera from the
Subantarctic Pacific Ocean, Cushman Found. Foram. Res. Contr., 18,
128–132, 1967b.
Bé, A. W. H.: An ecological, zoogeographic and taxonomic review of
Recent planktonic foraminifera, in: Oceanic Micropaleontology, Volume 1,
edited by: Ramsey, A. T. S., Academic Press, London, 1–100, 1977.
Bé, A. W. H., Caron, D. A., and Anderson, O. R.: Effects of feeding
frequency on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory
culture, J. Mar. Biol. Assoc. U.K., 61, 257–277, 1981.
Bermudez, P. J.: Contribution al estudio de las Globigerinidea de la region Caribe-Antillana (Paleoceno-Reciente), Dir. Geol., Bol. Geol. Publ. Espec., 3 (Congr. Geol. Venezolano, III, 1960, Mem.), 1119–1393, 1960.
Bermúdez, P. J. and Bolli, H. M.: Consideraciones sobre los sedimentos
del Mioceno medio al Reciente de las costas central y oriental de Venezuela,
Bol. Geol., Dir. Geol., Minister. Minas Hidrocarb., 10, 137–223, 1969.
Blow, W. H.: Age, correlation, and biostratigraphy of the upper Tocuyo (San
Lorenzo) and Pozon Formations, eastern Falcon, Venezuela, B. Am.
Paleontol., 39, 67–251, 1959.
Blow, W. H.: Late middle Eocene to Recent planktonic foraminiferal
biostratigraphy, in: Proc. First Int. Conf. Planktonic Microfossils, Geneva,
1967, Vol. 1, edited by: Brönnimann, P. and Renz, H. H., Leiden, E.J.
Brill, 199–422, 1969.
Blow, W. H. and Banner, F. T.: The mid-Tertiary (Upper Eocene to Aquitanian)
Globigerinaceae, in: Fundamentals of mid-Tertiary Stratigraphical
Correlation, edited by: Eames, F. E., Banner, F. T., Blow, W. H., and
Clarke, W. J., Cambridge University Press, Cambridge, 61–151, 1962.
Bohrmann, G., Lahajnar, N., Gaye, B., Spieß, V., and Betzler, C.:
Nitrogen cycle, cold seeps, carbonate platform development in the
Northwestern Indian Ocean, Cruise No. 74, 31 August–22 December 2007,
METEOR-Berichte, Leitstelle Meteor, Institut für Meereskunde der
Universität Hamburg, 10-3, 1–212,
https://doi.org/10.2312/cr_m74, 2010.
Bolli, H. M.: Planktonic foraminifera from the Oligocene-Miocene Cipero and
Lengua formations of Trinidad, B. W. I., in: Studies in Foraminifera, edited
by: Loeblich Jr., A. R., Tappan, H., Beckmann, J. P., Bolli, H. M.,
Montanaro Gallitelli, E., and Troelsen, J. C., U.S. Natl. Museum Bull., 215,
97–123, 1957.
Bolli, H. M., Loeblich, A. R., and Tappan, H.: Planktonic foraminiferal
families Hantkeninidae, Orbulinidae, Globorotaliidae and Globotruncanidae,
in: Studies in Foraminifera, edited by: Loeblich Jr., A. R., Tappan, H.,
Beckmann, J. P., Bolli, H. M., Montanaro Gallitelli, E., and Troelsen, J.
C., U.S. Natl. Museum Bull., 215, 3–50, 1957.
Boltovskoy, E.: Globorotalia hirsuta eastropacia n. subsp. – planktonic subspecies (Foraminiferida) from the
tropical Pacific Ocean, Rev. Esp. Micropaleontol., 6, 127–133, 1974.
Boltovskoy, E.: Globigerinita clarkei (Rögl & Bolli) – an unfairly ignored small planktic
foraminifer, Boreas, 20, 151–154, 1991.
Boltovskoy, E.: Living planktonic foraminifera of the eastern part of the tropical Atlantic, Rev. Micropal., 11, 85–98, ISSN 0035-1598, 1968.
Boltovskoy, E. and Watanabe, S.: Orcadia, nuevo genero de Foraminiferos
planctonicos Antarticos, Rev. Esp. Micropaleontol., 14, 5–11, 1982.
Bonnin, E. A., Zhu, Z., Fehrenbacher, J. S., Russell, A. D., Hönisch,
B., Spero, H. J., and Gagnon, A. C.: Submicron sodium banding in cultured
planktic foraminifera shells, Geochim. Cosmochim. Ac., 253, 127–141, 2019.
Brady, H. B.: Supplementary note on the foraminifera of the Chalk (?) of the
New Britain group, Geol. Mag., 4, 534–536, https://doi.org/10.1017/S0016756800150137, 1877.
Brady, H. B.: Notes on some of the reticularian Rhizopoda of the
“Challenger” expedition. I. – On new or little known arenaceous types, Q. J.
Micros. Sci., 19, 20–63, 1879.
Brady, H. B.: Report on the Foraminifera, in: Exploration of the Faroe
Channel, during the summer of 1880, in: H.M.S. “Knight Errant”, with
subsidiary reports, edited by Tizard, Murray, J., P. Roy. Soc. Edinb., 11,
708–717, 1882.
Brady, H. B.: Report on the Foraminifera dredged by H.M.S. Challenger during
the years 1873–1876, Report on the Scientific Results of the Voyage of H.M.S.
Challenger during the year 1873–1876, Zoology, 9, 1–814, 1884.
