Articles | Volume 43, issue 2
https://doi.org/10.5194/jm-43-283-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-283-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cambrian Furongian–Middle Ordovician conodonts in the northeastern margin of the South China Block (Chuzhou, Anhui province) and their paleogeographic implications
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
School of Geographic Science, Nantong University, Nantong 226019, China
Min Li
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Wei Xie
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Xing Wei
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Related subject area
Palaeoceanography and palaeoenvironment
Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to sea surface temperature
Transient micropaleontological turnover across a late Eocene (Priabonian) carbon and oxygen isotope shift on Blake Nose (NW Atlantic)
Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
South Georgia marine productivity over the past 15 ka and implications for glacial evolution
Paleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association
Late Holocene pteropod distribution across the base of the south-eastern Mediterranean margin: the importance of the > 63 µm fraction
Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Giulia Barbieri and Stefano Claudio Vaiani
J. Micropalaeontol., 37, 203–230, https://doi.org/10.5194/jm-37-203-2018, https://doi.org/10.5194/jm-37-203-2018, 2018
Short summary
Short summary
The challenge between benthic foraminifera and ostracoda is open: which is the most reliable microfossil group for precise palaeoenvironmental reconstructions? Results from a lagoonal succession of the Romagna coast (Italy) reveal that the winner is ostracoda, due to their higher abundance, higher differentiation, and precise relationships between species and ecological parameters. Nevertheless, palaeoenvironmental stress and additional details are provided by benthic foraminifera.
Cited articles
Albanesi, G. L., Giuliano, M. E., Pacheco, F. E., Ortega, G., and Monaldi, C. R.: The Cambrian-Ordovician boundary in the Cordillera Oriental, NW Argentina, Stratigraphy, 12, 19–21, https//doi.org/10.2110/sepmord.015, 2015.
An, T. X.: Recent progress in Cambrian and Ordovician conodont biostratigraphy of China, Geology Society of America, 187, 209–236, https//doi.org/10.1130/spe187-p209, 1981.
An, T. X. (Ed.): Early Paleozoic conodonts in southern China, Peking University Press, Beijing, China, 238 pp., ISBN13209.145, 1987 (in Chinese).
An, T. X. and Zheng, Z. C. (Eds.): Conodonts in the periphery of Ordos Basin, Science Press, Beijing, China, 193 pp., ISBN7030017161, 1990 (in Chinese).
An, T. X., Zhang, F., Xiang,W. D., Zhang, Y. Q., Xu,W. H., Zhang, H. J., Jiang, D. B., Yang, C. S., Lin, L. D., Cui, Z. T., and Yang, X. C. (Eds.): The Conodonts of North China and the Adjacent Regions, Science Press, Beijing, China, 223 pp., ISBN130312295, 1983 (in Chinese with English abstract).
Anhui Provincial Bureau of Geology and Mineral Resources (Ed.): Regional Geology of Anhui Province, Geological Press, Beijing, China, 270 pp., ISBN13038.206, 1987 (in Chinese).
Bagnoli, G., Peng, S. C., Qi, Y. P., and Wang, C. Y.: Conodonts from the Wa'ergang section, China: A potential GSSP for the uppermost stage of the Cambrian, Riv. Ital. Paleontol. S., 123, 1–10, https//doi.org/10.13130/2039-4942/8003, 2017.
Barnes, C. R.: The proposed Cambrian-Ordovician global boundary stratotype and point (GSSP) in western Newfoundland, Canada, Geol. Mag., 125, 381–414, https://doi.org/10.1017/S0016756800013042, 1988.
Barnes, C. R.: Impacts of climate-ocean-tectonic changes on early Paleozoic conodont ecology and evolution evidenced by the Canadian part of Laurentia, Palaeogeogr. Palaeocl., 549, 109092, https://doi.org/10.1016/j.palaeo.2019.02.018, 2020.
