Articles | Volume 43, issue 1
https://doi.org/10.5194/jm-43-187-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-187-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
Serena N. Dameron
CORRESPONDING AUTHOR
Department of Earth, Geographic, and Climate Sciences, University of Massachusetts, Amherst, MA 01003, USA
R. Mark Leckie
Department of Earth, Geographic, and Climate Sciences, University of Massachusetts, Amherst, MA 01003, USA
David Harwood
Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Reed Scherer
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL 60115, USA
Peter-Noel Webb
School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA
Related authors
No articles found.
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Heather Furlong and Reed Paul Scherer
J. Micropalaeontol., 43, 269–282, https://doi.org/10.5194/jm-43-269-2024, https://doi.org/10.5194/jm-43-269-2024, 2024
Short summary
Short summary
Diatom assemblages are vital components of the Antarctic ecosystem and nutrient supply chain, and they are often utilized as paleoclimate proxies to better understand past climatic changes. We demonstrate enhanced diatom production and accumulation in the outer Amundsen Sea during a Mid-Pliocene interglacial that coincides with pulses of ice-rafted terrestrial debris, providing compelling evidence that iceberg calving seeds diatom productivity in the Southern Ocean.
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Sarah U. Neuhaus, Slawek M. Tulaczyk, Nathan D. Stansell, Jason J. Coenen, Reed P. Scherer, Jill A. Mikucki, and Ross D. Powell
The Cryosphere, 15, 4655–4673, https://doi.org/10.5194/tc-15-4655-2021, https://doi.org/10.5194/tc-15-4655-2021, 2021
Short summary
Short summary
We estimate the timing of post-LGM grounding line retreat and readvance in the Ross Sea sector of Antarctica. Our analyses indicate that the grounding line retreated over our field sites within the past 5000 years (coinciding with a warming climate) and readvanced roughly 1000 years ago (coinciding with a cooling climate). Based on these results, we propose that the Siple Coast grounding line motions in the middle to late Holocene were driven by relatively modest changes in regional climate.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Related subject area
Palaeoceanography and palaeoenvironment
Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to sea surface temperature
Transient micropaleontological turnover across a late Eocene (Priabonian) carbon and oxygen isotope shift on Blake Nose (NW Atlantic)
Cambrian Furongian–Middle Ordovician conodonts in the northeastern margin of the South China Block (Chuzhou, Anhui province) and their paleogeographic implications
South Georgia marine productivity over the past 15 ka and implications for glacial evolution
Paleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association
Late Holocene pteropod distribution across the base of the south-eastern Mediterranean margin: the importance of the > 63 µm fraction
Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Bo Hu, Shuangying Li, Cheng Cheng, Min Li, Wei Xie, and Xing Wei
J. Micropalaeontol., 43, 283–302, https://doi.org/10.5194/jm-43-283-2024, https://doi.org/10.5194/jm-43-283-2024, 2024
Short summary
Short summary
This study conducted systematic fieldwork and sample collection for the Cambrian Furongian–Middle Ordovician strata in the northeastern margin of the South China Block to establish a conodont biostratigraphic sequence and discussed the influence of seawater depth, climate, water temperature, and ocean currents on the biogeographic zonation of conodonts and the paleogeographic implications for some conodont species.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Giulia Barbieri and Stefano Claudio Vaiani
J. Micropalaeontol., 37, 203–230, https://doi.org/10.5194/jm-37-203-2018, https://doi.org/10.5194/jm-37-203-2018, 2018
Short summary
Short summary
The challenge between benthic foraminifera and ostracoda is open: which is the most reliable microfossil group for precise palaeoenvironmental reconstructions? Results from a lagoonal succession of the Romagna coast (Italy) reveal that the winner is ostracoda, due to their higher abundance, higher differentiation, and precise relationships between species and ecological parameters. Nevertheless, palaeoenvironmental stress and additional details are provided by benthic foraminifera.
Cited articles
Anderson, J. B.: Ecology and Distribution of Foraminifera in the Weddell Sea of Antarctica, Micropaleontology, 21, 69–96, https://doi.org/10.2307/1485156, 1975.
Anderson, J. B. and Bartek, L. R.: Cenozoic glacial history of the Ross Sea revealed by intermediate resolution seismic reflection data combined with drill site information, in: The Antarctic Paleoenvironment: A Perspective on Global Change: Part One, edited by: Kennett, J. P. and Warkne, D. A., Antarctic Research Series, 56, 231–263, https://doi.org/10.1029/ar056p0231, 1992.
Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson, M., and Stone, J. O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Sci. Rev., 100, 31–54, https://doi.org/10.1016/j.quascirev.2013.08.020, 2014.
Askin, R. A. and Markgraf, V.: Palynomorphs from the Sirius Formation, Dominion Range, Antarctica, Antarct. J. US, 21, 34–35, 1986.
Askin, R. A. and Raine, J. I.: Oligocene and early Miocene terrestrial palynology of the Cape Roberts drillhole CRP-2/2A, Victoria Land Basin, Antarctica, Terra Antarctica, 7, 493–501, 2000.
Barrett, P. J.: Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project, Antarctica, in: Glacial Processes and Products, edited by: Hambrey, M. J., Christoffersen, P., Glasser, N. F., and Hubbard, B., International Association of Sedimentologists Special Publication 39, 259–287, 2007.
Barrett, P. J., Elston, D. P., Harwood, D. M., McKelvey, B. C., and Webb, P.-N.: Mid-Cenozoic record of glaciation and sea-level change on the margin of the Victoria Land basin, Antarctica, Geology, 15, 634–637, https://doi.org/10.1130/0091-7613(1987)15<634:mrogas>2.0.co;2, 1987.
Bart, P. J., Coquereau, L., Warny, S., and Majewski, W.: In situ foraminifera in grounding zone diamict: A working hypothesis, Antarct. Sci., 28, 313–321, https://doi.org/10.1017/s0954102016000055, 2016.
