Articles | Volume 43, issue 2
https://doi.org/10.5194/jm-43-323-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-323-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to sea surface temperature
Joseph A. Ruggiero
CORRESPONDING AUTHOR
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL 60115, USA
present address: Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA
Reed P. Scherer
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL 60115, USA
Joseph Mastro
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL 60115, USA
Cesar G. Lopez
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL 60115, USA
Department of Earth, Environmental, and Planetary Sciences, Washington University, St. Louis, MO 63130, USA
Marcus Angus
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL 60115, USA
Department of Geology, University of Nevada, Reno, Reno, NV 89557, USA
Evie Unger-Harquail
Department of Earth and Environmental Geosciences, Colgate University, Hamilton, NY 13346, USA
Olivia Quartz
Department of Earth and Environmental Geosciences, Colgate University, Hamilton, NY 13346, USA
Amy Leventer
Department of Earth and Environmental Geosciences, Colgate University, Hamilton, NY 13346, USA
Claus-Dieter Hillenbrand
British Antarctic Survey, Cambridge, UK
Related authors
No articles found.
Raffaella Tolotti, Amy Leventer, Federica Donda, Leanne Armand, Taryn Noble, Phil O'Brien, Xiang Zhao, David Heslop, Alix Post, Roberto Romeo, Andrea Caburlotto, Diego Cotterle, and Nicola Corradi
J. Micropalaeontol., 43, 349–382, https://doi.org/10.5194/jm-43-349-2024, https://doi.org/10.5194/jm-43-349-2024, 2024
Short summary
Short summary
New tephra layer and microsiliceous assemblages are identified. Sediment records are contextualized for the Sabrina Coast continental rise chronological and paleoclimatic context. Some in-depth studies on margin instabilities, tephrochronology, and biostratigraphic/paleoenvironmental and sedimentary evolution are suggested. We performed this study to implement knowledge on the Antarctic biochronostratigraphy and microsiliceous sedimentation and benefited from international-level collaboration.
Heather Furlong and Reed Paul Scherer
J. Micropalaeontol., 43, 269–282, https://doi.org/10.5194/jm-43-269-2024, https://doi.org/10.5194/jm-43-269-2024, 2024
Short summary
Short summary
Diatom assemblages are vital components of the Antarctic ecosystem and nutrient supply chain, and they are often utilized as paleoclimate proxies to better understand past climatic changes. We demonstrate enhanced diatom production and accumulation in the outer Amundsen Sea during a Mid-Pliocene interglacial that coincides with pulses of ice-rafted terrestrial debris, providing compelling evidence that iceberg calving seeds diatom productivity in the Southern Ocean.
Jim Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-104, https://doi.org/10.5194/gmd-2024-104, 2024
Preprint under review for GMD
Short summary
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output, plus other data, to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Sarah U. Neuhaus, Slawek M. Tulaczyk, Nathan D. Stansell, Jason J. Coenen, Reed P. Scherer, Jill A. Mikucki, and Ross D. Powell
The Cryosphere, 15, 4655–4673, https://doi.org/10.5194/tc-15-4655-2021, https://doi.org/10.5194/tc-15-4655-2021, 2021
Short summary
Short summary
We estimate the timing of post-LGM grounding line retreat and readvance in the Ross Sea sector of Antarctica. Our analyses indicate that the grounding line retreated over our field sites within the past 5000 years (coinciding with a warming climate) and readvanced roughly 1000 years ago (coinciding with a cooling climate). Based on these results, we propose that the Siple Coast grounding line motions in the middle to late Holocene were driven by relatively modest changes in regional climate.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Kelly A. Hogan, Robert D. Larter, Alastair G. C. Graham, Robert Arthern, James D. Kirkham, Rebecca L. Totten, Tom A. Jordan, Rachel Clark, Victoria Fitzgerald, Anna K. Wåhlin, John B. Anderson, Claus-Dieter Hillenbrand, Frank O. Nitsche, Lauren Simkins, James A. Smith, Karsten Gohl, Jan Erik Arndt, Jongkuk Hong, and Julia Wellner
The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, https://doi.org/10.5194/tc-14-2883-2020, 2020
Short summary
Short summary
The sea-floor geometry around the rapidly changing Thwaites Glacier is a key control on warm ocean waters reaching the ice shelf and grounding zone beyond. This area was previously unsurveyed due to icebergs and sea-ice cover. The International Thwaites Glacier Collaboration mapped this area for the first time in 2019. The data reveal troughs over 1200 m deep and, as this region is thought to have only ungrounded recently, provide key insights into the morphology beneath the grounded ice sheet.