Brönnimann, P.: Globigerinita naparimaensis n. gen., n. sp., from the Miocene of Trinidad, B. W.
I., Cushman Found. Foram. Res. Contr., 2, 16–18, 1951.
Brönnimann, P. and Resig, J.: A Neogene globigerinacean biochronologic
time-scale of the southwestern Pacific, Initial Rep. Deep Sea, 7,
1235–1469, 1971.
Brummer, G. J. A., Hemleben, C., and Spindler, M.: Planktonic foraminiferal
ontogeny and new perspectives for micropalaeontology, Nature, 319, 50–52,
1986.
Brummer, G. J. A.: Comparative ontogeny of modern microperforate planktonic
foraminifers, in: Planktonic foraminifers as tracers of ocean-climate history,
edited by: Brummer, G. J. A. and Kroon, D., Free University Press,
Amsterdam, 77–129, 1988a.
Brummer, G. J. A.: Comparative ontogeny and species definition of planktonic
foraminfers: A case study of Dentigloborotalia anfracta n. gen., in: Planktonic foraminifers as
tracers of ocean-climate history, edited by: Brummer, G. J. A. and Kroon, D.,
Free University Press, Amsterdam, 51–75, 1988b.
Brummer, G. J. A., Troelstra, S. R., Kroon, D., and Ganssen, G. M.:
Ontogeny, distribution and geologic record of the extant planktonic
foraminifer Orcadia riedeli (Rögl & Bolli, 1973), in: Planktonic foraminifers as
tracers of ocean-climate history, edited by: Brummer, G. J. A. and Kroon, D.,
Free University Press, Amsterdam, 149–162, 1988c.
Brummer, G.-J. A., Metcalfe, B., Feldmeijer, W., Prins, M. A., van 't Hoff, J., and Ganssen, G. M.: Modal shift in North Atlantic seasonality during the last deglaciation, Clim. Past, 16, 265–282, https://doi.org/10.5194/cp-16-265-2020, 2020.
Buckley, H. A.: Globorotalia (Clavatorella) oveyi n. sp., premiere mention Récente d'un sous-genre de
Foraminifere du Neogene, Rev. Micropaléontol., 16, 168–172, 1973.
Burckhardt, G.: Zum Worte Plankton, Schweiz. Z. Hydrol, 1, 190–192, 1920.
Caron, D. A., Faber, W. W., and Bé, A. W.: Growth of the spinose
planktonic foraminifer Orbulina universa in laboratory culture and the effect of temperature
on life processes, J. Mar. Biol. Assoc. UK, 67, 343–358, 1987.
Carpenter, W. B.: Introduction to the study of the Foraminifera, published for the Ray Society by Robert Hardwicke, 1–319, 1862.
Chapman, F., Parr, W. J., and Collins, A. C.: Tertiary foraminifera of
Victoria, Australia – The Balcombian deposits of Port Phillip, part III,
Zool. J. Linn. Soc.-Lond., 38, 553–577, 1934.
Chernihovsky, N., Almogi-Labin, A., Kienast, S. S., and Torfstein, A.: The
daily resolved temperature dependence and structure of planktonic
foraminifera blooms, Sci. Rep.-UK, 10, 1–12, 2020.
Cifelli, R.: Globigerina incompta, a new species of pelagic foraminifera from the North
Atlantic, Cushman Found. Foram. Res. Contr., 12, 83–86, 1961.
CLIMAP Project Members: The surface of the ice-age Earth, Science, 191,
1131–1137, 1976.
Coxall, H. K.: Hastigerinella Cushman, 1927 and Clavigerinella Bolli, Loeblich & Tappan, 1957
(Rhizopodea, Foraminiferida); proposed conservation of the usage by
designation of Hastigerina digitata Rhumbler, 1911 as the type species of Hastigerinella, Bull. Zool.
Nomenclature, 60, 182–186, 2003.
Coxall, H. K. and Spezzaferri, S.: Taxonomy, biostratigraphy, and phylogeny
of Oligocene Catapysdrax, Globortaloides and Protentelloides, in: Atlas of Oligocene Planktonic Foraminifera, edited
by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren,
W. A., Cushman Found. Foram. Res. Spec. Publ.,
46, 79–124, 2018.
Cuif, J. P.: Caracteres et affinites de Gallitellia, nouveau genre de madreporaires du ladino-carnien des Dolomites, 2eme Congr. Int. Cnidaires fossiles, Paris, Mem. Bur. Rech. Geol. Min., 89, 256–263, 1977.
Cushman, J. A.: An outline of a reclassification of the foraminifera,
Contributions from the Cushman Laboratory for Foraminiferal Research, Contr. Cushman Lab. Foram. Res., 3,
1–105, 1927.
Cushman, J. A.: A Recent Guembelitria (?) from the Pacific, Contr. Cushman Lab. Foram. Res., 10, 105–106, 1934.
Cushman, J. A. and Bermúdez, P. J.: Some Cuban species of
Globorotalia, Contr. Cushman Lab. Foram. Res., 25,
26–45, 1949.
d'Orbigny, A. D.: Tableau methodique de la classe des Cephalopodes, Ann.
Sci. Nat., 1, 245–314, 1826.
d'Orbigny, A. D.: Foraminiferes, in: Histoire physique et naturelle de l'Ile de Cuba, edited by: de la Sagra, R. and Bertrand, A., Paris, 1–224, 1839a.
d'Orbigny, A. D.: Foraminifères des Iles Canaries, in: Histoire
naturelle des Iles Canaries, edited by: Barker-Webb, P. and Berthelot, S.,
120–146, 1839b.
d'Orbigny, A. D.: Voyage dans l'Amérique Méridionale,
Foraminifères, 5, 1–86, 1839c.