Bart, P. J., Krogmeier, B. J., Bart, M. P., and Tulaczyk, S.: The paradox of a long grounding during West Antarctic Ice Sheet retreat in Ross Sea, Sci. Rep.-UK, 7, 1262, https://doi.org/10.1038/s41598-017-01329-8, 2017.
Bombard, S. E., Leckie, R. M., Browne, I. M., Shevenell, A. E., McKay, R. M., Harwood, D. M., and IODP Expedition 374 Scientists: Miocene Climatic Optimum and Middle Miocene Climate Transition: A foraminiferal record from the Central Ross Sea, Antarctica, J. Micropalaeontol., 2024.
Brady, H. T.: Miocene diatom flora from the bottom cores at RISP site J-9, Antarct. J. US, 13, 123–124, 1978.
Brady, H. T.: Diatom biostratigraphy in sediment cores from RISP site J-9, Antarct. J. US, 14, 130, 1979.
Brady, H. T.: Interpretation of sediment cores from the Ross Ice Shelf Site J-9, Antarctica, Nature, 303, 510–511, https://doi.org/10.1038/303510a0, 1983.
Brady, H. T. and Martin, H.: Ross Sea region in the Middle Miocene: A glimpse into the past, Science, 203, 437–438, https://doi.org/10.1126/science.203.4379.437, 1979.
Browning, J. A. and Somerville, D. A.: Access hole drilling through the Ross Ice Shelf, Antarct. J. US, 13, 55, 1978.
Browning, J. A., Bigl, R. A., and Somerville, D. A.: Hot-water drilling and coring at site J-9, Ross Ice Shelf, Antarct. J. US, 14, 60–61, 1979.
Bruchhausen, P. M., Raymond, J. A., Jacobs, S. S., DeVries, A. L., Thorndike, E. M., and DeWitt, H. H.: Fish, Crustaceans, and the Sea Floor Under the Ross Ice Shelf, Science, 203, 449–451, https://doi.org/10.1126/science.203.4379.449, 1979.
Budillon, G., Cordero, S. G., and Salusti, E.: On the dense water spreading off the Ross Sea shelf (Southern Ocean), J. Marine Syst., 35, 207–227, https://doi.org/10.1016/s0924-7963(02)00082-9, 2002.
Budillon, G., Pacciaroni, M., Cozzi, S., Rivaro, P., Catalano, G., Ianni, C., and Cantoni, C.: An optimum multiparameter mixing analysis of the shelf waters in the Ross Sea, Antarct. Sci., 15, 105–118, https://doi.org/10.1017/s095410200300110x, 2003.
Budillon, G., Castagno, P., Aliani, S., Spezie, G., and Padman, L.: Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break, Deep-Sea Res. Pt. I, 58, 1002–1018, https://doi.org/10.1016/j.dsr.2011.07.002, 2011.
Capotondi, L., Bergami, C., Giglio, F., Langone, L., and Ravaioli, M.: Benthic foraminifera distribution in the Ross Sea (Antarctica) and its relationship to oceanography, Boll. Soc. Paleontol. I., 57, 187–202, https://doi.org/10.4435/bspi.2018.12, 2018.
Castagno, P., Falco, P., Dinniman, M. S., Spezie, G., and Budillon, G.: Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf, J. Marine Syst., 166, 37–49, https://doi.org/10.1016/j.jmarsys.2016.05.006, 2017.
Chow, J. M. and Bart, P. J.: West Antarctic Ice Sheet grounding events on the Ross Sea outer continental shelf during the middle Miocene, Palaeogeogr. Palaeoecl., 198, 169–186, https://doi.org/10.1016/s0031-0182(03)00400-0, 2003.
Clough, J. W. and Hansen, B. L.: The Ross Ice Shelf Project, Science, 203, 433–434, https://doi.org/10.1126/science.203.4379.433, 1979.
Coccioni, R. and Galeotti, S.: Foraminiferal biostratigraphy and paleoecology of the CIROS-1 Core from McMurdo Sound (Ross Sea, Antarctica), Terra Antarctica, 4, 103–117, 1997.
Coenen, J. J., Scherer, R. P., Warny, S., Castañeda, I. S., Powell, R. D., Tulaczyk, S. M., Puttkammer, R., Hodson, T. O., and Wei, J. H.-C.: Whillans Ice Stream from UpB to WGZ: Siliceous microfossils, palynomorphs, and biomarker evidence of sub-glacial processes and ice stream history, in: AGU Fall Meeting Abstracts, San Francisco, 14–18 December 2015, C11C-0771, 2015.
Conte R., Rebesco, M., De Santis, L., Colleoni, F., Bensi, M., Bergamasco, A., Kovacevic, V., Gales, J., Zgur, F., Accettella, D., De Steur, L., Ursella, L., McKay, R., Kim, S., Lucchi, R. G., and the IODP Expedition 374 Scientists: Bottom current control on sediment deposition between the Iselin Bank and the Hillary Canyon (Antarctica) since the Late Miocene: An integrated seismic-oceanographic approach, Deep-Sea Res. Pt. I, 176, 103606, https://doi.org/10.1016/j.dsr.2021.103606, 2021.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53–57, 2005.
Culver, S. J. and Buzas, M. A.: Distribution of Recent benthic Foraminifera off the North American Atlantic Coast, Smithsonian Contributions to the Marine Sciences, No. 6, Washington, D.C., 512 pp., https://doi.org/10.5479/si.01960768.6.1, 1980.
D'Agostino, A. E.: Foraminiferal biostratigraphy, paleoecology, and systematics of DSDP Site 273, Ross Sea, Antarctica, M.S. thesis, Northern Illinois University, https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/3174 (last access: 11 June 2024), 1980.
D'Agostino, A. E. and Webb, P. -N.: Interpretation of mid-Miocene to Recent lithostratigraphy and biostratigraphy at DSDP Site 273, Ross Sea, Antarct. J. US, 15, 118–120, 1980.