Jan Erik Arndt, Robert D. Larter, Claus-Dieter Hillenbrand, Simon H. Sørli, Matthias Forwick, James A. Smith, and Lukas Wacker
The Cryosphere, 14, 2115–2135, https://doi.org/10.5194/tc-14-2115-2020, https://doi.org/10.5194/tc-14-2115-2020, 2020
Short summary
Short summary
We interpret landforms on the seabed and investigate sediment cores to improve our understanding of the past ice sheet development in this poorly understood part of Antarctica. Recent crack development of the Brunt ice shelf has raised concerns about its stability and the security of the British research station Halley. We describe ramp-shaped bedforms that likely represent ice shelf grounding and stabilization locations of the past that may reflect an analogue to the process going on now.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Dominic A. Hodgson, Kelly Hogan, James M. Smith, James A. Smith, Claus-Dieter Hillenbrand, Alastair G. C. Graham, Peter Fretwell, Claire Allen, Vicky Peck, Jan-Erik Arndt, Boris Dorschel, Christian Hübscher, Andrew M. Smith, and Robert Larter
The Cryosphere, 12, 2383–2399, https://doi.org/10.5194/tc-12-2383-2018, https://doi.org/10.5194/tc-12-2383-2018, 2018
Short summary
Short summary
We studied the Coats Land ice margin, Antarctica, providing a multi-disciplinary geophysical assessment of the ice sheet configuration through its last advance and retreat; a description of the physical constraints on the stability of the past and present ice and future margin based on its submarine geomorphology and ice-sheet geometry; and evidence that once detached from the bed, the ice shelves in this region were predisposed to rapid retreat back to coastal grounding lines.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Palaeoceanography and palaeoenvironment
Transient micropaleontological turnover across a late Eocene (Priabonian) carbon and oxygen isotope shift on Blake Nose (NW Atlantic)
Cambrian Furongian–Middle Ordovician conodonts in the northeastern margin of the South China Block (Chuzhou, Anhui province) and their paleogeographic implications
Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
South Georgia marine productivity over the past 15 ka and implications for glacial evolution
Paleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association
Late Holocene pteropod distribution across the base of the south-eastern Mediterranean margin: the importance of the > 63 µm fraction
Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Bo Hu, Shuangying Li, Cheng Cheng, Min Li, Wei Xie, and Xing Wei
J. Micropalaeontol., 43, 283–302, https://doi.org/10.5194/jm-43-283-2024, https://doi.org/10.5194/jm-43-283-2024, 2024
Short summary
Short summary
This study conducted systematic fieldwork and sample collection for the Cambrian Furongian–Middle Ordovician strata in the northeastern margin of the South China Block to establish a conodont biostratigraphic sequence and discussed the influence of seawater depth, climate, water temperature, and ocean currents on the biogeographic zonation of conodonts and the paleogeographic implications for some conodont species.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Giulia Barbieri and Stefano Claudio Vaiani
J. Micropalaeontol., 37, 203–230, https://doi.org/10.5194/jm-37-203-2018, https://doi.org/10.5194/jm-37-203-2018, 2018
Short summary
Short summary
The challenge between benthic foraminifera and ostracoda is open: which is the most reliable microfossil group for precise palaeoenvironmental reconstructions? Results from a lagoonal succession of the Romagna coast (Italy) reveal that the winner is ostracoda, due to their higher abundance, higher differentiation, and precise relationships between species and ecological parameters. Nevertheless, palaeoenvironmental stress and additional details are provided by benthic foraminifera.