Darling, K. F. and Wade, C. M.: The genetic diversity of planktic
foraminifera and the global distribution of ribosomal RNA genotypes, Mar.
Micropaleontol., 67, 216–238, 2008.
Darling, K. F., Thomas, E., Kasemann, S. A., Seears, H. A., Smart, C. W.,
and Wade, C. M.: Surviving mass extinction by bridging the benthic/planktic
divide, P. Natl. Acad. Sci. USA, 106, 12629–12633, 2009.
Darling, K. F., Wade, C. M., Siccha, M., Trommer, G., Schulz, H.,
Abdolalipour, S., and Kurasawa, A.: Genetic diversity and ecology of the
planktonic foraminifers Globigerina bulloides, Turborotalita quinqueloba and Neogloboquadrina pachyderma off the Oman margin during the late SW
Monsoon, Mar. Micropaleontol., 137, 64–77, 2017.
De Klasz, I., Kroon, D., and Van Hinte, J. E.: Notes on the foraminiferal
genera Laterostomella de Klasz and Rerat and Streptochilus Brönnimann and Resig, J.
Micropalaeontol., 8, 215–225, 1989.
de Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W., and Pawlowski, J.:
Molecular evidence of cryptic speciation in planktonic foraminifers and
their relation to oceanic provinces, P. Natl. Acad. Sci. USA, 96,
2864–2868, 1999.
Earland, A.: Foraminifera, Part III, The Falklands sector of the Antarctic
(excluding South Georgia), Discovery Reports, 10, 1–208, 1934.
Egger, J. G.: Foraminiferen aus Meeresgrundproben, gelothet von 1874 bis
1876 von S. M. Sch. Gazelle, Abh. K. Bayer. Akad. Wiss., Cl. II, 18,
195–457, 1893.
Ehrenberg, C. G.: Elemente des tiefen Meeresgrundes in Mexikanischen
Golfstrome bei Florida; Über die Tiefgrund-Verhältnisse des Oceans
am Eingange der Davisstrasse und bei Island, K. Preuss. Akad. Wiss. Berlin,
1861, 275–315, 1862.
Ehrenberg, C. G.: Mikrogeologische Studien über das kleinste Leben der
Meeres-Tiefgründe aller Zonen und dessen geologischen Einfluss, K.
Preuss. Akad. Wiss. Berlin, Abh., Physikalische Klasse, 1872, 131–398, 1873.
Emiliani, C.: Planktic/planktonic nektic/nektonic; benthic/benthonic, J.
Paleontol., 65, p. 329, 1991a.
Emiliani, C.: Planktic et al., Mar. Micropaleontol., 18, p. 3, 1991b.
Faber, W. W., Anderson, O. R., Lindsey, J. L., and Caron, D. A.:
Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis, I, Occurrence
and stability of two mutually exclusive chrysophyte endosymbionts and their
ultrastructure, J. Foramin. Res., 18, 334–343, 1988.
Fenton, I. S., Baranowski, U., Boscolo-Galazzo, F., Cheales, H., Fox, L.,
King, D. J., Larkin, C., Latas, M., Liebrand, D., Miller, C. G.,
Nilsson-Kerr, K., Piga, E., Pugh, H., Remmelzwaal, S., Roseby, Z. A., Smith,
Y. M., Stukins, S., Taylor, B., Woodhouse, A., Worne, S., Pearson, P. N.,
Poole, C. R., Wade, B. S., and Purvis, A.: Factors affecting consistency and
accuracy in identifying modern macroperforate planktonic foraminifera, J.
Micropalaeontol., 37, 431–443, 2018.
Finlay, H. J.: New Zealand foraminifera: Key species in stratigraphy - no.
5, New Zeal. J. Sci. Tech., 28, 259–292, 1947.
Fleisher, R. L.: Cenozoic planktonic foraminifera and biostratigraphy,
Arabian Sea, Deep Sea Drilling Project, Leg 23A, Initial Rep. Deep Sea, 23,
1001–1072, 1974.
Fordham, B. G.: Miocene–Pleistocene planktic foraminifers from D. S. D. P.
Sites 208 and 77, and phylogeny and classification of Cenozoic species,
Evol. Monogr., 6, 1–200, 1986.
Fordham, B. G.: Toddina, replacement name for Toddella Fordham, 1986 (type species,
“Globigerina? grata Todd, 1957”), J. Foramin. Res., 18, p. 84, 1988.
Galloway, J. J. and Wissler, S. G.: Pleistocene foraminifera from the Lomita
Quarry, Palos Verdes Hills, California, J. Paleontol., 1, 35–87, 1927.
Ganssen, G. M. and Kucera, M.: SCOR/IGBP working group on modern planktonic
foraminifera kicked off, PAGES news, 20, p. 6, 2012.
GBIF.org: GBIF Home Page, https://www.gbif.org, last access: 13 January 2020.
Haman, D.: Globigerinita iota Parker, 1962, and the validity of Tenuitellita Li, 1987 (Foraminiferida), J. Micropalaeontol., 7, 241–242, https://doi.org/10.1144/jm.7.2.241, 1988.
Hayward, B. W., Le Coze, F., Vachard, D., and Gross, O.: World Foraminifera
Database, https://doi.org/10.14284/305, http://www.marinespecies.org/foraminifera, last access: 4 April
2020.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern planktonic
foraminifera, Springer, New York, Berlin, Heidelberg, 1–363, 1989.