Davison, B. J., Hogg, A. E., Gourmelen, N., Jakob, L., Wuite, J., Nagler, T., Greene, C. A., Andreasen, J., and Engdahl, M. E.: Annual mass budget of Antarctic ice shelves from 1997 to 2021, Sci. Adv., 9, eadi0186, https://doi.org/10.1126/sciadv.adi0186, 2023.
De Angelis, H. and Skvarca, P.: Glacier surge after ice shelf collapse, Science, 299, 1560–1562, https://doi.org/10.1126/science.1077987, 2003.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 42, 245–249, 2003.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
DeConto, R. M., Pollard, D., and Kowalewski, D.: Modeling Antarctic ice sheet and climate variations during Marine Isotope Stage 31, Global Planet. Change, 88, 45–52, https://doi.org/10.1016/j.gloplacha.2012.03.003, 2012.
De Santis, L., Anderson, J. B., Brancolini, G., and Zayatz, I.: Seismic record of late Oligocene through Miocene glaciation on the central and eastern continental shelf of the Ross Sea, in: Geology and Seismic Stratigraphy of the Antarctic Margin, edited by: Cooper, A. K., Barker, P. F., and Brancolini, G., Antar. Res. S., 68, 235–260, https://doi.org/10.1029/ar068p0235, 1995.
Duncan, B., McKay, R., Levy, R., Naish, T., Prebble, J. G., Sangiorgi, F., Krishnan, S., Hoem, F., Clowes, C., Jones, T. D., Gasson, E., Kraus, C., Kulhanek, D. K., Meyers, S. R., Moossen, H., Warren, C., Willmott, V., Ventura, G. T., and Bendle, J.: Climatic and tectonic drivers of late Oligocene Antarctic ice volume, Nat. Geosci., 15, 819–825, https://doi.org/10.1038/s41561-022-01025-x, 2022.
Fielding, C. R. and Thomson, M. R. A.: Studies from Cape Roberts Project Initial Report on CRP-2/2A, Ross Sea, Antarctica, Terra Antarctica, 6, 1–173, 1999.
Fielding, C. R., Naish, T. R., Woolfe, K. J., and Lavelle, M. A.: Facies analysis and sequence stratigraphy of CRP-2/2A, Victoria Land Basin, Terra Antarctica, 7, 323–338, 2000.
Fillon, R. H.: Late Cenozoic paleo-oceanography of the Ross Sea, Antarctica, Geol. Soc. Am. Bull., 86, 839–845, https://doi.org/10.1130/0016-7606(1975)86<839:lcpotr>2.0.co;2, 1975.
Galeotti, S. and Coccioni, R.: Foraminiferal analysis of the Miocene CRP-1 Core (Ross, Sea, Antarctica), Terra Antarctica, 5, 521–526, 1998.
Galeotti, S., Cita, M. B., and Coccioni, R.: Foraminiferal biostratigraphy and palaeoecology from two intervals of the CRP2/2A Drilhole, Victoria Land Basin, Antarctica, Terra Antarctica, 7, 473–478, 2000.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M., Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico, F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition, Science, 352, 76–80, https://doi.org/10.1126/science.aab0669, 2016.
Gasson, E., DeConto, R. M., Pollard, D., and Levy, R. H.: Dynamic Antarctic ice sheet during the early to mid-Miocene, P. Natl. Acad. Sci. USA, 113, 3459–3464, https://doi.org/10.1073/pnas.1516130113, 2016.
Gilmour, A. E.: Ross Ice Shelf Sea Temperatures, Science, 203, 438–439, https://doi.org/10.1126/science.203.4379.438, 1979.
Greene, D. G.: Foraminiferal Biostratigraphy and Paleoecology of the Ross Ice Shelf Project Site J9, unpublished M.S. thesis, Ohio State University, 1990.
Greenwood, S. L., Simkins, L. M., Halberstadt, A. R. W., Prothro, L. O., and Anderson, J. B.: Holocene reconfiguration and readvance of the East Antarctic Ice Sheet, Nat. Commun., 9, 3176, https://doi.org/10.1038/s41467-018-05625-3, 2018.
Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L., and Anderson, J. B.: Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica, The Cryosphere, 10, 1003–1020, https://doi.org/10.5194/tc-10-1003-2016, 2016.
Halberstadt, A. R. W., Chorley, H., Levy, R. H., Naish, T., DeConto, R. M., Gasson, E., and Kowalewski, D. E.: CO2 and tectonic controls on Antarctic climate and ice-sheet evolution in the mid-Miocene, Earth Planet. Sc. Lett., 564, 116908, https://doi.org/10.1016/j.epsl.2021.116908, 2021.
Halberstadt, A. R. W., Kowalewski, D. E., and DeConto, R. M.: Reconciling persistent sub-zero temperatures in the McMurdo Dry Valleys, Antarctica, with Neogene dynamic marine ice-sheet fluctuations, Geology, 50, 557–561, https://doi.org/10.1130/g49664.1, 2022.
Hartman, J. D., Sangiorgi, F., Salabarnada, A., Peterse, F., Houben, A. J. P., Schouten, S., Brinkhuis, H., Escutia, C., and Bijl, P. K.: Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions, Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, 2018.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Eelectron., 4, 1–9, 2001.
Harwood, D. M. and Scherer, R. P.: Diatom biostratigraphy and paleoenvironmental significance of reworked Miocene diatomaceous clasts in sediments from RISP site J-9, Antarct. J. US, 23, 31–34, 1988.
Harwood, D. M., Scherer, R. P., and Webb, P.-N.: Multiple Miocene marine productivity events in West Antarctica as recorded in upper Miocene sediments beneath the Ross Ice Shelf (Site J-9), Mar. Micropaleontol., 15, 91–115, https://doi.org/10.1016/0377-8398(89)90006-6, 1989.
