Articles | Volume 42, issue 1
https://doi.org/10.5194/jm-42-13-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-42-13-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Holocene pteropod distribution across the base of the south-eastern Mediterranean margin: the importance of the > 63 µm fraction
Valentina Beccari
Department of Geosciences, University of Fribourg, Chemin Du
Musée 6, 1700, Fribourg, Switzerland
Ahuva Almogi-Labin
Geological Survey of Israel, Jerusalem, 32 Yesha'ayahu Leibowitz,
9692100, Israel
Daniela Basso
Department of Earth and Environmental Sciences, University of
Milano
– Bicocca, CoNISMa, ULR of the University of Milano-Bicocca, Piazza della
Scienza 4, 20126, Milan, Italy
Giuliana Panieri
Department of Geosciences, CAGE–Centre for Arctic Gas Hydrate,
Environment and Climate, UiT The Arctic University of Norway in Tromsø,
9037 Tromsø, Norway
Yizhaq Makovsky
Dr. Moses Strauss Department of Marine Geosciences and Hatter
Department of Marine Technology, Leon H. Charney School of Marine Sciences
(CSMS), University of Haifa, Haifa, 3498838, Israel
Irka Hajdas
Laboratory of Ion Beam Physics, Swiss Federal Institute of
Technology
Zurich, 8093 Zurich, Switzerland
Silvia Spezzaferri
CORRESPONDING AUTHOR
Department of Geosciences, University of Fribourg, Chemin Du
Musée 6, 1700, Fribourg, Switzerland
Related authors
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Maxim Rubin-Blum, Eyal Rahav, Guy Sisma-Ventura, Yana Yudkovski, Zoya Harbozov, Or Bialik, Oded Ezra, Anneleen Foubert, Barak Herut, and Yizhaq Makovsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-1285, https://doi.org/10.5194/egusphere-2024-1285, 2024
Short summary
Short summary
Geochemical cycles and biodiversity are altered at transition zones of chemosynthetic ecosystems, chemotones. We asked if burrowing alters the functionality of these habitats. We surveyed the seafloor, analyzed sediment properties, and explored microbial communities in ghost shrimp burrows. We made an exciting discovery of chemosynthetic biofilms, linking them to macromolecule turnover and nutrient cycling, using metagenomics. This phenomenon may play an important role in biogeochemical cycles.
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024, https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Short summary
The lake drilling project at Lake Hallstatt (Austria) successfully cored 51 m of lake sediments. This was achieved through the novel drilling platform Hipercorig. A core-log seismic correlation was created for the first time of an inner Alpine lake of the Eastern Alps. The sediments cover over 12 000 years before present with 10 (up to 5.1 m thick) instantaneous deposits. Lake Hallstatt is located within an UNESCO World Heritage area which has a rich history of human salt mining.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Anika Donner, Paul Töchterle, Christoph Spötl, Irka Hajdas, Xianglei Li, R. Lawrence Edwards, and Gina E. Moseley
Clim. Past, 19, 1607–1621, https://doi.org/10.5194/cp-19-1607-2023, https://doi.org/10.5194/cp-19-1607-2023, 2023
Short summary
Short summary
This study investigates the first finding of fine-grained cryogenic cave minerals in Greenland, a type of speleothem that has been notably difficult to date. We present a successful approach for determining the age of these minerals using 230Th / U disequilibrium and 14C dating. We relate the formation of the cryogenic cave minerals to a well-documented extreme weather event in 1889 CE. Additionally, we provide a detailed report on the mineralogical and isotopic composition of these minerals.
Mathew Stiller-Reeve, Claudio Argentino, Kate Alyse Waghorn, Sunil Vadakkepuliyambatta, Dimitri Kalenitchenko, and Giuliana Panieri
Geosci. Commun., 6, 1–9, https://doi.org/10.5194/gc-6-1-2023, https://doi.org/10.5194/gc-6-1-2023, 2023
Short summary
Short summary
In this paper, we describe a process in which geoscientists corresponded with school classes in three different countries using handwritten letters and Polaroid photo albums. The stories they told were based on their experiences during a research expedition in the Arctic. We evaluated the process and show some of the benefits the students experienced from their correspondence with the scientists in this way.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Giulia Piazza, Valentina A. Bracchi, Antonio Langone, Agostino N. Meroni, and Daniela Basso
Biogeosciences, 19, 1047–1065, https://doi.org/10.5194/bg-19-1047-2022, https://doi.org/10.5194/bg-19-1047-2022, 2022
Short summary
Short summary
The coralline alga Lithothamnion corallioides is widely distributed in the Mediterranean Sea and NE Atlantic Ocean, where it constitutes rhodolith beds, which are diversity-rich ecosystems on the seabed. The boron incorporated in the calcified thallus of coralline algae (B/Ca) can be used to trace past changes in seawater carbonate and pH. This paper suggests a non-negligible effect of algal growth rate on B/Ca, recommending caution in adopting this proxy for paleoenvironmental reconstructions.