Henderson, G. M.: New oceanic proxies for paleoclimate, Earth Planet. Sc.
Lett., 203, 1–13, 2002.
Heron-Allen, A. and Earland, A.: Some new foraminifera from the South
Atlantic II, J. R.l Micros. Soc., 49, 324–334, 1929.
Hesemann, M.: The foraminifera.eu database: concept and status, Palaeontol.
Electr., 18.3.48A, 1-14, 2015.
Hsiang, A. Y., Brombacher, A., Rillo, M. C., Mleneck-Vautravers, M. J.,
Conn, S., Lordsmith, S., Jentzen, A., Henehan, M. J., Metcalfe, B., Fenton,
I. S., Wade, B. S., Fox, L., Meilland, J., Davis, C. V., Baranowski, U.,
Groeneveld, J., Edgar, K. M., Movellan, A., Aze, T., Dowsett, H. J., Miller,
C. G., Rios, N., and Hull, P. M.: Endless forams: >34,000 modern
planktonic foraminiferal images for taxonomic training and automated species
recognition using convolutional neural networks, Paleoceanogr.
Paleocl., 34, 1157–1177, 2019.
Hodgkinson, R. L.: W. K. Parker's collection of foraminifera in the British
Museum (Natural History). Bulletin of the British Museum (Natural History),
Geology, 48, 45–78, 1992.
Hofker, J.: Morphology of Globigerinatella insueta Cushman and Stainforth, Cushman Found. Foram.
Res. Contr., 5, 151–152, 1954.
Hofker, J.: Foraminifera Dentata, foraminifera of Santa Cruz and Thatch
Island, Virgin Archipelago, West Indies, Spolia Zool. Mus. Kobenhaven, 15,
1–237, 1956.
Hofker, J.: La familie Turborotaliidae n. fam., Rev. Micropaleontol., 19,
47–53, 1976.
Holmes, N. A.: An emendation of the genera Beella Banner and Blow, 1960, and
Turborotalita Blow and Banner, 1962; with notes on Orcadia Boltovskoy and Watanabe, 1982, J.
Foramin. Res., 14, 101–110, 1984.
Huang, C. Y.: Observations on the interior of some late Neogene planktonic
foraminifera, J. Foramin. Res., 11, 173–190, 1981.
Huang, T.: Alloglobigerinoides, a new planktic foraminiferal genus, Petrol. Geol. Taiwan, 22,
93–102, 1986.
Huber, B. T., Olsson, R. K., and Pearson, P. N.: Taxonomy, biostratigraphy,
and phylogeny of Eocene microperforate planktonic foraminifera (Jenkinsina, Cassigerinelloita, Chiloguembelina, Streptochilus, Zeauvigerina, Tenuitella, and
Cassigerinella) and Problematica (Dipsidripella), in: Atlas of Eocene Planktonic Foraminifera, edited
by: Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T., and Berggren,
W. A., Cushman Found. Foramin. Res. Sp. Publ.,
41, 461–508, 2006.
Huber, B. T., Petrizzo, M. R., Young, J. R., Falzoni, F., Gilardoni, S.,
Bown, P. R., and Wade, B.: Pforams@mikrotax: A new online taxonomic database
for planktonic foraminifera, Micropaleontology, 62, 429–438, 2016.
Hutchinson, G. E.: De rebus planctonicis, Limnol. Oceanogr., 19, 360–361,
1974.
ICZN: Opinion 1234 Rotalia menardii Parker, Jones & Brady, 1865 (Foraminiferida): Neotype
designated, Bull. Zool. Nomenclature, 39, 253–254, 1982.
Jonkers, L. and Kučera, M.: Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies, Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, 2017.
Jonkers, L., Cartapanis, O., Langner, M., McKay, N., Mulitza, S., Strack,
A., and Kucera, M.: Integrating palaeoclimate time series with rich metadata
for uncertainty modelling: strategy and documentation of the PALMOD 130k
marine palaeoclimate data synthesis, Earth Syst. Sci. Data, 12,
1053–1081, 2020.
Kipp, N. G.: New transfer function for estimating past sea-surface
conditions from sea-bed distribution of planktonic foraminiferal assemblages
in the North Atlantic, in: Investigations of Late Quaternary
paleoceanography and paleoclimatology, edited by: Cline R. M. and Hays, J.
D., Mem. Geol. Soc. Am., 145, 3–41, 1976.
Kennett, J. P. and Srinivasan, M. S.: Neogene Planktonic Foraminifera,
Hutchinson Ross Publishing Co., Stroudsburg, Pennsylvania, 1–265, ISBN 10 0879330708, ISBN 13 978-0879330705, 1983.
Koch, R.: Die jungtertiare Foraminiferenfauna von Kabu (Res. Surabaja Java),
Eclogae Geol. Helv., 18, 342–357, 1923.
Kroon, D. and Nederbragt, A. J.: Ecology and paleoecology of triserial
planktic foraminifera, Mar. Micropaleontol., 16, 25–38, 1990.
Kroon, D., Wouters, P. F., Moodley, L., Ganssen, G., and Troelstra, S. R.:
Phenotypic variation of Turborotalita quinqueloba (Natland) tests in living
populations and in the Pleistocene of an eastern Mediterranean piston
core. in: Planktonic foraminifers as tracers of ocean-climate history, edited
by: Brummer, G. J. A. and Kroon, D., Free University Press, Amsterdam,
131–147, 1988.