Hattermann, T., Nøst, O. A., Lilly, J. M., and Smedsrud, L. H.: Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica, Geophys. Res. Lett., 39, L12605, https://doi.org/10.1029/2012gl051012, 2012.
Hayes, D. E. and Frakes, L. A.: General synthesis, Deep Sea Drilling Project Leg 28, in: Initial Reports of the Deep Sea Drilling Project, 28, edited by: Hayes, D. E., Frakes, L. A., Barrett, P. J., Burns, D. A., Chen, P.-H., Ford, A. B., Kaneps, A. G., Kemp, E. M., McCollum, D. W., Piper, D. J. W., Wall, R. E., Webb, P. N., Kemp, E. M., McCollum, D. W., Piper, D. J. W., Wall, R. E., and Webb, P. N., U.S. Government Printing Office, Washington, D.C., 919–942, https://doi.org/10.2973/dsdp.proc.28.136.1975, 1975.
Hayward, B. W., Grenfell, H. R., Reid, C. M., and Hayward, K. A.: Recent New Zealand Shallow-Water Benthic Foraminifera: Taxonomy, Ecologic Distribution, Biogeography, and use in Paleoenvironmental Assessment, New Zealand Geological Survey Paleontological Bulletin, 75, 258 pp., 1999.
Horrigan, S. G.: Primary production under the Ross Ice Shelf, Antarctica, Limnol. Oceanogr., 26, 378–382, https://doi.org/10.4319/lo.1981.26.2.0378, 1981.
Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A., and Steig, E. J.: West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing, Nat. Geosci., 12, 718–724, https://doi.org/10.1038/s41561-019-0420-9, 2019.
Houtz, R. and Meijer, R.: Structure of the Ross Sea Shelf from profiler data, J. Geophys. Res., 75, 6592–6597, https://doi.org/10.1029/jb075i032p06592, 1970.
Houtz, R. E. and Davey, F. J.: Seismic profiler and sonobuoy measurements in Ross Sea, Antarctica, J. Geophys. Res., 78, 3448–3468, https://doi.org/10.1029/jb078i017p03448, 1973.
Ishman, S. E. and Webb, P.-N.: Late Neogene foraminiferal record and geological history inferred from Dry Valley Drilling Cores 10 and 11, Taylor Valley, Antarctica, Antarct. J. US, 21, 13–15, 1986.
Ishman, S. E. and Webb, P.-N.: Late Neogene benthic foraminifera from the Victoria land basin margin, Antarctica- Application to glacio-eustatic and tectonic events, Revue de Paléobiologie, Volume speìcial 2, Benthos, 86, 523–551, 1988.
Jacobs, S., Bruchhausen, P., and Ardai, J.: Physical oceanography of the Ross Sea, Antarct. J. US, 13, 83–85, 1978.
Jacobs, S. S., Gordon, A. L., and Ardai Jr., J. L. A.: Circulation and Melting Beneath the Ross Ice Shelf, Science, 203, 439–443, https://doi.org/10.1126/science.203.4379.439, 1979.
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.: Melting of ice shelves and the mass balance of Antarctica, J. Glaciol., 38, 375–387, https://doi.org/10.3189/s0022143000002252, 1992.
Jiang, X. and Harwood, D. M.: A glimpse of early Miocene Antarctic forests: Palynomorphs from RISP diatomite, Antarct. J. US, 27, 3–6, 1993.
Johnson, J. S., Venturelli, R. A., Balco, G., Allen, C. S., Braddock, S., Campbell, S., Goehring, B. M., Hall, B. L., Neff, P. D., Nichols, K. A., Rood, D. H., Thomas, E. R., and Woodward, J.: Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica, The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, 2022.
Kellogg, D. E. and Kellogg, T. B.: Revised age for RISP sediments and implications for the glacial history of Antarctica, Antarct. J. US, 16, 61–63, 1980.
Kellogg, T. B. and Kellogg, D. E.: Pleistocene sediments beneath the Ross Ice Shelf, Nature, 293, 130–133, https://doi.org/10.1038/293130a0, 1981.
Kellogg, T. B. and Kellogg, D. E.: Interpretation of sediment cores from the Ross Ice Shelf Site J-9, Antarctica: Reply by Thomas B. Kellogg & Davida E. Kellogg, Nature, 303, 511–513, https://doi.org/10.1038/303511a0, 1983.
Kellogg, D. E. and Kellogg, T. B.: Diatom biostratigraphy of sediment cores from beneath the Ross Ice Shelf, Micropaleontology, 32, 74–94, https://doi.org/10.2307/1485703, 1986.
Kemp, E. M. and Barrett, P. J.: Antarctic glaciation and early Tertiary vegetation, Nature, 258, 507–508, https://doi.org/10.1038/258507a0, 1975.
Kennett, J. P.: Fauna of the Ross Sea; Ecology and Distribution of Foraminifera; Ecology and Distribution of Foraminifera, Part 6, New Zealand Department of Scientific and Industrial Research Bulletin, 186, 48 pp., 1968.
Kennett, J. P.: Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography, J. Geophys. Res., 82, 3843–3860, https://doi.org/10.1029/jc082i027p03843, 1977.
Kennett, J. P.: The development of planktonic biogeography in the Southern Ocean during the Cenozoic, Mar. Micropaleontol., 3, 301–345, 1978.
Kilfeather, A. A., Cofaigh, C. Ó., Lloyd, J. M., Dowdeswell, J. A., Xu, S., and Moreton, S. G.: Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures, Geol. Soc. Am. Bull., 123, 997–1015, https://doi.org/10.1130/b30282.1, 2011.
Kingslake, J., Scherer, R. P., Albrecht, T., Coenen, J., Powell, R. D., Reese, R., Stansell, N. D., Tulaczyk, S., Wearing, M. G., and Whitehouse, P. L.: Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene, Nature, 558, 430–434, https://doi.org/10.1038/s41586-018-0208-x, 2018.