Valentina Alice Bracchi, Giulia Piazza, and Daniela Basso
Biogeosciences, 18, 6061–6076, https://doi.org/10.5194/bg-18-6061-2021, https://doi.org/10.5194/bg-18-6061-2021, 2021
Short summary
Short summary
Ultrastructures of Lithothamnion corallioides, a crustose coralline alga collected from the Atlantic and Mediterranean Sea at different depths, show high-Mg-calcite cell walls formed by crystals with a specific shape and orientation that are unaffected by different environmental conditions of the living sites. This suggests that the biomineralization process is biologically controlled in coralline algae and can have interesting applications in paleontology.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Claudio Argentino, Kate Alyse Waghorn, Stefan Bünz, and Giuliana Panieri
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-58, https://doi.org/10.5194/bg-2021-58, 2021
Preprint withdrawn
Short summary
Short summary
We investigated sulfate and methane cycling in sediments of the SW Barents Sea associated with a shallow gas accumulation. The depth of the sulfate-methane transition zone ranges between 3.5 m and 29.2 m, and all methane is consumed within the sediment. Results from this study are important to better understand the dynamic of the sulfate-methane transition and to predict its response to future scenarios of increasing methane fluxes in Arctic continental shelves affected by ocean warming.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, Thomas Krengel, and Anneleen Foubert
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-82, https://doi.org/10.5194/cp-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study describes the development of a cold-water Coral mound in the southeast alboran sea over the last 300 ky. Mound development follows interglacial-glacial cycles.
Haoyi Yao, Wei-Li Hong, Giuliana Panieri, Simone Sauer, Marta E. Torres, Moritz F. Lehmann, Friederike Gründger, and Helge Niemann
Biogeosciences, 16, 2221–2232, https://doi.org/10.5194/bg-16-2221-2019, https://doi.org/10.5194/bg-16-2221-2019, 2019
Short summary
Short summary
How methane is transported in the sediment is important for the microbial community living on methane. Here we report an observation of a mini-fracture that facilitates the advective gas transport of methane in the sediment, compared to the diffusive fluid transport without a fracture. We found contrasting bio-geochemical signals in these different transport modes. This finding can help to fill the gap in the fracture network system in modulating methane dynamics in surface sediments.
L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann
Biogeosciences, 12, 6945–6954, https://doi.org/10.5194/bg-12-6945-2015, https://doi.org/10.5194/bg-12-6945-2015, 2015
Short summary
Short summary
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays, chimaeras) from the Swiss Jura to get ecological information. The main finding is that the extinct shark Asteracanthus (Hybodontiformes) could inhabit reduced salinity areas, although previous studies on other European localities always resulted in a clear marine isotopic signal for this genus. We propose a mainly marine ecology coupled with excursions into areas of lower salinity in our study site.
C. Consolaro, T. L. Rasmussen, G. Panieri, J. Mienert, S. Bünz, and K. Sztybor
Clim. Past, 11, 669–685, https://doi.org/10.5194/cp-11-669-2015, https://doi.org/10.5194/cp-11-669-2015, 2015
Short summary
Short summary
A sediment core collected from a pockmark field on the Vestnesa Ridge (~80N) in the Fram Strait is presented. Our results show an undisturbed sedimentary record for the last 14 ka BP and negative carbon isotope excursions (CIEs) during the Bølling-Allerød interstadials and during the early Holocene. Both CIEs relate to periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere, suggesting an apparent correlation with warm climatic events.
Related subject area
Palaeoceanography and palaeoenvironment
Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to sea surface temperature
Transient micropaleontological turnover across a late Eocene (Priabonian) carbon and oxygen isotope shift on Blake Nose (NW Atlantic)
Cambrian Furongian–Middle Ordovician conodonts in the northeastern margin of the South China Block (Chuzhou, Anhui province) and their paleogeographic implications
Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
South Georgia marine productivity over the past 15 ka and implications for glacial evolution
Paleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association
Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Bo Hu, Shuangying Li, Cheng Cheng, Min Li, Wei Xie, and Xing Wei
J. Micropalaeontol., 43, 283–302, https://doi.org/10.5194/jm-43-283-2024, https://doi.org/10.5194/jm-43-283-2024, 2024
Short summary
Short summary
This study conducted systematic fieldwork and sample collection for the Cambrian Furongian–Middle Ordovician strata in the northeastern margin of the South China Block to establish a conodont biostratigraphic sequence and discussed the influence of seawater depth, climate, water temperature, and ocean currents on the biogeographic zonation of conodonts and the paleogeographic implications for some conodont species.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Giulia Barbieri and Stefano Claudio Vaiani
J. Micropalaeontol., 37, 203–230, https://doi.org/10.5194/jm-37-203-2018, https://doi.org/10.5194/jm-37-203-2018, 2018
Short summary
Short summary
The challenge between benthic foraminifera and ostracoda is open: which is the most reliable microfossil group for precise palaeoenvironmental reconstructions? Results from a lagoonal succession of the Romagna coast (Italy) reveal that the winner is ostracoda, due to their higher abundance, higher differentiation, and precise relationships between species and ecological parameters. Nevertheless, palaeoenvironmental stress and additional details are provided by benthic foraminifera.