Barnes, C. R. and Fåhræus, L. E.: Provinces, communities, and the proposed nektobenthic habit of Ordovician conodontophorids, Lethaia, 8, 133–149, https//doi.org/10.1111/j.1502-3931.1975.tb01308.x, 1975.
Bergström, S. M. and Ferretti, A.: Conodonts in Ordovician biostratigraphy, Lethaia, 50, 424–439, https//doi.org/10.1111/let.12191, 2017.
Bergström, S. M. and Sweet, W. C.: Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky, and its lateral equivalents in Ohio and Indiana, Bulletin of American Paleontology, 50, 271–441, 1966.
Berner, R. A.: Modeling atmospheric O2 over Phanerozoic, Geochim. Cosmochim. Ac., 65, 685–694, https//doi.org/10.1016/S0016-7037(00)00572-X, 2001.
Branson, E. B. and Mehl, M. G.: Conodont studies, Univsity of Missouri Studies, 8, 1–349, 1933.
Chen, J.: Aspects of Cambrian-Ordovician boundary in Dayangcha, China, Geologiska Föreningen i Stockholm Förhandlingar, 110, 2, 120, https://doi.org/10.1080/11035898809452650, 1988.
Cocks, L. and Torsvik, T. H.: The dynamic evolution of the Palaeozoic geography of eastern Asia, Earth-Sci. Rev., 117, 40–79, https//doi.org/10.1016/j.earscirev.2012.12.001, 2013.
Cooper, R. A., Nowlan, G. S., and Williams, S. H.: Global stratotype section and point for base of the Ordovician System, Episodes Journal of International Geoscience, 24, 19–28, https://doi.org/10.18814/epiiugs/2001/v24i1/005, 2001.
Ding, L. S.: Ordovician conodont biostratigraphy and lithofacies paleogeography, in: Conodonts in the Lower Yangtze Region, Indicators of Maturity of Biostratigraphic and Organic Systems, edited by: Wang, C., Science Press, Beijing, China, 16–31, ISBN7030034627, 1993 (in Chinese).
Dong, X. P.: Late Cambrian to Early Ordovician conodonts in Chuzhou, Anhui, Graduate Thesis Collection of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 1, 83–111, 1987 (in Chinese with English abstract).
Dong, X. P.: A potential candidate for the Middle-Upper Cambrian boundary stratotype-An introduction to the Paibi Section in Huayuan, Hunan, Acta Geol. Sin.-Engl., 01, 62–79, 94–97, 1990 (in Chinese with English abstract).
Dong, X. P.: Cambrian conodont sequences in South China, Chinese Science Part D: Earth Science, 04, 339–346, 1999 (in Chinese).
Dong, X. P. and Zhang, H. Q.: Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China, J. Paleontol., 91, 1–89, https//doi.org/10.1017/jpa.2015.43, 2017.
Dong, X. P., Repetski, J. E., and Bergström, S. M.: Conodont biostratigraphy of the Middle Cambrian through Lowermost Ordovician in Hunan, South China, Acta Geol. Sin.-Engl., 78, 1185–1206, https//doi.org/10.1111/j.1755-6724.2004.tb00776.x, 2004.
Dong, Y., Sun, S., Santosh, M., Zhao, J., Sun, J., He, D., Shi, X., Hui, B., Cheng, C., and Zhang, G.: Central China Orogenic Belt and amalgamation of East Asian continents, Gondwana Res., 100, 131–194, https://doi.org/10.1016/j.gr.2021.03.006, 2021.
Druce, E. C. and Jones, P. J.: Cambro-Ordovician conodonts from the Burke River structural belt, Queensland, Bulletin of the Bureau of Mineral Resources, Geology and Geophysics, 110, 1–159, 1971.
Dzik, J.: Remarks on the evolution of Ordovician conodonts, Acta Paleontology Polonica, 21, 395–57, 1976.