Koci, B. R.: Hot water drilling in Antarctic firn, and freezing rates in water-filled boreholes, CRREL Special Report 84-34, 101–103, 1982.
Kucera, M. and Schönfeld, J.: The origin of modern oceanic foraminiferal faunas and Neogene climate change, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., The Micropalaeontological Society, Special Publications, 2, 409–425, https://doi.org/10.1144/tms002, 2007.
Kulhanek, D. K., Levy, R. H., Clowes, C. D., Prebble, J. G., Rodelli, D., Jovane, L., Morgans, H. E. G., Kraus, C., Zwingmann, H., Griffith, E. M., Scher, H. D., McKay, R. M., and Naish, T. R.: Revised chronostratigraphy of DSDP Site 270 and late Oligocene to early Miocene paleoecology of the Ross Sea sector of Antarctica, Global Planet. Change, 178, 46–64, https://doi.org/10.1016/j.gloplacha.2019.04.002, 2019.
Leckie, R. M. and Olson, H. C.: Foraminifera as proxies for sea-level change on siliciclastic margins, in: Micropaleontologic Proxies for Sea-Level Change and Stratigraphic Discontinuities, edited by: Olson, H. C. and Leckie, R. M., SEPM Society for Sedimentary Geology Special Publication No. 75, 5–19, https://doi.org/10.2110/pec.03.75.0005, 2003.
Leckie, R. M. and Webb, P.-N.: Foraminifera of DSDP Site 270 as indicators of the evolving Ross Sea in the late Oligocene/early Miocene, Antarct. J. US, 15, 117–118, 1980.
Leckie, R. M. and Webb, P.-N.: Late Oligocene–early Miocene glacial record of the Ross Sea, Antarctica: Evidence from DSDP Site 270, Geology, 11, 578–582, https://doi.org/10.1130/0091-7613(1983)11<578:lomgro>2.0.co;2, 1983.
Leckie, R. M. and Webb, P.-N.: Candeina antarctica, n. sp. and the phylogenetic history and distribution of Candeina spp. in the Paleogene-early Neogene of the Southern Ocean, J. Foramin. Res., 15, 65–78, https://doi.org/10.2113/gsjfr.15.2.65, 1985.
Leckie, R. M. and Webb, P.-N.: Late Paleogene and Early Neogene foraminifers of Deep Sea Drilling Project Site 270, Ross, Antarctica, in: Initial Reports of the Deep Sea Drilling Project, 90, edited by: Kennett, J. P., von der Borch, C. C., Baker, P. A., U. S. Government Printing Office, Washington, D.C., 1093–1142, https://doi.org/10.2973/dsdp.proc.90.124.1986, 1986.
Levy, R., Harwood, D., Florindo, F., Sangiorgi, F., Tripati, R., von Eynatten, H., Gasson, E., Kuhn, G., Tripati, A., DeConto, R., Fielding, C., Field, B., Golledge, N., McKay, R., Naish, T., Olney, M., Pollard, D., Schouten, S., Talarico, F., Warny, S., Willmott, V., Acton, G., Panter, K., Paulsen, T., Taviani, M., and SMS Science Team: Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene, P. Natl. Acad. Sci. USA, 113, 3453–3458, https://doi.org/10.1073/pnas.1516030113, 2016.
Levy, R. H., Meyers, S. R., Naish, T. R., Golledge, N. R., McKay, R. M., Crampton, J. S., DeConto, R. M., De Santis, L., Florindo, F., Gasson, E. G. W., Harwood, D. M., Luyendyk, B. P., Powell, R. D., Clowes, C., and Kulhanek, D. K.: Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections, Nat. Geosci., 12, 132–137, https://doi.org/10.1038/s41561-018-0284-4, 2019.
Ling, H. Y. and White, R. J.: Silicoflagellate Mesocena pappii identified in RISP site J-9 core sediments, Antarct. J. US, 145, 126–127, 1979.
Lipps, J. H., Ronan Jr., T. E., and Delaca, T. E.: Life below the Ross Ice Shelf, Antarctica, Science, 203, 447–449, https://doi.org/10.1126/science.203.4379.447, 1979.
Lowry, D. P., Golledge, N. R., Bertler, N. A. N., Jones, R. S., and McKay, R.: Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing, Sci. Adv., 5, eaav8754, https://doi.org/10.1126/sciadv.aav8754, 2019.
Majewski, W.: Benthic foraminifera from Pine Island and Ferrero bays, Amundsen Sea, Pol. Polar Res., 34, 169–200, https://doi.org/10.2478/popore-2013-0012, 2013.
Majewski, W., Wellner, J. S., and Anderson, J. B.: Environmental connotations of benthic foraminiferal assemblages from coastal West Antarctica, Mar. Micropaleontol., 124, 1–15, https://doi.org/10.1016/j.marmicro.2016.01.002, 2016.
Majewski, W., Bart, P. J., and McGlannan, A. J.: Foraminiferal assemblages from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica, Palaeogeogr. Palaeocl., 493, 64–81, https://doi.org/10.1016/j.palaeo.2017.12.041, 2018.
Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J., and Anderson, J. B.: Foraminiferal patterns in deglacial sediment in the western Ross Sea, Antarctica: Life near grounding lines, Paleoceanogr. Paleocl., 35, e2019PA003716, https://doi.org/10.1029/2019pa003716, 2020.
Marschalek, J. W., Zurli, L., Talarico, F., van de Flierdt, T., Vermeesch, P., Carter, A., Beny, F., Bout-Roumazeilles, V., Sangiorgi, F., Hemming, S. R., Pérez, L. F., Colleoni, F., Prebble, J. G., van Peer, T. E., Perotti, M., Shevenell, A. E., Browne, I., Kulhanek, D. K., Levy, R., Harwood, D., Sullivan, N. B., Meyers, S. R., Griffith, E. M., Hillenbrand, C.-D., Gasson, E., Siegert, M. J., Keisling, B., Licht, K. J., Kuhn, G., Dodd, J. P., Boshuis, C., De Santis, L., McKay, R. M., and IODP Expedition 374: A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude, Nature, 600, 450–455, https://doi.org/10.1038/s41586-021-04148-0, 2021.