Kucera, M.: Planktonic foraminifera as tracers of past oceanic environments,
in: Developments in Marine Geology, Volume 1, Proxies in late Cenozoic
Paleoceanography, edited by: Hillaire-Marcel, C. and de Vernal, A., Elsevier,
213–262, https://doi.org/10.1016/S1572-5480(07)01011-1, 2007.
Kucera, M., Weinelt, Mara, Kiefer, T., Pflaumann, U., Hayes, A., Weinelt,
Martin, Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J.,
Juggins, S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures
from assemblages of planktonic foraminifera: Multi-technique approach based
on geographically constrained calibration datasets and its application to
glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24, 951–998,
2005.
Kucera, M., Sylie, L., Weiner, A., Darling, K. F., Lübben, B., Holzmann,
M., Pawlowski, J., Schönfeld, J., and Morard, R.: Caught in the act:
Anatomy of an ongoing benthic-planktonic transition in a marine protest, J.
Plankton Res., 39, 436–449, 2017.
Lamb, J. L. and Beard, J. H.: Late Neogene planktonic foraminifers in the
Caribbean, Gulf of Mexico, and Italian stratotypes, The University of Kansas
Paleontological Contributions, Article 57 (Protozoa 8), 1–67, Elsevier, https://doi.org/10.1016/S1572-5480(07)01011-1, 1972.
Le Calvez, Y.: Révision des Foraminifères de la collection d'Orbigny
1. Foraminifères des iles Canaries, Cah. Micropal., 2, 1–107, 1974.
Leckie, R. M., Wade, B. S., Pearson, P. N., Fraass, A. J., King, D. J.,
Olsson, R. K., Premoli Silva, I., Spezzaferri, S., and Berggren, W. A.:
Taxonomy, biostratigraphy, and phylogeny of Oligocene and early Miocene
Paragloborotalia and Parasubbotina, in: Atlas of Oligocene Planktonic Foraminifera, edited by: Wade, B.
S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman
Found. Foramin. Res. Sp. Publ., 46, 125–178,
2018.
Li, Q.: Origin, phylogenetic development and systematic taxonomy of the
Tenuitella plexus (Globigerinitidae, Globigerininina), J. Foramin. Res., 17, 298–320,
1987.
Lipps, J. H., Finger, K. L., and Walker, S. E.: What should we call the
foraminifera?, J. Foramin. Res., 41, 309–313, 2011.
Lirer, F., Foresi, L. M., Iaccarino, S. M., Salvatorini, G., Turco, E.,
Cosentino, C., Sierro, F. J., and Caruso, A.: Mediterranean Neogene
planktonic foraminifer biozonation and biochronology, Earth-Sci. Rev., 196,
102869, https://doi.org/10.1016/j.earscirev.2019.05.013, 2019.
Loeblich Jr., A. R. and Tappan, H.: The new planktonic foraminiferal genus Tinophodella and an emendation of Globigerinita Bronnimann, J. Washington Acad. Sci., 47, 112–116, 1957.
Loeblich Jr., A. R. and Tappan, H.: Suprageneric classification of the
Foraminiferida (Protozoa), Micropaleontology, 30, 1–70, 1984.
Loeblich Jr., A. R. and Tappan, H.: Some New and Revised Genera and Families of Hyaline Calcareous Foraminiferida (Protozoa), Trans. Amer. Microscopical Soc., 105, 239–265, https://doi.org/10.2307/3226297, 1986.
Loeblich Jr., A. R. and Tappan, H.: Foraminiferal General and Their Classification, Van Nostrand Reinhold Company, New York, 1–970, ISBN 978-1-4899-5760-3, 1988.
Lohmann, G. P. and Malmgren, B. A.: Equatorward migration of Globorotalia truncatulinoides ecophenotypes
through the Late Pleistocene: gradual evolution or ocean change?,
Paleobiology, 9, 414–421, 1983.
Malmgren, B. A. and Kennett, J. P.: Biometric differentiation between Recent
Globigerina bulloides and Globigerina falconensis in the southern Indian Ocean, J. Foramin. Res., 7, 131–148, 1977.
Martinsson, A.: Editor's column: Planktic, nektic, benthic, Lethaia, 8,
193–194, 1975.
Martinsson, A.: Planktic versus planktonic once more, Lethaia, 12, p. 244,
1979.
Martinsson, A.: How to retain planktic organisms and escape Platic
love, Lethaia, 15, p. 30, 1982.
McCulloch, I.: Qualitative observations on Recent foraminiferal tests with
emphasis on the eastern Pacific, University of Southern California, Los
Angeles, OCLC no. 869277273, 1977.
Mitra, R., Marchitto, T. M., Ge, Q., Zhong, B., Kanakiya, B., Cook, M. S.,
Fehrenbacher, J. S., Ortiz, J. D., Tripati, A., and Lobaton, E.: Automated
species-level identification of planktic foraminifera using convolutional
neural networks, with comparison to human performance, Mar. Micropaleontol.,
147, 16–24, 2019.
Morard, R., Quillévéré, F., Escarguel, G., Ujiie, Y., de
Garidel-Thoron, T., Norris, R. D., and de Vargas, C.: Morphological
recognition of cryptic species in the planktonic foraminifer Orbulina universa, Mar.
Micropaleontol., 71, 148–165, 2009.
Morard, R., Quillévéré, F., Douady, C. J., de Vargas, C., de
Garidel-Thoron, T., and Escarguel, G.: Worldwide genotyping in the
planktonic foraminifer Globoconella inflata: Implications for life history and paleoceanography,
PLoS ONE, 6, e26665, https://doi.org/10.1371/journal.pone.0026665, 2011.