Fang, Q., Wu, H. C., Wang, X. L., Yang, T. S., Li, H. Y., and Zhang, S. H.: An astronomically forced cooling event during the Middle Ordovician, Global Planet. Change, 173, 96–108, https//doi.org/10.1016/j.gloplacha.2018.12.010, 2019.
Feng, Z. Z., Peng, Y. M., Jin, Z. K., Jiang, P. L., Bao, Z. D., Tian, H. Q., Wang, H., Luo, Z., and Ju, T. Y.: Lithofacies palaeogeography of the middle and Late Ordovician in South China, J. Palaeogeogr., 002, 11–22, 2001 (in Chinese with English abstract).
Feng, Z. Z., Peng, Y. M., Jin, Z. K., and Bao, Z. D.: Lithofacies palaeogeography of the middle Ordovician in China, J. Palaeogeogr., 03, 263–278, 2003 (in Chinese with English abstract).
Furnish, W. M.: Conodonts from the Prairie du Chien (Lower Ordovician) beds of upper Mississippi Valley, J. Paleontol., 12, 318–340, 1938.
Gong, Y. F., Yan, G. Z., and Wu, R. C.: Conodont biostratigraphy and carbon isotope chemostratigraphy of the Middle to Upper Ordovician on the western Yangtze Platform, South China, Palaeoworld, 32, 266–286, https//doi.org/10.1016/ j.palwor.2022.01.005, 2023.
Graves, R. W. and Ellison S. P.: Ordovician conodonts of the Marathon Basin, Texas, University of Missouri School of Mining and Metallurgy Bulletin Technical, 14, 1–16, 1941.
Hadding, A.: Undre Dicellograptus akiffern? Skane Jamte Nagre Darmet Ekivalenta Bildinger, Lunds Univsity, 9, 1–90, 1913.
Haq, B. U. and Schutter, S. R.: A chronology of Paleozoic sea-level changes, Science, 322, 64–68, https//doi.org/10.1126/science.1161648, 2008.
Harper, D. A. T., Topper, T. P., Cascales-Miñana, B., Servais, T., Zhang, Y. D., and Ahlber, P.: The Furongian (late Cambrian) Biodiversity Gap: Real or apparent?, Palaeoworld, 28, 4–12, https//doi.org/10.1016/j.palwor.2019.01.007, 2019.
Henningsmoen, G.: The Tretaspis series of the Kullatorp core, Bulletin of the Geological Institute of the University of Uppsala, 32, 374–432, 1948.
Jeppsson, L., Anehus, R., and Fredholm, D.: The optimal acetate buffered acetic acid technique for extracting phosphatic fossils, J. Paleontol., 73, 964–972, https://doi.org/10.1017/S0022336000040798, 1999.
Ji, Z. and Barnes, C. R.: Conodont paleoecology of the Lower Ordovician St. George Group, Port au Port Peninsula, western Newfoundland, J. Paleontol., 68, 1368–1393, https//doi.org/10.1017/S002233600003434x, 1994.
Jing, X. C.: The Ordovician conodonts and the Cambrian-Ordovician boundary at the platform facies in the Tarim Basin, China, Ph.D. thesis, China University of Geosciences, China, 156 pp., 2009 (in Chinese with English abstract).
Jing, X. C., Deng, S. H., Wang, X. L., and Zhang, S. B.: Biota attribution and transformation of conodonts in Ordovician platform facies area of Tarim Basin, Sciencepaper Online, 201205, 432, https://www.paper.edu.cn/releasepaper/content/201205-432 (last accessed: 30 July 2024), 2012 (in Chinese with English abstract).
Jing, X. C., Zhou, H. R., and Wang, X. L.: Ordovician (middle Darriwilian-earlist Sandbian) conodonts from the Wuhai area of Inner Mongolia, North China, J. Paleontol., 89, 768–790, https//doi.org/10.1017/jpa.2015.54, 2015.