Cited articles
Alkalay, R., Zlatkin, O., Katz, T., Herut, B., Halicz, L., Berman-Frank, I.,
and Weinstein, Y.: Carbon export and drivers in the southeastern Levantine
Basin, Deep-Sea Res. Pt. II, 171, 104713, https://doi.org/10.1016/j.dsr2.2019.104713,
2020.
Almogi-Labin, A.: Stratigraphic and paleoceanographic significance of Late
Quaternary pteropods from deep-sea cores in the Gulf of Aqaba (Elat) and
northernmost Red Sea, Mar. Micropaleontol., 7, 53–72,
https://doi.org/10.1016/0377-8398(82)90015-9, 1982.
Almogi-Labin, A.: Population dynamics of planktic Foraminifera and Pteropoda
– Gulf of Aqaba, Red Sea, P. Roy. Neth. Acad. Sci. B, 87, 481–511,
1984.
Almogi-Labin, A. and Reiss, Z.: Quaternary pteropods from Israel, Rev.
Española Micropaleontol., 9 5–48,
https://doi.org/10.1016/0031-0182(86)90013-1, 1977.
Almogi-Labin, A., Hemleben, C., and Deuser, W. G.: Seasonal variation in the
flux of euthecosomatous pteropods collected in a deep sediments trap in the
Sargasso Sea, Deep-Sea Res. Pt. I, 35,
441–464, https://doi.org/10.1016/0198-0149(88)90020-9, 1988.
Almogi-Labin, A., Hemleben, C., Meischner, D., and Erlenkeuser, H.:
Paleoenvironmental events during the last 13,000 years in the central Red
Sea as recorded by pteropoda, Paleoceanography, 6, 83–98, 1991.
Almogi-Labin, A., Hemleben, C., and Meischner, D.: Carbonate preservation and
climatic changes in the central Red Sea during the last 380 kyr as recorded
by pteropods, Mar. Micropaleontol., 33, 87–107, 1998.
Almogi-Labin, A., Edelman-Furstenberg, Y., and Hemleben, C.: Variations in
biodiversity of thecosomatous pteropods during the Late Quaternary as a
response to environmental changes in the Gulf of Aden-Red Sea-Gulf of Aqaba
ecosystems, in: Aqaba-Eilat, the Improbable Gulf, Environment,
Biodiversity and Preservation, edited by: Por, D., The Hebrew University Magnes Press,
Jerusalem, 31–48, 2008.
Basso, D., Beccari, V., Almogi-Labin, A., Hyams-Kaphzan, O., Weissman, A.,
Makovsky, Y., Rueggeberg, A., and Spezzaferri, S.: Macro-and micro-fauna from
cold seeps in the Palmahim Disturbance (Israeli off-shore), with description
of Waisiuconcha corsellii n. sp. (Bivalvia, Vesicomyidae), Deep-Sea
Res. Pt. II, 171, 104723, https://doi.org/10.1016/j.dsr2.2019.104723, 2020.
Bè, A. W. H. and Gilmer, R. W.: A zoogeographic and taxonomic review of
euthecosomatous Pteropoda, in: Oceanic micropaleontology, edited by: Ramsay
A. T. S.,
Academic Press, New York, 733–808, 1997.
Beccari, V., Basso, D., Spezzaferri, S., Rüggeberg, A., Neuman, A., and
Makovsky, Y.: Preliminary video-spatial analysis of cold seep bivalve beds
at the base of the continental slope of Israel (Palmahim Disturbance),
Deep-Sea Res. Pt. II, 171, 104664, https://doi.org/10.1016/j.dsr2.2019.104664, 2020.
Behar, F. and Beaumont, V.: Rock-Eval 6 Technology: Performances and
Developments, Oil Gas Sci. Tech.-Rev. IFP, 56, 111–134,
https://doi.org/10.2516/ogst:2001013, 2001.