Martínez-Pérez, C., Greening, C., Bay, S. K., Lappan, R. J., Zhao, Z., Corte, D. D., Hulbe, C., Ohneiser, C., Stevens, C., Thomson, B., Stepanauskas, R., González, J. M., Logares, R., Herndl, G. J., Morales, S. E., and Baltar, F.: Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf, Nat. Commun., 13, 117, https://doi.org/10.1038/s41467-021-27769-5, 2022.
McCollum, D. W.: Diatom stratigraphy of the Southern Ocean, in: Initial Reports of the Deep Sea Drilling Project, 28, edited by: Hayes, D. E., Frakes, L. A., Barrett, P. J., Burns, D. A., Chen, P.-H., Ford, A. B., Kaneps, A. G., Kemp, E. M., McCollum, D. W., Piper, D. J. W., Wall, R. E., and Webb, P. N., U.S. Government Printing Office, Washington, D.C., 515–571, https://doi.org/10.2973/dsdp.proc.28.112.1975, 1975.
McGlannan, A. J., Bart, P. J., Chow, J. M., and DeCesare, M.: On the influence of post-LGM ice shelf loss and grounding zone sedimentation on West Antarctic ice sheet stability, Mar. Geol., 392, 151–169, https://doi.org/10.1016/j.margeo.2017.08.005, 2017.
McKay, R. M., Santis, L. D., Kulhanek, D. K., Ash, J. L., Beny, F., Browne, I. M., Cortese, G., de Sousa, I. M. C., Dodd, J. P., Esper, O. M., Gales, J. A., Harwood, D. M., Ishino, S., Keisling, B. A., Kim, S., Laberg, J. S., Leckie, R. M., Müller, J., Patterson, M. O., Romans, B. W., Romero, O. E., Sangiorgi, F., Seki, O., Shevenell, A. E., Singh, S. M., Sugisaki, S. T., van de Flierdt, T., van Peer, T. E., Xiao, W., and Xiong, Z.: Expedition 374 summary, in: Ross Sea West Antarctic Ice Sheet History, edited by: McKay, R. M., De Santis, L., Kulhanek, D. K., and Expedition 374 Scientists, Proceedings of the International Ocean Discovery Program, 374, College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/iodp.proc.374.101.2019, 2019.
McNeil, D. H.: Cyclammina cyclops, n. sp., in the Eocene Richards Formation, Beaufort Sea area of Arctic Canada, J. Foramin. Res., 18, 114–123, https://doi.org/10.2113/gsjfr.18.2.114, 1988.
Melis, R. and Salvi, G.: Late Quaternary foraminiferal assemblages from western Ross Sea (Antarctica) in relation to the main glacial and marine lithofacies, Mar. Micropaleontol., 70, 39–53, https://doi.org/10.1016/j.marmicro.2008.10.003, 2009.
Mildenhall, D. C.: Terrestrial palynology, in: Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, edited by: Barrett, P. J., DSIR Bulletin, 245, 119–127, 1989.
Murray, J. W.: Ecology and Palaeoecology of Benthic Foraminifera, Longman Scientific & Technical, London, 397 pp., https://doi.org/10.4324/9781315846101, 1991.
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P. J., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Läufer, A., Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322–328, https://doi.org/10.1038/nature07867, 2009.
Neuhaus, S. U., Tulaczyk, S. M., Stansell, N. D., Coenen, J. J., Scherer, R. P., Mikucki, J. A., and Powell, R. D.: Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?, The Cryosphere, 15, 4655–4673, https://doi.org/10.5194/tc-15-4655-2021, 2021.
Olivetti, V., Balestrieri, M. L., Chew, D., Zurli, L., Zattin, M., Pace, D., Drakou, F., Cornamusini, G., and Perotti, M.: Ice volume variations and provenance trends in the Oligocene-early Miocene glaciomarine sediments of the Central Ross Sea, Antarctica (DSDP Site 270), Global Planet. Change, 221, 104042, https://doi.org/10.1016/j.gloplacha.2023.104042, 2023.
Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, Deep-Sea Res. Pt. II, 56, 778–795, https://doi.org/10.1016/j.dsr2.2008.10.033, 2009.
Osterman, L. E. and Kellogg, T. B.: Recent benthic foraminiferal distributions from the Ross Sea, Antarctica: Relation to ecologic and oceanographic conditions, J. Foramin. Res., 9, 250–269, https://doi.org/10.2113/gsjfr.9.3.250, 1979.
Patterson, M. O. and Ishman, S. E.: Neogene benthic foraminiferal assemblages and paleoenvironmental record for McMurdo Sound, Antarctica, Geosphere, 8, 1331–1341, https://doi.org/10.1130/ges00771.1, 2012.
Patterson, M. O., Levy, R. H., Kulhanek, D. K., van de Flierdt, T., Horgan, H., Dunbar, G. B., Naish, T. R., Ash, J., Pyne, A., Mandeno, D., Winberry, P., Harwood, D. M., Florindo, F., Jimenez-Espejo, F. J., Läufer, A., Yoo, K.-C., Seki, O., Stocchi, P., Klages, J. P., Lee, J. I., Colleoni, F., Suganuma, Y., Gasson, E., Ohneiser, C., Flores, J.-A., Try, D., Kirkman, R., Koch, D., and the SWAIS 2C Science Team: Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C), Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, 2022.
Paxman, G. J. G.: Antarctic palaeotopography, Geological Society, London, Memoirs, 56, 231–251, https://doi.org/10.1144/m56-2020-7, 2023.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth and collapse through the past five million years, Nature, 458, 329–332, https://doi.org/10.1038/nature07809, 2009.