Jing, X. C., Stouge, S., Ding, L., Wang, X. L., and Zhou, H. R.: Upper Ordovician conodont biostratigraphy and biofacies from the Sigang secton, Neixiang, Henan, central China, Palaeogeogr. Palaeocl., 480, 18–32, https//doi.org/10.1016/j.palaeo.2017.04.026, 2017.
Li, S. Y., Xie, W., Wei, X., Yang, D. D., Li, M., and Hu, B.: Discovery of the mid-Cretaceous sedimentary rocks from the ultrahigh-pressure terrane, Dabie Orogenic Belt, and its tectonopalaeogeographic implications, J. Palaeogeogr., 12, 1, 153–177, https://doi.org/10.1016/j.jop.2023.01.001, 2023.
Lindström, M.: Conodonts from the lowermost Ordovician strata of south-central Sweden, Geologiska Föreningens i Stockholm Förhandlingar, 76, 517–604, https//doi.org/10.1080/11035895409453581, 1955.
Lindström, M.: Lower Ordovician conodonts of Europe, Geol. Soc. Am. Mem., 127, 21–62, https//doi.org/10.1130/mem127-p21, 1971.
Lindström, M.: Baltoscandic conodont life environments in the Ordovician: sedimentologic and palaeogeographic evidence, in: Conodont Biofacies and Provincialism, edited by: Clark, D. L., Geological Society of America Special Paper, 196, 33–42, https://doi.org/10.1130/SPE196-p33, 1984.
Liu, J.: Marine sedimentary response to the great Ordovician biodiversification event: Examples from North China and South China, Paleontol. Res., 13, 9–21, https://doi.org/10.2517/1342-8144-13.1.009, 2009.
Liu, J., Zhan, R., Dai, X., Liao, H., Ezaki, Y., and Adachi, N.: Demise of Early Ordovician oolites in South China: Evidence for paleoceanographic changes before the GOBE, Ordovician of the World, Cuadernos del Museo Geominero, 14, 309–317, 2011.
Liu, J. B.: Sea level changes during the early to middle Ordovician biological radiation in South China, in: Originations, Radiations and Biodiversity Changes-Evidences from the Chinese Fossil Record, edited by: Rong, J. Y., Fang, Z. J., Zhou, Z. H., Zhan, R. B., Wang, X. D., and Yuan, X. L., Science Press, Beijing, China, 335–360, ISBN7030174410, 2006 (in Chinese).
Lu, Y. H. (Ed.): Ordovician trilobite fauna from central and southwest China, Science Press, Beijing, China, 463 pp., ISBN 13031257, 1975 (in Chinese).
Lu, Y. H. and Zhu, Z. L.: Cambrian trilobites from Chuxian and Quanjiao, Anhui, Journal of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 16, 1–38, 1980 (in Chinese).
Lu, Y. H., Qian, Y. Y., and Zhou, Z. Y.: Ordovician biostratigraphy and palaeozoogeography in China, Journal of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 7, 1–90, 1976 (in Chinese).
Luan, X., Brett, C. E., Zhan R., Jin, J. Wu, R., and Gong, F.: Middle-Late Ordovician iron-rich nodules on Yangtze Platform, South China, and their palaeoenvironmental implications, Lethaia, 51, 523–537, https://doi.org/10.1111/let.12271, 2018.
Luan, X., Zhang, X., Wu, R., Zhan, R., Liu, J., Wang, G., and Zhang, Y.: Environmental changes revealed by Lower-Middle Ordovician deeper-water marine red beds from the marginal Yangtze Platform, South China: Links to biodiversification, Palaeogeogr. Palaeocl., 562, 110116, https://doi.org/10.1016/j.palaeo.2020.110116, 2021.
Luan, X. C., Wu, R. C., Zhan, R. B., and Liu J. B.: The Zitai Formation in South China: unique deeper-water marine red beds in terms of lithology, distribution and δ13Ccarb chemostratigraphy, Palaeoworld, 28, 198–210, https://doi.org/10.1016/j.palwor.2018.12.007, 2019.