Benson, W. H.: Account of Oxygyrus a new genus of pelagian shells
allied to the
genus Atlanta of Lesueur, with a note on some other pelagian shells
lately taken on
board of the ship Malcolm, J. Asiatic Soc. Bengal, 4, 173–176, 1835.
Berger, W. H.: Deep-sea carbonate: pteropod distribution and the aragonite
compensation depth, Deep-Sea Res., 25, 447–452,
https://doi.org/10.1016/0146-6291(78)90552-0, 1978.
Berger, W. H.: Preservation of Foraminifera, Short Course No. 6, Society
Economic, Paleontologists Mineralogists, University of California, 105–155, ISBN 0608056766, 9780608056760, 1979.
Berner, R. A.: Sedimentation and dissolution of pteropods in the ocean, in:
The fate of fossil fuel CO2 in the
oceans, edited by: Andersen, N. R. and Malahoff, A., Springer New York, NY, Plenum Press,
243–260, ISBN 978-1-4899-5018-5, 1977.
Biekart, J. W.: Euthecosomatous pteropods as paleohydrological and
paleoecological indicators in a Tyrrhenian deep-sea core, Palaeogeogr.
Palaeocl., 71, 205–224,
https://doi.org/10.1016/0031-0182(89)90050-3, 1989.
Blanc-Vernet, L., Chamley, H., and Froget, C.: Paleoclimatological analysis
of a core from the northwestern Mediterranean. Comparison of the results of
three studies: Foraminifera, Pteropoda and sedimentology, Palaeogeogr.
Palaeocl., 6, 215–235,
https://doi.org/10.1016/0031-0182(69)90015-7, 1969.
Bogi, C. and Galil, B. S: The bathybenthic and pelagic molluscan fauna off
the Levantine coast, Eastern Mediterranean, Boll. Malacol., 39, 79–90, 2004.
Boltovskoy, D.: Pteropodos thecosomados del Atlantico suboccidental,
Malacologia, 11, 121–140, 1971.
Bosc, L. A. G.: Histoire naturelle des coquilles, contenant leur
description, les moeurs des animaux qui les habitent et leurs usages,
Deterville, Paris, 1, 343; 2, 330; 3, 292; 4, 280; 5, 255, de Crapelet, Deterville, Paris, https://doi.org/10.5962/bhl.title.51350, 1801.
Brady, H. B.: Supplementary note on the foraminifera of the Chalk of the New Britain group, Geol. Mag., 4, 534–536, 1877.
Buccheri, G. and Torelli, L.: Stratigraphy and paleoclimatic evolution of
the cores BS-77-15 and BS77-33 (Sardinia Basin, Western Tyrrhenian Sea by
mean of pteropod assemblages, Acta Naturalia de l'Ateneo Parmense, 17,
73–94, 1981.
Cita, M. B. and Zocchi, M.: Distribution patterns of benthic foraminifera on
the floor of the Mediterranean
Sea, Oceanol. Acta, 1, 445–462, 1978.
Clarke, K. R. and Gorley, R. N.: Getting started with PRIMER v7, PRIMER-E:
Plymouth, Plymouth Marine Laboratory, 20, 2015.
Coleman, D. F., Austin Jr., J. A., Ben-Avraham, Z., Makovsky, Y., and
Tchernov, D.: Seafloor pockmarks, deep water corals, and cold seeps along
the continental margin of Israel, Oceanography 25, 40–41, 2012.
Corselli, C. and Grecchi, G.: Considerazioni su di una popolazione di
Cavolinia gibbosa gibbosa del Mediterraneo orientale, Boll.
Malacol., 23, 83–91, 1987.
Corselli, C. and Grecchi, G.: Considerazioni sui Thecosomata attuali del
Bacino Mediterraneo, Lavori della Società Italiana di Malacologia, 24,
120–130, 1990.
de Blainville, H. M. D.: Hyale, Hyalæa (Malacoz.), in:
Dictionnaire des Sciences Naturelles, Levrault, edited by: Cuvier, F.,
Strasbourg and Le Normant,
Paris, 22, 65–83, 1821.
Dessandier, P. A., Borrelli, C., Yao, H., Sauer, S., Hong, W. L., and
Panieri,
G.: Foraminiferal δ18O reveals gas hydrate dissociation in
Arctic and North Atlantic Ocean sediments, Geo-Mar. Lett., 40, 1–17,
https://doi.org/10.1007/s00367-019-00635-6, 2020.
de Vera, A. and Seapy, R. R.: Atlanta selvagensis, a new species of heteropod
mollusc fron the Northeastern Atlantic Ocean: (Gastropoda: Carinarioidea),
Vieraea, 34, 45–54, 2006.
d'Orbigny, A. D.: Voyage dans l'Amérique méridionale (le
Brésil, la république orientale de l'Uruguay, la République
argentine, la Patagonie, la république du Chili, la république de
Bolivia, la république du Pérou), exécuté pendant les
années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833, Tome 5(3)
Mollusques, i–xliii, 1–758, 1835.