Prebble, J. G., Raine, J. I., Barrett, P. J., and Hannah, M. J.: Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica, Palaeogeogr. Palaeocl., 231, 41–57, https://doi.org/10.1016/j.palaeo.2005.07.025, 2006.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Broeke, M. R. van den, and Padman, L.: Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Prothro, L. O., Simkins, L. M., Majewski, W., and Anderson, J. B.: Glacial retreat patterns and processes determined from integrated sedimentology and geomorphology records, Mar. Geol., 395, 104–119, https://doi.org/10.1016/j.margeo.2017.09.012, 2018.
Raine, J. I. and Askin, R. A.: Terrestrial palynology: Age and paleoenvironmental results from CRP-3, Victoria Land Basin, Antarctica, Terra Antarctica, 8, 389–400, 2001.
Raiswell, R. and Tan, M. M.: Diagenesis of sediments beneath the Ross Ice Shelf and their sedimentary history, Nature, 315, 483–485, https://doi.org/10.1038/315483a0, 1985.
Rand, J. H.: Ross Ice Shelf Project drilling, October–December 1976, Antarct. J. US, 12, 150–152, 1977.
Ridha, D., Boomer, I., and Edgar, K. M.: Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean, J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, 2019.
Ronan Jr., T. E., Lipps, J. H., and DeLaca, T. E.: Sediments and life under the Ross Ice Shelf (J-9), Antarctica, Antarct. J. US, 13, 141–142, 1978.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R. D., Pross, J., Flierdt, T. van de, Bohaty, S. M., Levy, R., Williams, T., Escutia, C., and Brinkhuis, H.: Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9, 317, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Savage, M. L. and Ciesielski, P. F.: A revised history of glacial sedimentation in the Ross Sea region, in: Antarctic Earth Science, edited by: Oliver, R. L., James, P. R., and Jago, J. B., Cambridge University Press, Cambridge, 555–559, 1983.
Scherer, R. P.: Quaternary and Tertiary microfossils from beneath Ice Stream B: Evidence for a dynamic West Antarctic Ice Sheet history, Global Planet. Change, 4, 395–412, https://doi.org/10.1016/0921-8181(91)90005-h, 1991.
Scherer, R. P., Harwood, D. M., Ishman, S. E., and Webb, P.-N.: Micropaleontological analysis of sediments from the Crary Ice Rise, Ross Ice Shelf, Antarct. J. US, 23, 34–36, 1988.
Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., and Kamb, B.: Pleistocene Collapse of the West Antarctic Ice Sheet, Science, 281, 82–85, https://doi.org/10.1126/science.281.5373.82, 1998.
Scherer, R. P., Sjunneskog, C. M., Iverson, N. R., and Hooyer, T. S.: Assessing subglacial processes from diatom fragmentation patterns, Geology, 32, 557–560, https://doi.org/10.1130/g20423.1, 2004.
Schrader, H.-J.: Cenozoic planktonic diatom biostratigraphy of the southern Pacific Ocean, in: Initial Reports of the Deep Sea Drilling Project, 35, edited by: Hollister, C. D., Craddock, C., Bogdanov, Y. A., Edgar, N. T., Gieskes, J. M., Haq, B. U., Lawrence, J. R., Rögl, F., Schrader, H.-J., Tucholke, B. E., Vennum, W. R., Weaver, F. M., and Zhivago, V. N., U.S. Government Printing Office, Washington, D.C., 605–671, https://doi.org/10.2973/dsdp.proc.35.136.1976, 1976.
Seidenstein, J., Leckie, R. M., McKay, R., De Santis, L., Harwood, D., and Exp 374 Scientists: Pliocene-Pleistocene warm water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera, IODP Exp 374, J. Micropalaeontol., 2024.
Semensatto, D. L. and Dias-Brito, D.: Alternative saline solutions to float foraminiferal tests, J. Foramin. Res., 37, 265–269, https://doi.org/10.2113/gsjfr.37.3.265, 2007.
Sjunneskog, C. and Scherer, R. P.: Mixed diatom assemblages in glacigenic sediment from the central Ross Sea, Antarctica, Palaeogeogr. Palaeocl., 218, 287–300, https://doi.org/10.1016/j.palaeo.2004.12.019, 2005.
Smith, J. A., Graham, A. G. C., Post, A. L., Hillenbrand, C.-D., Bart, P. J., and Powell, R. D.: The marine geological imprint of Antarctic ice shelves, Nat. Commun., 10, 5635, https://doi.org/10.1038/s41467-019-13496-5, 2019.
Smith, W., Sedwick, P., Arrigo, K., Ainley, D., and Orsi, A.: The Ross Sea in a sea of change, Oceanography, 25, 90–103, https://doi.org/10.5670/oceanog.2012.80, 2012.
Snyder, S. W. and Huber, B. T.: Preparation techniques for use of foraminifera in the classroom, Paleontological Soc. Pap., 2, 231–236, https://doi.org/10.1017/s1089332600003302, 1996.
Steinhauff, D. M.: Paleoecologic and biostratigraphic analysis of Miocene Foraminifera (Protozoa) from glacial-marine sediments, Ross Sea, Antarctica, Unpublished MS Thesis, Ohio State University, 1985.
Steinhauff, D. M. and Webb, P.-N.: Miocene foraminifera from DSDP Site 272 Ross Sea, Antarct. J. US, 22, 125–126, 1987.
Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W., and Holland, D. M.: Intrusion of warm surface water beneath the McMurdo Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 118, 7036–7048, https://doi.org/10.1002/2013jc008842, 2013.
Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and Dowdeswell, J. A.: Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya, Nat. Geosci., 12, 435–440, https://doi.org/10.1038/s41561-019-0356-0, 2019.
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L.: Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography, 19, PA4027, https://doi.org/10.1029/2004PA001022, 2004.