Miller, A. I.: Ordovician Radiation, in: Palaeobiology II, edited by: Briggs, D. E. G. and Crowther, P. R., Blackwell Publishing, Oxford, 49–52, https://doi.org/10.1002/9780470999295.ch9, 2003.
Miller, J. F.: Conodont fauna of the Notch Peak Limestone (Cambro-Ordovician), House Range, Utah, J. Paleontol., 43, 413–439, https//doi.org/10.2307/1302317, 1969.
Miller, J. F.: Upper Cambrian to Middle Ordovician Conodont Faunas of Western Utah, Southwest Missouri State University, Department of Geography and Geology, 1978.
Miller, J. F.: Taxonomic revisions of some Upper Cambrian and Lower Ordovician conodonts with comments on their evolution, The University of Kansas Paleontological Contributions, 99, 1–40, http://hdl.handle.net/1808/3732 (last accessed: 30 July 2024), 1980.
Miller, J. F., Repetski, J. E., Nicoll, R. S., Nowlan, G., and Ethington, R. L.: The conodont Iapetognathus and its value for defining the base of the Ordovician System, GFF, 136, 185–188, https//doi.org/10.1080/11035897.2013.862851, 2014.
Miller, J. F., Evans, K. R., Ethington, R. L., Freeman, R. L., Loch, J. D., Repetski, J. E., Ripperdan, R. L., and Taylor, J. F.: Proposed auxiliary boundary stratigraphic section and point (ASSP) for the base of the Ordovician System at Lawson Cove, Utah, USA, Stratigraphy, 12, 219–236, 2015.
Moskalenko, T. A.: Conodonts of the Chunk Stage (Middle Ordovician). River Moiera and Podkamennaya Tunguska, In New data on the biostratigraphy of the Lower Palezoics of the Siberian Platform, Izdatelstvo “Nauka”, 98–116, 1967.
Müller, K. J.: Kambrisch conodonten, Zeitschrift der Deutschen Geologischen Gesellschaft, 111, 434–485, 1959.
Munnecke, A., Zhang, Y. D., Liu, X., and Cheng, J. F.: Stable carbon isotope stratigraphy in the Ordovician of South China, Palaeogeogr. Palaeocl., 307, 17–43, https//doi.org/10.1016/j.palaeo.2011.04.015, 2011.
Ni, S. Z.: Discusses several stratigraphic issues from the Ordovician conodonts in the eastern Three Gorges region, in: the first academic symposium of the Chinese Society of micropalaeontology, Science Press, Beijing, 121–126, 1981 (in Chinese).
Ni, S. Z. and Li, Z. H.: Conodont, Biostratigraphy in the Three Gorges area of the Yangtze River (2), Early Paleozoic Volume, edited by: Yichang Institute of Geology and Mineral Resources, Geological Publishing House, Beijing, China, 386–448, ISBN 13038.352, 1987 (in Chinese).
Nicoll, R. S., Miller, J. F., Nowlan, G. S., Repetski, J. E., and Ethington, R. L.: Iapetonudus (N. gen.) and Iapetognathus Landing, unusual earliest Ordovician multielement conodont taxa and their utility for biostratigraphy, Brigham Young University Geology Studies, 44, 27–55, 1999.
Nogami, Y.: Kambrischen condonten von China, Teil 2, Conodonten aus den hoch oberkambrischen Yencho-Schichten, Kyoto University, 33, 211–219, http://hdl.handle.net/2433/258338 (last accessed: 30 July 2024), 1967.
Pander, C. H.: Monographie der fossilen Fische des Silurchen Systems der russischen Gouvernements, Buchdruckerei der Kaiserlichen Akademie der Wissenschaften, St. Petersburg, 91, 1856.
Pei, F.: Qinling faunal region-The third Ordovician faunal region: international correlation, Acta Geol. Sin.-Engl., 74, 137–142, https//doi.org/10.1111/j.1755-6724.2000.tb00441.x, 2000.