Eschscholtz, J. F.: Zoologischer Atlas, enthaltend Abbildungen und
Beschreibungen neuer Thierarten, während des Flottcapitains von Kotzebue
zweiter Reise um die Welt, auf der Russisch-Kaiserlichen Kriegsschlupp
Predpriaetië in den Jahren 1823–1826, Reimer, Berlin,
1–18, https://doi.org/10.5962/bhl.title.152182, 1829.
Frontier, S: Zooplancton de la région de Nosy-Bé, VI.
Ptéropodes, Hétéropodes–première partie: espèces
holonéritiques et néritiques-internes, Cahiers ORSTOM,
Océanography, 11, 273–289, 1973.
Furnestin, M. L.: Aspects of the zoogeography of the Mediterranean
plankton, Zoogeography and diversity of Plankton, Halsted Press, University of California,
5, 191–253, ISBN 0470267984, 9780470267981, 1979.
Garfunkel, Z., Arad, A., and Almagor, G.: The Palmahim disturbance and its
regional setting, Geol. Surv. Israeli Bull., 72, 1–56, 1979.
Gertman, I., Zodiatis, G., Ozer, T., Goldman, R., and Herut, B.: Renewal of
deep water in vicinity of the Eastern Levantine slope, Rapport Commission
Internationale Mer Méditerranée, 41, 1–124, 2016.
Giamali, C., Kontakiotis, G., Koskeridou, E., Ioakim, C., and Antonarakou,
A.: Key Environmental Factors Controlling Planktonic Foraminiferal and
Pteropod Community's Response to Late Quaternary Hydroclimate Changes in the
South Aegean Sea (Eastern Mediterranean), J. Mar. Sci. Eng., 8,
709,
https://doi.org/10.3390/jmse8090709, 2020, 2020.
Gómez, F., González, N.,
Echevarría, F., and García, C. M.: Distribution and Fluxes of
Dissolved Nutrients in the Strait of Gibraltar and its Relationships to
Microphytoplankton Biomass, Estuar. Coast. Shelf Sci., 51, 439–449,
https://doi.org/10.1006/ecss.2000.0689, 2000.
Gray, J. E.: Figures of molluscous animals, selected from
various authors, edited by: Gray, M. E., Longman, Brown, Green and Longmans,
London, 4, 219, https://doi.org/10.5962/bhl.title.10461, 1850.
Grecchi, G.: Molluschi planctonici e bentonici in sedimentsi sapropelitici
del Quaternario della Dorsale Mediterranea, Boll. Malacol., 20, 1–34, 1984.
Grecchi, G. and Bertolotti, M.: Interpretazione paleoclimatica della carota
CG18-BAN82 basata sull'analisi di Thecosomata Euthecosomata del Quaternario
del Mediterraneo orientale, Boll. Mus. Reg. Sci. Nat, Torino, 6, 73–132,
1988.
Gvirtzman, Z., Reshef, M., Buch-Leviatan, O., Groves-Gidney, G., Karcz, Z.,
Makovsky, Y., and Ben-Avraham, Z.: Bathymetry of the Levant Basin:
interaction of salt-tectonics and surficial mass movements, Mar. Geol., 360,
25–39, https://doi.org/10.1016/j.margeo.2014.12.001, 2015.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J. F., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal BP), Radiocarbon, 62, https://doi.org/10.1017/RDC.2020.68, 2020.
Hennekam, R.: High-frequency climate variability in the late Quaternary
Eastern Mediterranean: Associations of Nile discharge and Basin overturning
circulation dynamics (Doctoral dissertation, Utrectct Studies in Earth
Science, Department of Earth Sciences), 78, 2015.
Herman, Y.: Paleoclimatic and paleohydrologic record of Mediterranean
deep-sea cores based on pteropods, planktonic and benthonic foraminifera,
Rev. Española Micropaleontol., 13, 171–200, 1981.
Herman, Y. and Rosenberg, P. E.: Pteropods as bathymetric indicators, Mar.
Geol., 7, 169–173, https://doi.org/10.1016/0025-3227(69)90039-5, 1969.
Herut, B., Almogi-Labin, A., Jannink, N., and Gertman, I.: The seasonal
dynamics of nutrient and chlorophyll-a concentration on the SE Mediterranean
shelf-slope, Oceanol. Acta, 23, 771–782,
https://doi.org/10.1016/S0399-1784(00)01118-X., 2000.