Morard, R., Darling, K., Mahé, F., Audic, S., Ujiié, Y., Weiner, A.,
André, A., Seears, H., Wade, C., Quillévéré, F., Douady, C.,
Escarguel, G., de Garidel-Thoron, T., Siccha, M., Kucera, M., and de Vargas,
C.: PFR2: a curated database of planktonic Foraminifera 18S
ribosomal DNA as a resource for studies of plankton ecology, biogeography,
and evolution, Mol. Ecol. Resour., 15, 1472–1485, 2015.
Morard, R., Escarguel, G., Weiner, A., André, A., Douady, C. J., Wade,
C. M., Darling, K. F., Ujiié, Y., Seears, H. A., Quillévéré,
F., de Garidel-Thoron, T., de Vargas, C., and Kucera, M.: Nomenclature for
the nameless: a proposal for an integrative molecular taxonomy of cryptic
diversity exemplified by planktonic foraminifera, Systematic Biol., 65,
925–940, 2016.
Morard, R., Füllberg, A., Brummer, G. J. A., Greco, M., Jonkers, L.,
Wizemann, A., Weiner, A. K. M., Darling, K. F., Siccha, M., Ledevin, R.,
Kitazato, H., de Garidel-Thoron, T., de Vargas, C., and Kucera, M.: Genetic
and morphological divergence in the warm-water planktonic foraminifera genus
Globigerinoides, PLoS ONE, 14, e0225246, https://doi.org/10.1371/journal.pone.0225246, 2019a.
Morard, R., Vollmar, N. M., Greco, M., and Kucera, M.: Unassigned diversity
of planktonic foraminifera from environmental sequencing revealed as known
but neglected species, PLoS ONE, 14, 1–18, 2019b.
Murray, J.: Preliminary reports to Professor Wyville Thomson, F. R. S.,
director of the Civilian Scientific Staff, on work done on board the
“Challenger”, P. Roy. Soc. Lond., 24, 471–544, 1876.
Natland, M. L.: New Species of Foraminifera from off the West Coast of North
America and from the Later Tertiary of the Los Angeles Basin, B. Scripps
Inst. Oceanogr., Tech. Ser., 4, 137–164, 1938.
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T.: Atlas of
Paleocene planktonic foraminifera, SM. C. Paleob., 85, 1–252, 1999.
Özdikmen, H.: Substitute names for some unicellular animal taxa
(Protozoa), Munis Entomol. Zool., 4, 233–256, 2009.
Parker, F. L.: Eastern Mediterranean foraminifera, Reports of the Swedish
Deep Sea Expedition 1947–1948, 8, 217–283, 1958.
Parker, F. L.: Planktonic foraminifera species in Pacific sediments,
Micropaleontology, 8, 219–254, 1962.
Parker, F. L.: Late Tertiary biostratigraphy (planktonic foraminifera) of
tropical Indo-Pacific deep-sea cores, Bull. Am. Paleontol., 52,
114–208, 1967.
Parker, F. L.: Taxonomic notes on some planktonic Foraminifera, in: Progress
in micropaleontology, edited by: Takayanagi, Y. and Saito, T.,
Micropaleontology Press, New York, 258–262, 1976.
Parker, W. K. and Jones, T. R.: On some foraminifera from the North Atlantic
and Arctic Oceans, including Davis Straits and Baffin's Bay, Philos. T. R.
Soc. Lond., 155, 325–441, 1865.
Parker, W. K., Jones, T. R., and Brady, H. B.: On the nomenclature of the
foraminifera. XII: The Species enumerated by d'Orbigny in the “Annales des
Sciences Naturelles”, Vol. 7, 1826, Ann. Mag. Nat. Hist., 3, 15–41,
1865.
Pearson, P. N.: Oxygen Isotopes in Foraminifera: Overview and Historical
Review, The Paleontological Society Papers, 18, 1–38, 2012.
Pearson, P. N. and IODP Expedition 363 Shipboard Scientific Party: A
deep-sea agglutinated foraminifer tube constructed with planktonic
foraminifer shells of a single species, J. Micropalaeontol., 37, 97–104,
2018.
Pearson, P. N. and Kučera, M.: Taxonomy, biostratigraphy, and phylogeny
of Oligocene Turborotalita, in: Atlas of Oligocene planktonic foraminifera, edited by:
Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W.
A., Cushman Found. Foramin. Res. Sp. Publ., 46,
385–392, 2018.
Pearson, P. N., Shackleton, N. J., and Hall, M. A.: Stable isotopic evidence
for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera), J. Geol.
Soc. Lond., 154, 295–302, 1997.
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W.
A.: Atlas of Eocene planktonic foraminifera, Cushman Found.
Foramin. Res. Sp. Publ., 41, 1–507, 2006.
Pearson, P. N., Wade, B. S., and Huber, B. T., Taxonomy, biostratigraphy,
and phylogeny of Oligocene Globigerinitidae (Dipsidripella, Globigerinita and Tenuitella), in: Atlas of
Oligocene planktonic foraminifera, edited by: Wade, B. S., Olsson, R. K.,
Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman Found.
Foramin. Res. Sp. Publ., 46, 429–458, 2018.
Pearson, P. N. and Penny, L.: Coiling directions in the planktonic foraminifer Pulleniatina: A complex eco-evolutionary dynamic spanning millions of years, PLoS ONE, 16, p. 360, 2021.