Cited articles
Assmann, K. M., Hellmer, H. H., and Jacobs, S. S.: Amundsen Sea ice production and transport, J. Geophys. Res.-Ocean., 110, C12013, https://doi.org/10.1029/2004JC002797, 2005.
Bart, P. J. and Kratochvil, M.: A paleo-perspective on West Antarctic Ice Sheet retreat, Sci. Rep., 12, 17693, https://doi.org/10.1038/s41598-022-22450-3, 2022.
Bensi, M., Kovačević, V., Donda, F., O'Brien, P. E., Armbrecht, L., and Armand, L. K.: Water masses distribution offshore the Sabrina Coast (East Antarctica), Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, 2022.
Bianchi, C. and Gersonde, R.: The Southern Ocean surface between Marine Isotope Stages 6 and 5d: Shape and timing of climate changes, Palaeogeogr., Palaeoclimatol., 187, 151–177, https://doi.org/10.1016/S0031-0182(02)00516-3, 2002.
Bindoff, N. L., Rosenberg, M. A., and Warner, M. J.: On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150° E, Deep-Sea Res. Pt. II, 47, 2299–2326, https://doi.org/10.1016/S0967-0645(00)00038-2, 2000.
Capron, E., Govin, A., Stone, E. J., Masson-Delmotte, V., Mulitza, S., Otto-Bliesner, B., Rasmussen, T. L., Sime, L. C., Waelbroeck, C., and Wolff, E. W.: Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial, Quaternary Sci. Rev., 103, 116–133, https://doi.org/10.1016/j.quascirev.2014.08.018, 2014.
Chadwick, M., Allen, C. S., Sime, L. C., and Hillenbrand, C. D.: Analysing the timing of peak warming and minimum winter sea-ice extent in the Southern Ocean during MIS 5e, Quaternary Sci. Rev., 229, 106134, https://doi.org/10.1016/j.quascirev.2019.106134, 2020.
Chadwick, M., Allen, C. S., Sime, L. C., Crosta, X., and Hillenbrand, C.: How does the Southern Ocean palaeoenvironment during Marine Isotope Stage 5e compare to the modern?, Mar. Micropaleontol., 170, 102066, https://doi.org/10.1016/j.marmicro.2021.102066, 2022.
Cline, R. M. L., Ruddiman, W. F., Hays, J. D., Prell, W. L., Moore, T. C., Kipp, N. G., Molfino, B. E., Denton, G. H., and Hughes, T. J.: The Last Interglacial Ocean, Quaternary Res., 21, 123–224, https://doi.org/10.1016/0033-5894(84)90098-X, 1984.
Cortese, G. and Gersonde, R.: Morphometric variability in the diatom Fragilariopsis kerguelensis: Implications for Southern Ocean paleoceanography, Earth Planet Sc. Let., 257, 526–544, https://doi.org/10.1016/j.epsl.2007.03.021, 2007.
Cortese, G. and Gersonde, R.: Plio/Pleistocene changes in the main biogenic silica carrier in the Southern Ocean, Atlantic Sector, Mar. Geol., 252, 100–110, https://doi.org/10.1016/j.margeo.2008.03.015, 2008.
Cortese, G., Gersonde, R., Maschner, K., and Medley, P.: Glacial-interglacial size variability in the diatom Fragilariopsis kerguelensis: Possible iron/dust controls?: DIATOM SIZE VARIABILITY, Paleoceanography, 27, PA1208, https://doi.org/10.1029/2011PA002187, 2012.