Hyams-Kaphzan, O., Lubinevsky, H., Crouvi, O., Harlavan, Y., Herut, B.,
Kanari, M., Tom, M., and Almogi-Labin, A.: Live and dead deep-sea benthic
foraminiferal macrofauna of the Levantine Basin (SE Mediterranean) and their
ecological characteristics, Deep-Sea Res. Pt. I, 136, 72–83,
https://doi.org/10.1016/j.dsr.2018.04.004, 2018.
Janssen, A. W.: Quaternary to Recent holoplanktonic Mollusca (Gastropoda)
from bottom samples of the Eastern Mediterranean Sea: systematics,
morphology, Boll. Malacol., 48, 1–105, 2012.
Janssen, A. W. and Peijnenburg, K. T.: Holoplanktonic Mollusca: development
in
the Mediterranean Basin during the last 30 million years and their future,
The Mediterranean Sea, Springer, Dordrecht, 341–362, ISBN 9789400767034, 2014.
Johnson, R., Manno, C., and Ziveri, P.: Spring distribution of shelled
pteropods across the Mediterranean Sea, Biogeosciences Discuss. [preprint],
https://doi.org/10.5194/bg-2020-53, 2020.
Katz, O., Ashkenazi, L., Sultan-Levi, S., Abramovich, S., Almogi-Labin, A.,
and Hyams-Kaphzan, O.: Characterization of recent deep-sea debrites in the
Eastern Mediterranean based on foraminiferal taphonomy, Geol. Soc. Lond.
Spec. Publ., 500, 377–391, https://doi.org/10.1144/SP500-2019-170, 2020.
Lalli, C. M. and Wells Jr., F. E.: Brood protection in an epipelagic
thecosomatous
pteropod, Spiratella (“Limacina”) inflata
(D'Orbigny), Bull. Mar. Sci., 23, 933–941, 1973.
Lesueur, C. A.: Mémoire sur quelques nouvelles espèces d'animaux
mollusques et radiaires recueillis dans la Méditerranée près de
Nice, Nouveau Bull. Sci. Soc. Phil. Paris, 3, 281–285, 1813.
Lesueur, C. A.: Mémoire sur deux nouveaux genres de mollusques, Atlante
et Atlas, J. Phys. Chim. Hist. Nat., 85, 390–393, 1817.
Linnaeus, C.: Systema naturae, per regna tria
naturae, secundum classes, ordines, genera, species, cum caracteribus,
differentiis, synonymis, locis, Editio duodecima, reformata, I, 2,
533–1327, https://doi.org/10.5962/bhl.title.559, 1767.
Makovsky, Y., Rüggeberg, A., Bialik, O., Foubert, A., Almogi-Labin, A.,
Alter, Y., Bampas, V., Basso, D., Feenstra, E., Fentimen, R., Friedheim, O.,
Hall, E., Hazan, O., Herut, B., Kallergis, E., Karageorgis, A.,
Kolountzakis, A., Manousakis, L., Nikolaidis, M., Pantazoglou, F., Rahav,
E., Renieris, P., Schleinkofer, N., Sisma Ventura, G., Stasnios, V.,
Weissman, A., and the EUROFLEETS2 SEMSEEP partecipants: South East
Mediterranean SEEP Carbonate, R/V AEGAEO, Cruise EUROFLEETS2 SEMSEEP,
20 September–1 October 2016, Piraeus (Greece) – Piraeus (Greece) Cruise
Summary Report,
1–62, 2016.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S.,
Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M., Sofianos,
S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y., Bergamasco, A.,
Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F., Font, J.,
Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire, M.,
Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E., Kroskos,
G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Ozsoy, E., Pascual, A.,
Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou, J.,
Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou, G.:
Physical forcing and physical/biochemical variability of the Mediterranean
Sea: a review of unresolved issues and directions for future research, Ocean
Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, 2014.
Mojtahid, M., Manceau, R., Schiebel, R., Hennekam, R., and De Lange, G. J.:
Thirteen thousand years of southeastern Mediterranean climate variability
inferred from an integrative planktic foraminiferal-based approach,
Paleoceanography, 30, 402–422, https://doi.org/10.1002/2014PA002705, 2015.
Molnár, M., Janovics, R., Major, I., Orsovszki, J., Gönczi, R., Veres, M., Leonard, A. G., Castle, S. M., Lange, T. E., Wacker, L., Hajdas, I., and Jull, A. J. T.: Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary), Radiocarbon, 55, 665–676, https://doi.org/10.1017/S0033822200057829, 2013.
Nemec, M., Wacker, L., Hajdas, I., and Gaggeler, H.: Alternative methods for cellulose preparation for AMS measurement, Radiocarbon, 52, 1358–1370, https://doi.org/10.1017/S0033822200046440, 2010.