Pohl, A., Nardin, E., Vandenbroucke, T. R. A., and Donnandieu, Y.: High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels, Palaeogeogr. Palaeocl., 458, 39–51, https://doi.org/10.1016/j.palaeo.2015.09.036, 2016.
Pyle, L. J. and Barnes, C. R.: Conodonts from the Kechika Formation and Road River Group (Lower to Upper Ordovician) of the Cassiar Terrane, northern British Columbia, Can. J. Earth Sci., 38, 1387–1401, https://doi.org/10.1139/e01-033, 2001.
Repetski, J. E. and Ethington, R. L.: Rossodus manitouensis (Conodonta), A new early Ordovician index fossil, J. Paleontol., 57, 289–301, 1983.
Samuel, L. G., Theodore M. P., Seth, F., and Kristin D. B.: A high-resolution record of early Paleozoic climate, P. Natl. Acad. Sci. USA, 118, e2013083118, https//doi.org/10.1073/pnas.2013083118, 2021.
Schmitz, B., Bergström, S. M., and Wang, X. F.: The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: Implications of its first recorded oc-currences outside Baltoscandia, J. Geol. Soc., 167, 249–259, https//doi.org/10.1144/0016-76492009-080, 2010.
Seddon, G. and Sweet, W. C.: An ecologic model for conodonts, J. Paleontol., 45, 869–880, 1971.
Sepkoski, J. J.: A kinetic model of Phanerozoic taxonomic diversity I: Analysis of marine orders, Paleobiology, 4, 223–251, https//doi.org/10.1017/ S0094837300005972, 1978.
Sepkoski, J. J.: A kinetic model of Phanerozoic taxonomic diversity II: Early Phanerozoic families and multiple equilibria, Paleobiology, 5, 222–252, https//doi.org/10.1017/S0094837300006539, 1979.
Sepkoski, J. J.: A factor analytic description of the Phanerozoic marine fossil record, Paleobiology, 7, 36–53, https//doi.org/10.2307/2400639, 1981.
Sepkoski, J. J.: A kinetic model of Phanerozoic taxonomic diversity III: Post Paleozoic families and mass extinctions, Paleobiology, 10, 246–267, https//doi.org/10.1017/S0094837300008186, 1984.
Sepkoski, J. J.: The Ordovician Radiations: diversification and extinction shown by global genus-level taxonomic data, in: Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System, edited by: Cooper, J. D., Droser, M. L., and Finney, S. C., SEPM, California, 393–396, 1995.
Sepkoski, J. J. and Sheehan, P. M.: Diversification, faunal change, and community replacement during the Ordovician Radiations, in: Biotic Interactions in Recent and Fossil Benthic Communities, edited by: Tevesz, M. J. S. and McCall, P. L., Plenum Press, New York, 673–717, https://doi.org/10.1007/978-1-4757-0740-3_14, 1983.
Sergeeva, S. P.: Novyy ranneordovikskiy rod konodontov semeystva Prioniodinidae (A new Early Ordovician conodont genus of the family Prionidinidae), Paleontology, 4, 138–140, 1963.
Serpagli, E.: Lower Ordovician conodonts from western Precordilleran Argentina (Province of San Juan), Bolletttino della Societa Paleontologica Italiana, 13, 17–98, 1974.
Su, W. B.: Ordovician sea-level changes: evidence from the Yangtze Platform, Acta Palaeontologica Sinica, 46, 471–476, 2007 (in Chinese with English abstract).
Sweet, W. C.: Late Ordovician conodonts and biostratigraphy of the Western Midcontinent Province, Brigham Young University Geology Studies, 26, 45–86, 1979.
Sweet, W. C.: Graphic correlation of upper Middle and Upper Ordovician rocks, North American Midcontinent Province, USA, in: Aspects of the Ordovician System, edited by: Bruton, D. L., Paleontological Contributions of the University of Oslo, 295, 23–35, 1984.