Crosta, X.: Holocene size variations in two diatom species off East Antarctica: Productivity vs environmental conditions, Deep-Sea Res. Pt. I, 56, 1983–1993, https://doi.org/10.1016/j.dsr.2009.06.009, 2009.
de Bar, M. W., Weiss, G., Yildiz, C., Rampen, S. W., Lattaud, J., Bale, N. J., Mienis, F., Brummer, G. J. A., Schulz, H., Rush, D., Kim, J. H., Donner, B., Knies, J., Luckge, A., Stuut, J. B. W., Damste, J. S. S., and Schouten, S.: Global temperature calibration of the Long chain Diol Index in marine surface sediments, Org. Geochem., 142, 103983, https://doi.org/10.1016/j.orggeochem.2020.103983, 2020.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
Droop, S.: A morphometric and geographical analysis of two races of Diploneis smithii/D. fusca (Bacillariophyceae) in Britain, edited by: Marino, D. and Montresor, M., 347–369, 1995.
Enderlein, P. and Larter, R. D.: Cruise Report JR 179, RRS James Clark Ross, February to April 2008, https://www.bodc.ac.uk/resources/inventories/cruise_inventory/report/8277/ (last access: 1 June 2024), 2008.
Esper, O. and Gersonde, R.: Quaternary surface water temperatrue estimations: New diatom transfer functions for the Southern Ocean, Palaeogeogr., Palaeoclimatol., 414, 1–19, https://doi.org/10.1016/j.palaeo.2014.08.008, 2014.
Fietz, S., Ho, S. L., Huguet, C., Rosell-Melé, A., and Martínez-García, A.: Appraising GDGT-based seawater temperature indices in the Southern Ocean, Org. Geochem., 102, 93–105, https://doi.org/10.1016/j.orggeochem.2016.10.003, 2016.
Glemser, B., Kloster, M., Esper, O., Eggers, S. L., Kauer, G., and Beszteri, B.: Biogeographic differentiation between two morphotypes of the Southern Ocean diatom Fragilariopsis kerguelensis, Polar Biol., 42, 1369–1376, https://doi.org/10.1007/s00300-019-02525-0, 2019.
Gohl, K., Wellner, J. S., Klaus, A., Bauersachs, T., Bohaty, S. M., Courtillat, M., Cowan, E. A., De Lira Mota, M. A., Esteves, M. S. R,. Fegyveresi, J. M, Frederichs, T., Gao, L., Halberstadt, A. R., Hillenbrand, C.-D., Horikawa, K., Iwai, M., Kim, J. H., King, T. M., Klages, J. P., Passchier, S., Penkrot, M. L., Prebble, J. G., Rahaman, W., Reinardy, B. T. I., Renaudie, J., Robinson, D. E., Scherer, R. P., Siddoway, C. S., Wu, L., and Yamane, M.: Expedition 379 summary, Proc. IODP, v. 379, p. 21, 2021.
Gómez-Valdivia, F., Holland, P., Siahaan, A., Dutrieux, P., and Young, E.: Projected West Antarctic Ocean Warming Caused by an Expansion of Ross Gyre, Geophys. Res. Lett., 50, e2023GL102978, https://doi.org/10.1029/2023GL102978, 2023.
Hartman, J. D., Sangiorgi, F., Barcena, M. A., Tateo, F., Giglio, F., Albertazzi, S., Trincardi, F., Bijl, P. K., Langone, L., and Asioli, A.: Sea-ice, primary productivity and ocean temperatures at the Antarctic marginal zone during late Pleistocene, Quaternary Sci. Rev., 266, 107069, https://doi.org/10.1016/j.quascirev.2021.107069, 2021.
Hillenbrand, C.-D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R., Kender, S., Williams, M., Andersen, T. J., Jernas, P. E., Elderfield, H., Klages, J. P., Roberts, S. J., Gohl, K., Larter, R. D., and Kuhn, G.: West Antarctic Ice Sheet retreat driven by Holocene warm water incursions, Nature, 547, 43–48, https://doi.org/10.1038/nature22995, 2017.