Niebuhr, C.: Icones rerum naturalium, quas in itinere orientali depingi curavit Petrus Forskål, prof. Haun., post mortem auctoris, edidit: Niebuhr, C., Hauniae, Copenhague, Möller, 1–15, 1776.
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.: Interannual
thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the
Levantine surface and intermediate water masses, SE Mediterranean Sea, Glob.
Plan. Changes, 151, 60–67, https://doi.org/10.1016/j.gloplacha.2016.04.001,
2017.
Ozer, T., Gertman, I., Gildor, H., Goldman, R., and Herut, B.: Evidence for
recent thermohaline variability and processes in the deep water of the
Southeastern Levantine Basin, Mediterranean Sea, Deep-Sea Res. Pt. II, 171,
104651,
https://doi.org/10.1016/j.dsr2.2019.104651, 2020.
Pierrot-Bults, A. C. and Peijnenburg K. T. C. A.: Pteropods, in: Encyclopedia
of marine geosciences, edited by: Harff, J.,
Meschede, M., Petersen, S., and Thiede, J.,
Springer, 1–10, https://doi.org/10.1007/978-94-007-6644-0_88-1, 2015.
Quoy, J. R. C. and Gaimard, J. P.: Observations zoologiques faites à
bord de l'Astrolabe, en mai 1826, dans le Détroit de Gibraltar, Ann.
Sci. Naturell., Féruss, XII, 1–145, 1827.
Rampal, J.: Biogeographie mediterranenne d'apres l'etude des Thecosomes
(Mollusques pelagiques), Journée etudes Systematique et
Biogéographique Meditéranée, Cagliari, Commission Internationale
Exploration Scientifique Mer Meditérranée, 45–54, 1980.
Ramsey C.: OxCal 4.4, Electronic document, https://c14.arch.ox.ac.uk/oxcal.html (last access: 15 March 2023), 2021.
Rang, S.: Notice sur quelques mollusques nouveaux appartenant au genre
Cléodore, et etablissement et monographie des sous-genre
Créseis, Ann. Sci. Nat., 13, 302–319,
1828.
Roether, W., Klein, B., Manca, B. B., Theocharis, A., and Kioroglou, S.:
Transient Eastern Mediterranean deep waters in response to the massive
dense-water output of the Aegean Sea in the 1990s, Prog. Oceanogr., 74,
540–571, https://doi.org/10.1016/j.pocean.2007.03.001, 2007.
Rubin-Blum, M., Antler, G., Turchyn, A. V., Tsadok, R., Goodman-Tchernov,
B. N., Shemesh, E., Austin, J. A., Coleman, D. F., Makovsky, Y., Sivan, O.,
and
Tchernov, D.: Hydrocarbon-related microbial processes in the deep sediments
of the Eastern Mediterranean Levantine Basin, FEMS Microbiol. Ecol., 87,
780–796, https://doi.org/10.1111/1574-6941.12264, 2014.
Rzehak, A.: Die Foraminiferen Fauna der Neogenformation der Umgebung von Mähr-Ostrau, Verhandlungen des naturforschenden Vereines in Brünn, 24, 77–126, 1886.
Sarnthein, M., Thiede, J., Pflaumann, U., Erlenkauser, H., Fütterer, D.,
Koopmann, B., Lange, H., and Seibold, E.: Atmospheric and oceanic circulation
patterns off Northwest Africa during the past 25 million years, in: Geology
of the Northwest
African Continental Margin, edited by: Von Rad,
U., Hinz, K., Sarnthein, M., and Seibold, E., Springer, Berlin, Heidelberg,
545–604, https://doi.org/10.1007/978-3-642-68409-8_24, 1982.
Singh, A., Ramachandran, K., Samsuddin, M., Nisha, N., and Haneeshkumar, V.:
Significance of pteropods in deciphering the late Quaternary sea-level
history along the southwestern Indian shelf, Geo-Mar. Lett., 20, 243–252,
https://doi.org/10.1007/s003670000056, 2001.
Sisma-Ventura, G., Bialik, O. M., Makovsky, Y., Rahav, E., Ozer, T., Kanari,
M., Marmen, S., Blekin, N., Guy-Haim, T., Antler, G., and Herut, B.: Cold
seeps alter the near-bottom biogeochemistry in the ultraoligotrophic
Southeastern Mediterranean Sea, Deep-Sea Res. Pt. I, 83, 103744, https://doi.org/10.1016/j.dsr.2022.103744, 2022.