Sweet, W. C. and Bergström, S. M.: Conodonts from the Pratt Ferry Formation (Middle Ordovician) of Alabama, J. Paleontol., 36, 1214–1252, https//doi.org/10.2307/1301327, 1962.
Sweet, W. C. and Bergström, S. M.: Multielement taxonomy and Ordovician conodonts, Geologica et Palaeontologica, Special Paper, 1, 29–42, 1972.
Sweet, W. C. and Bergström, S. M.: Conodont provinces and biofacies of the Late Ordovician, Special Paper of the Geological Society of America, 196, 69–88, https//doi.org/10.1130/spe196-p69, 1984.
Torsvik, T. H. and Cocks, L. R. M.: New global palaeogeographical reconstructions for the Early Palaeozoic and their generation, Geological Society London Memoris, 38, 5–24, https//doi.org/10.1144/M38.2, 2013.
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C., and Nicoll, R. S.: Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry, Science, 321, 550–554, https//doi.org/10.1126/ science.1155814, 2008.
Wang, C. Y. (Ed.): Conodonts in the Lower Yangtze Region: Indicators of Maturity of Biostratigraphic and Organic Systems, Science Press, Beijing, China, 326 pp., ISBN 7030034627, 1993 (in Chinese).
Wang, G. X. and Zhan, R. B.: Ordovician in the western Yangtze region, South China Palaeoplate: An outline, Palaeoworld, 32, 197–201, https//doi.org/10.1016/j.palwor.2023.03.008, 2023.
Wang, G. X., Cui, Y. N., Liang, Y., Wu, R. C., Wei, X., Gong, F. Y., Huang, B., Luan, X. C., Tang, P., Li, L. X., Zhang, X. L., Zhang, Y. C., Zhang, Z. T., Wang, Q., and Zhan, R. B.: Toward a unified and refined Ordovician stratigraphy for the western Yangtze region, South China, Palaeoworld, 32, 202–218, https//doi.org/10.1016/j.palwor.2022.04.003, 2023.
Wang, X. F.: Ordovician tectonic-paleogeography in South China and chrono-and bio-stratigraphic division and correlation, Earth Sci. Front., 23, 253–267, https://doi.org/10.13745/j.esf.2016.06.018, 2016 (in Chinese with English abstract).
Wang, Z. H. and Wu, R. C.: Ordovician conodont diversification of the Lower Yangteze region, Acta Micropalaeontologica Sinica, 26, 331–350, 2009 (in Chinese).
Wang, Z. H., Bergström, S. M., and Lane, H. R.: Conodont provinces and biostratigraphy in Ordovician of China, Acta Palaeontol. Sin., 1, 133–136, https://doi.org/10.19800/j.cnki.aps.1996.01.002, 1996.
Wang, Z. H., Bergström, S. M., Zhen, Y. Y., Zhang, Y. D., and Wu, R. C.: New conodont data from the Lower Ordovician of Tangshan, Hebei Province, North China, Acta Micropalaeontologica Sinica, 31, 1–14, 2014 (in Chinese with English abstract).
Wang, Z. H., Zhen Y. Y., Zhang, Y. D., and Wu, R. C.: Review of the Ordovician conodont biostratigraphy in the different facies of North China, Journal of Stratigraphy, 40, 1–16, 2016 (in Chinese with English abstract).
Wang, Z. H., Zhen, Y. Y., Bergström, S. M., Wu, R. C., Zhang, Y. D., and Ma, X.: A new conodont biozone classifification of the Ordovician System in South China, Palaeoworld, 28, 173–186, https//doi.org/10.1016/j.palwor.2018.09.002, 2019.
Webers, G. F.: The Middle and Upper Ordovician conodont faunas of Minnesota, Minnesota Geological Survey, 4, 123, 1966.