Poole, C. R. and Wade, B. S.: Systematic taxonomy of the Trilobatus sacculifer plexus and
descendant Globigerinoidesella fistulosa (planktonic foraminifera), J. Syst. Palaeontol., 17, 1989–2030,
2019.
Quillévéré, F., Morard, R., Escarguel, G., Douady, C. J.,
Ujiié, Y., de Garidel-Thoron, T., and de Vargas, C.: Global scale
same-specimen morpho-genetic analysis of Truncorotalia truncatulinoides: a perspective on the
morphological species concept in planktonic foraminifera, Palaeogeogr.
Palaeoecol., 391, 2–12, 2013.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H., Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic, Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, 2017.
Regenberg, M., Nielsen, S. N., Kuhnt, W., Holbourn, A., Garbe-Schönberg,
D., and Andersen, N.: Morphological, geochemical, and ecological differences
of the extant menardiform planktonic foraminifera Globorotalia menardii and Globorotalia cultrata, Mar.
Micropaleontol., 74, 96–107, 2010,
Reuss, A. E.: Neue Foraminiferen aus den Schichten des Osterreichischen
Tertiarbeckens, Denkschr. K. Akad. Wiss. Wien Math.-Naturwiss. Classe, 1,
365–390, 1850.
Rhumbler, L.: Nordische Plankton-Foraminiferen, in: Nordisches Plankton,
edited by: Brandt, K., Lipsius und Tischer, Kiel Lief. 1, 14, 1–32, 1901.
Rhumbler, L.: Die Foraminiferen (Talamophoren) der Plankton-Expedition.
Zugleich Entwurf eines natürlichen Systems der Foraminiferen auf Grund
selektionistischer und mechanisch-physiologischer Faktoren. Ergebnisse der
Plankton-Expedition der Humboldt-Stiftung, 3, 1–331, 1911.
Robbins, L. L.: Environmental significance of morphologic variability in
open-ocean versus ocean-margin assemblages of Orbulina universa, J. Foramin. Res., 18,
326–333, 1988.
Rodhe, W.: Plankton, planktic, planktonic, Limnol. Oceanogr., 19, p. 360, 1974.
Rögl, F. and Bolli, H. M.: Holocene to Pleistocene planktonic
foraminifera of Leg 15, Site 147 (Cariaco Basin Trench, Caribbean Sea) and
their climatic interpretation, Initial Rep. Deep Sea, Leg 15, 553–615, 1973.
Rossignol, L., Eynaud, F., Bourget, J., Zaragosi, S., Fontanier, C.,
Elloz-Zimmermann, N., and Lanfumey, V.: High occurrence of Orbulina suturalis and
“Praeorbulina-like specimens” in sediments of the northern Arabian Sea during the Last
Glacial Maximum, Mar. Micropaleontol., 79, 100–113, 2011.
Saito, T. and Thompson, P. R.: The evolution and taxonomy of the
foraminiferal genus Candeina d'Orbigny 1839, Abstracts with Programs, Geol. Soc. Am.,
8, p. 1084, 1976.
Schiebel, R.: Planktic foraminiferal sedimentation and the marine calcite
budget, Global Biogeochem. Cy., 16, 3-1–3-21, https://doi.org/10.1029/2001GB001459, 2002.
Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean,
Springer, Berlin, Heidelberg, Springer, ISBN 978-3-662-50297-6, 2017.
Schwager, C.: Fossile Foraminiferen von Kar Nikobar, Reise der
Österreichischen Fregatte Novara um Erde in den Jahren 1857, 1858, 1859
unten den Befehlen des Commodore B. Von Wuellerstorf-Urbair, Geologischer
Theil (Zweite Abtheilung, Paläontologische Mittheilungen), 2, 187–268,
1866.
Setty, M. G. A. P.: Occurrence of Neogloboquadrina pachyderma new subspecies in the shelf-slope
sediments of Northern Indian Ocean, Indian J. Mar. Sci., 6, 72–75, 1977.
Siccha, M. and Kucera, M.: ForCenS, a curated database of planktonic
foraminifera census counts in marine surface sediment samples, Sci. Data, 4,
170109, https://doi.org/10.1038/sdata.2017.109, 2017.
Soldani, A.: Testaceographiae ac zoophytographiae parvae et microscopicae
tomi primi pars altera in qua minuta et minima testacea ac zoophyte maris
native vasculis inclusa aeneisquae tabulis insculpta describere et explicare
pergit, Vol. 2, Sienna, Francisco Rossi, 1791.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B., Rappo, S., Poole, C.,
Morard, R., and Stalder, C.: Fossil and genetic evidence for the
polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of
the new genus Trilobatus, PLoS ONE, 10, e0128108, https://doi.org/10.1371/journal.pone.0128108, 2015.
Spezzaferri, S., Coxall, H. K., Olsson, R. K., and Hemleben, C.: Taxonomy,
biostratigraphy, and phylogeny of Oligocene Globigerina, Globigerinella, and Quiltyella, in: Atlas of Oligocene
planktonic foraminifera, edited by: Wade, B. S., Olsson, R. K., Pearson, P.
N., Huber, B. T., and Berggren, W. A., Cushman Found. Foramin.
Res. Sp. Publ., 46, 179–214, 2018a.
Spezzaferri, S., Olsson, R. K., Hemleben, Ch., Wade, B. S., and Coxall, H.
K.: Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene
Globoturborotalita, in: Atlas of Oligocene planktonic foraminifera, edited by: Wade, B. S.,
Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman
Found. Foramin. Res. Sp. Publ., 46, 231–268,
2018b.