Smith, E. A.: Report on the Heteropoda collected by HMS Challenger during
the years 1873–1876, Report on the Scientific Results of the Voyage of
H. M. S. Challenger during the years 1873–76, Johnson Reprint Company Ltd., Zoology, 23,
1–51, 1888.
Spiro, B., Ezra, O., Najorka, J., Delgado, A., Bialik, O., Ben-Avraham, Z.,
Coleman, D., and Makovsky, Y.: Mineralogical, chemical and stable C and O
isotope characteristics of surficial carbonate structures from the
Mediterranean offshore Israel indicate microbial and thermogenic methane
origin, Geo-Mar. Lett., 41, 1–17,
https://doi.org/10.1007/s00367-021-00684-w, 2021.
Stein, R.: Accumulation of Organic Carbon in Marine Sediments, Lecture Notes
in Earth Sciences, 34, Springer, New York, ISBN 978-0387538136, 1990.
Stubbing, H. G.: Pteropoda, Sci. Rep.,
John Murray Expedition 5, 15–33, 1938.
Synal, H.-A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Accelerator Mass Spectrometry, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Thiede, J. and Jünger, B.: Faunal and floral indicators of ocean coastal
upwelling (NW African and Peruvian continental margins), in: Upwelling
systems: Evolution since the
Early Miocene, edited by: Summerhayes,
C. P., Prell, W. L., and Emeis, K. C., Geol. Soc. Spec. Publ., 64,
47–76, https://doi.org/10.1144/GSL.SP.1992.064.01, 1992.
Thiriot-Quievreux, C.: Variations saisonniéres des mollusques dans le
plancton de la région de Banyuls-sur-Mer (zone Sud du Golfe de Lion)
novembre 1965–decembre 1967, Vie Milieu Sér. B, 20, 35–83, 1968.
Van der Spoel, S.: Euthecosomata, a group with remarkable developmental
stages (Gastropoda-Pteropoda), Brill, 1–375, ISBN 978-90-04-07153-7, 1967.
Vinogradov, M. Y. E.: Food sources for the deep-water fauna, Speed of
decomposition of dead Pteropoda, Doklady Akademii Nauk SSSR, 138, 1439–1442,
1961.
Violanti, D., Grecchi, G., and Castradori, D.: Paleoenvironmental
interpretation of Core BAN88-11GC (Eastern Mediterranean,
Pleistocene-Holocene), on the grounds of Foraminifera, Thecosoma and
Calcareous Nannofossils, Il Quaternario, 4, 13–39, 1991.
Waldman, R., Brüggemann, N. Bosse, A., Spall, M., Somot, S., and Sevault,
F.: Overturning the Mediterranean Thermohaline Circulation, Geophys. Res.
Lett., 45, 8407–8415, https://doi.org/10.1029/2018GL078502, 2018.
Wall-Palmer, D., Smart, C. W., Hart, M. B., Leng, M. J., Borghini, M.,
Manini,
E., Aliani, S., and Conversi, A.: Late Pleistocene pteropods, heteropods and
planktonic foraminifera from the Caribbean Sea, Mediterranean Sea and Indian
Ocean, Micropaleontology, 60, 557–578,
2014.
Wall-Palmer, D., Smart, C. W., Kirby, R., Hart, M. B., Peijnenburg K. T. C.
A.,
and Janssen A. W.: A review of ecology, palaeontology and distribution of
atlantid heteropods (Caenogastropoda: Pterotracheoidea: Atlantidae), J.
Molluscan Stud., 82, 221–234,
https://doi.org/10.1093/mollus/eyv063, 2016.
Wall-Palmer, D., Janssen, A. W., Goetze, E., Choo, L. Q., Mekkes, L., and
Peijnenburg, K. T. C. A.: Fossil-calibrated molecular phylogeny of atlantid
heteropods (Gastropoda, Pterotracheoidea), BMC Evol. Biol., 20,
124,
https://doi.org/10.1186/s12862-020-01682-9, 2020.
Weikert, H.: Plankton and the pelagic environment, in Red Sea, Red Sea, Key environ ments, edited by:
Edwards, A. J. and Head, S. M., Pergamon Press, Oxford, 90–111, 1987.
Wells, F. E.: Effects of mesh size on estimation of population densities of
tropical euthecosomatous pteropods, Mar. Biol., 20, 347–350,
https://doi.org/10.1007/BF00354276, 1973.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic
Mapping Tools: Improved version Released, EOS Trans. AGU, 94, 409–410,
https://doi.org/10.1002/2013EO450001, 2013.
Wormuth, J. H.: Vertical distributions and diel migrations of Euthecosomata
in the northwest Sargasso Sea, Deep-Sea Res. Pt. A, 28, 1493–1515,
https://doi.org/10.1016/0198-0149(81)90094-7, 1981.
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in...