Strong, C. P. and Webb, P.-N.: Lower Miocene foraminifera from CRP-1 drillhole, Terra Antarctica, 5, 515–520, 1998.
Strong, C. P. and Webb, P.-N.: Oligocene and Miocene foraminifera from CRP-2:2A, Victoria Land Basin, Antarctica, Terra Antarctica, 7, 461–472, 2000.
Strong, C. P. and Webb, P.-N.: Lower Oligocene foraminiferal fauna from CRP-3 Drillhole, Victoria Land Basin, Antarctica, Terra Antarctica, 8, 347–358, 2001.
Taviani, M., Hannah, M., Harwood, D. M., Ishman, S. E., Johnson, K., Olney, M., Riesselman, C., Tuzzi, E., Askin, R., Beu, A. G., Blair, S., Cantarelli, V., Ceregato, A., Corrado, S., Mohr, B., Nielsen, S. H. H., Persico, D., Petrushak, S., Raine, J. I., Warny, S., and ANDRILL-SMS Science Team: Palaeontological characterisation and analysis of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica, Terra Antarctica, 15, 113–146, 2008.
Tinto, K. J., Padman, L., Siddoway, C. S., Springer, S. R., Fricker, H. A., Das, I., Tontini, F. C., Porter, D. F., Frearson, N. P., Howard, S. L., Siegfried, M. R., Mosbeux, C., Becker, M. K., Bertinato, C., Boghosian, A., Brady, N., Burton, B. L., Chu, W., Cordero, S. I., Dhakal, T., Dong, L., Gustafson, C. D., Keeshin, S., Locke, C., Lockett, A., O'Brien, G., Spergel, J. J., Starke, S. E., Tankersley, M., Wearing, M. G., and Bell, R. E.: Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry, Nat. Geosci., 12, 441–449, https://doi.org/10.1038/s41561-019-0370-2, 2019.
Uenzelmann-Neben, G., Gohl, K., Hochmuth, K., Salzmann, U., Larter, R. D., Hillenbrand, C.-D., Klages, J. P., PS104, S. T. of E., Afanasyeva, V., Arndt, J. E., Bickert, T., Bohaty, S. M., Dziadek, R., Ebermann, B., Ehrmann, W., Esper, O., Frederichs, T., Freudenthal, T., Gebhardt, C., Küssner, K., Kuhn, G., Najman, Y., Pälike, H., Riefstahl, F., Ronge, T., Scheinert, M., Pereira, P. S., Smith, J. A., Spiegel, C., Flierdt, T. V. de, and Zundel, M.: Deep water inflow slowed offshore expansion of the West Antarctic Ice Sheet at the Eocene-Oligocene transition, Commun. Earth Environ., 3, 36, https://doi.org/10.1038/s43247-022-00369-x, 2022.
Villa, G., Fioroni, C., Persico, D., Roberts, A.P., and Florindo, F.: Middle Eocene to late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity, Paleoceanography, 29, 223–237, https://doi.org/10.1002/2013PA002518, 2014.
Warny, S., Askin, R. A., Hannah, M. J., Mohr, B. A. R., Raine, J. I., Harwood, D. M., Florindo, F., and Team, S. S.: Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene, Geology, 37, 955–958, https://doi.org/10.1130/g30139a.1, 2009.
Webb, P.-N.: Initial Report on Geological Materials Collected at RISP Site J9 1977-78, Ross Ice Shelf Project Management Office, University of Nebraska, Lincoln, 46 pp., 1978.
Webb, P.-N.: Initial Report on Geological Materials Collected at RISP Site J9 1978-79, Ross Ice Shelf Project Management Office, University of Nebraska, Lincoln, 127 pp., 1979.
Webb, P.-N.: Benthic foraminifera, in: Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, edited by: Barrett, P. J., DSIR Bulletin 245, 99–118, 1989.
Webb, P.-N. and Strong, C. P.: Occurrence, stratigraphic distribution and palaeoecology of Quaternary foraminifera from CRP-1, Terra Antarctica, 5, 455–472, 1998a.
Webb, P.-N. and Strong, C. P.: Recycled Pliocene foraminifera from the CRP-1 Quaternary succession, Terra Antarctica, 5, 473–478, 1998b.
Webb, P.-N. and Strong, C. P.: Pliocene benthic foraminifera from CRP-2 (Lithostratigraphic Unit 2.2), Victoria Land Basin, Antarctica, Terra Antarctica, 7, 453–459, 2000.
Webb, P.-N. and Strong, C. P.: Foraminiferal biostratigraphy and palaeoecology in Upper Oligocene–Lower Miocene glacial marine sequences 9, 10, and 11, CRP-2/2A drill hole, Victoria Land Basin, Antarctica, Palaeogeogr, Palaeocl., 231, 71–100, https://doi.org/10.1016/j.palaeo.2005.07.036, 2006.
Webb, P.-N., Ronan, T. E., Jr, Lipps, J. H., and DeLaca, T. E.: Miocene glaciomarine sediments from beneath the southern Ross Ice Shelf, Antarctica, Science, 203, 435–437, https://doi.org/10.1126/science.203.4379.435, 1979.
Webb, P.-N., Leckie, R. M., and Ward, B. L.: Foraminifera (Late Oligocene), in: Antarctic Cenozoic History from the MSSTS-1 Drillhole, McMurdo Sound, Antarctica, edited by: Barrett, P. J., Bulletin in the Miscellaneous Series of the New Zealand Department of Scientific and Industrial Research, 237, 115–125, 1986.
Wrenn, J. H. and Beckman, S. W.: Maceral, Total Organic Carbon, and Palynological Analyses of Ross Ice Shelf Project Site J9 Cores, Science, 216, 187–189, https://doi.org/10.1126/science.216.4542.187, 1982.
Zachos, J. C., Breza, J. R., and Wise, S. W.: Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean, Geology, 20, 569–573, 1992.
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the...