Wu, R. C. andWang, Z. H.: Lower toMiddle Ordovician conodonts from the Zitai Formation of Shitai, Anhui Province, China, Acta Micropalaeontol. Sin., 25, 364–383, https://doi.org/10.3969/j.issn.1000-0674.2008.04.005, 2008 (in Chinese with English abstract).
Wu, R. C., Zhan, R. B., and Li, G. P.: Conodont diversification in the Zitai Formation (Floian-Dapingian, late early-early mid Ordovician) of Shitai, Anhui Province, East China, Acta Palaeontologica Sinica, 47, 444–453, 2008 (in Chinese with English abstract).
Wu, R. C., Stouge, S., Percival, I. G., and Zhan, R. B.: Early-Middle Ordovician conodont biofacies on the Yangtze Platform margin, South China: Applications to palaeoenvironment and sea-level changes, J. Asian Earth Sci., 96, 194–204, https//doi.org/10.1016/j.jseaes.2014.09.003, 2014.
Zhan, R. B. and Jin, J. S. (Eds): Ordovician-Silurian (Llandvery) Stratigraphy and Palaeontology of the Upper Yangtze Platform, South China, Science Press, Beijing, China, 25 pp., ISBN 978-7-03-018893-9/Q.1845, 2007.
Zhan, R. B., Ji, J. S., and Liu, J. B.: Investigation on the great Ordovician biodiversification event (GOBE): Review and prospect, Chinese Sci. Bull., 58, 3357–3371, 2013 (in Chinese).
Zhang, Y. B., Zhou, Z. Y., and Zhang, J. M.: Sedimentary differentiation during the latest Early Ordovician-earliest Darriwilian in the Yangtze Block, Journal of Stratigraphy, 26, 302–304, 2002 (in Chinese, with English abstract).
Zhang, Y. D., Zhan, R. B., Zhen, Y. Y., Wang, Z. H., Yuan, W. W., Fang, X., Ma, X., and Zhang, J. P.: Ordovician integrative stratigraphy and timescale of China, Scientia Sinica (Terrae), 49, 66–92, 2019 (in Chinese).
Zhao, Z. X. and Tan, Z. J.: Biostratigraphy of Ordovician in cover area of Tarim Basin, Xinjiang Petroleum Geology, 06, 493–500, 1999 (in Chinese).
Zhen, Y. Y. and Percival, I. G.: Ordovician conodont biogeography-reconsidered, Lethaia, 36, 357–370, https://doi.org/10.1080/00241160310006402, 2003.
Zhen, Y. Y., Percival, I. G., and Liu, J. B.: Early Ordovician Triangulodus (Conodonta) from the Honghuayuan Formation of Guizhou, South China, Alcheringa, 31, 191–212, https//doi.org/10.1080/03115510608619313, 2006.
Zhen, Y. Y., Percival, I. G., and Webby, B. D.: Discovery of Iapetognathus fauna from far western New South Wales: Towards a more precisely defined Cambrian-Ordovician boundary in Australia, Aust. J. Earth Sci., 64, 487–496, https//doi.org/10.1080/08120099.2017.1321043, 2017.
Zhu, M. Y., Babcock, L. E., and Peng, S. C.: Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction, Palaeoworld, 15, 217–222, https//doi.org/10.1016/j.palwor.2006.10.016, 2006.
Zhu, Z. L., Xu, H. K., Chen, X., and Chen, J. Y.: Early Paleozoic strata in Chuxian, Quanjiao, Nanjing and Liuhe areas, Anhui, Series of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 7, 135–170, 1984 (in Chinese).
Short summary
This study conducted systematic fieldwork and sample collection for the Cambrian Furongian–Middle Ordovician strata in the northeastern margin of the South China Block to establish a conodont biostratigraphic sequence and discussed the influence of seawater depth, climate, water temperature, and ocean currents on the biogeographic zonation of conodonts and the paleogeographic implications for some conodont species.
This study conducted systematic fieldwork and sample collection for the Cambrian...