Stainbank, S., Spezzaferri, S., Kroon, D., de Leau, E. S., and
Rüggeberg, A.: The planktonic foraminifera Globigerinoides eoconglobatus n. sp. in a
glacial–interglacial context: IODP359 Sites U1467 and U1468, Swiss J. Geosci., 111, 511–522, 2018.
Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H., and Jeffords,
R. M.: Cenozoic planktonic foraminiferal zonation and characteristics of
index forms, Univ. Kansas Paleontol. Contr., 62, 1–425, 1975.
Stainforth, R. M., Lamb, J. L. and Jeffords, R. M.: Rotalia menardii Parker, Jones &
Brady, 1865 (Foraminiferida): Proposed suppression of lectotype and
designation of neotype Z.N.(S.) 2145, Bull. Zool. Nomenclature, 34,
252–262, 1978.
Steineck, P. L. and Fleisher, R. L.: Towards the classical evolutionary
reclassification of Cenozoic Globigerinacea (Foraminiferida), J. Paleontol.,
52, 618–635, 1978.
Stuart, A.: Über Coscinosphaera ciliosa, eine neue Radiolarie, Zeitschr. Wiss. Zool., 16,
328–345, 1866.
Teichert, C.: Benthic – sí, planktic – no!, J. Paleontol., 55, 996–997,
1981.
Thompson, P. R.: Two New Late Pleistocene Planktonic Foraminifera from a Core in the Southwest Indian Ocean, Micropaleontology, 19, 469–474, https://doi.org/10.2307/1484909, 1973.
Todd, R.: Smaller foraminifera, in: Geology of Saipan, Mariana Islands, Pt.
3, Paleontology, U.S. Geological Survey, Professional Paper, U.S. Geological Survey, 280-H, 265–320,
1957.
Ujiié, Y. and Lipps, J. H.: Cryptic diversity in planktonic foraminifera
in the northwest Pacific Ocean, J. Foramin. Res., 39, 145–154, 2009.
Ujiié, Y. and Ishitani, Y.: Evolution of a planktonic foraminifer during
environmental changes in the tropical oceans, PLoS ONE, 11, e0148847, https://doi.org/10.1371/journal.pone.0148847,
2016.
Ujiié, Y., Kimoto, K., and Pawlowski, J.: Molecular evidence for an
independent origin of modern triserial planktonic foraminifera from benthic
ancestors, Mar. Micropaleontol., 69, 334–340, 2008.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and
revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and
calibration to the geomagnetic polarity and astronomical time scale,
Earth-Sci. Rev., 104, 111–142, 2011.
Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W.
A.: Atlas of Oligocene planktonic foraminifera, Cushman Foundation Special
Publication, Cushman Foundation for Foraminiferal Research, ISBN electronic: 9781970168419 46, 524 pp., 2018a.
Wade, B. S., Pearson, P. N., Olsson, R. K., Fraass, A. J., Leckie, R. M.,
and Hemleben, C.: Taxonomy, biostratigraphy, and phylogeny of Oligocene and
lower Miocene Dentoglobigerina and Globoquadrina, in: Atlas of Oligocene planktonic foraminifera, edited
by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren,
W. A., Cushman Found. Foramin. Res. Sp. Publ.,
46, 331–384, 2018b.
Wang, L.: Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South
China Sea: implications for monsoon climate change during the last glacial
cycle, Palaeogeogr. Palaeoecol., 161, 381–394, 2000.
Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H., and Kucera, M.: Vertical
niche partitioning between cryptic sibling species of a cosmopolitan marine
planktonic protest, Mol. Ecol., 21, 4063–4073, 2012.
Weiner, A., Weinkauf, M., Kurasawa, A., Darling, K., Kucera, M., and Grimm,
G. W.: Phylogeography of the tropical planktonic foraminifera lineage
Globigerinella reveals isolation inconsistent with passive dispersal by ocean currents,
PLoS ONE, 9, e92148, https://doi.org/10.1371/journal.pone.0092148, 2014.
Weiner, A., Weinkauf, M., Kurasawa, A., Darling, K. F., and Kucera, M.:
Genetic and morphometric evidence for parallel evolution of the
Globigerinella calida morphotype, Mar. Micropaleontol., 114, 19–35, 2015.
Wetzel, O.: Plate explanations of Rhumbler's “Plankton- Expedition”, The
Micropaleontologist, 3, 33–40, 1949.
Wiesner, H.: Die Foraminiferen. In: Deutsche Südpolar Expedition
1901–1903, Bd. 20, edited by: von Drygalski, E., W. de Gruyter, W. de Gruyter & Co., Berlin, Leipzig,
53–165, 1931.
Williams, M., Schmidt, D. N., Wilkinson, I. P., Miller, C. G., and Taylor, P. D.: The type material of the Miocene to Recent species Globigerinoides sacculifer (Brady) revisited, J. Micropalaeontol., 25, 153–156, https://doi.org/10.1144/jm.25.2.153, 2006.
Williamson, W. C.: On the recent Foraminifera of Great Britain, The Ray Society, London, 1–107, https://doi.org/10.5962/bhl.title.139719, 1858.
WoRMS Editorial Board: World Register of Marine Species, https://doi.org/10.14284/170, http://www.marinespecies.org, last access: 4 April 2020.
Young, J. R., Wade, B. S., and Huber B. T. (Eds.): pforams@mikrotax website,
http://www.mikrotax.org/pforams, last access: 4 April 2020.
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
To aid researchers working with living planktonic foraminifera, we provide a comprehensive...