Hillenbrand, C.-D., Fütterer, D., Grobe, H., and Frederichs, T.: No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea, Geo-Mar. Lett., 22, 51–59, https://doi.org/10.1007/s00367-002-0097-7, 2002.
Ho, S. L., Mollenhauer, G., Fietz, S., Martinez-Garcia, A., Lamy, F., Rueda, G., Schipper, K., Mehuest, M., Rosell-Mele, A., Stein, R., and Tiedemann, R.: Appraisal of TEX86 and TEX thermometries in subpolar and polar regions, Geochim. Cosmochim. Ac., 131, 213–226, https://doi.org/10.1016/j.gca.2014.01.001, 2014.
Holland, D. M., Nicholls, K. W., and Basinski, A.: The Southern Ocean and its interaction with the Antarctic Ice Sheet, Science, 367, 1326–1330, https://doi.org/10.1126/science.aaz5491, 2020.
Hopkins, B., Xuan, C., Hillenbrand, C.-D., Van Peer, T. E., Jin, Y., Frederichs, T., Gao, L., and Bohaty, S. M.: Evaluation of geomagnetic relative palaeointensity as a chronostratigraphic tool in the Southern Ocean: Refined Plio-/Pleistocene chronology of IODP Site U1533 (Amundsen Sea, West Antarctica), Quaternary Sci. Rev., 325, 108460, https://doi.org/10.1016/j.quascirev.2023.108460, 2024.
Horrocks, J.: The formation and late Quaternary palaeoenviornmental history of sediment mounds in the Amundsen Sea, West Antarctica, Thesis, Durham University, http://etheses.dur.ac.uk/12659/ (last access: 27 June 2024), 2018.
Inglis, G. N. and Tierney, J. E.: The TEX86 Paleotemperature Proxy, Cambridge University Press, https://doi.org/10.1017/9781108846998, 2020.
Kim, J.-H., Crosta, X., Michel, E., Schouten, S., Duprat, J., and Sinninghe Damsté, J. S.: Impact of lateral transport on organic proxies in the Southern Ocean, Quaternary Res., 71, 246–250, https://doi.org/10.1016/j.yqres.2008.10.005, 2009.
Kloster, M., Kauer, G., and Beszteri, B.: SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects, BMC Bioinformatics, 15, p. 218, https://doi.org/10.1186/1471-2105-15-218, 2014.
Kloster, M., Esper, O., Kauer, G., and Beszteri, B.: Large-Scale Permanent Slide Imaging and Image Analysis for Diatom Morphometrics, Appl. Sci., 7, p. 330, https://doi.org/10.3390/app7040330, 2017.
Kloster, M., Kauer, G., Esper, O., Fuchs, N., and Beszteri, B.: Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: High-throughput measurements show second morphotype occurring during glacials, Mar. Micropaleontol., 143, 70–79, https://doi.org/10.1016/j.marmicro.2018.07.002, 2018.
Kunz-Pirrung, M., Gersonde, R., and Hodell, D. A.: Mid-Brunhes century-scale diatom sea surface temperature and sea ice records from the Atlantic sector of the Southern Ocean (ODP Leg 177, sites 1093, 1094 and core PS2089-2), Palaeogeogr., Palaeoclimatol., 182, 305–328, https://doi.org/10.1016/S0031-0182(01)00501-6, 2002.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, PLIOCENE-PLEISTOCENE BENTHIC STACK, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Vol. 1, Temperature, edited by: O. C. L. National Oceanographic Data Center (U.S.) & N. E. S. United States Data, and Information Service, https://doi.org/10.7289/V55X26VD, 2009.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1, Temperature, O. C. L. National Oceanographic Data Center (U.S.) and N. E. S. United States Data, and Information Service, https://doi.org/10.7289/V55X26VD, 2013.
Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C., and Vernet, M.: Western Antarctic Peninsula physical oceanography and spatio–temporal variability, Deep-Sea Res. Pt. II, 55, 1964–1987, https://doi.org/10.1016/j.dsr2.2008.04.038, 2008.
Mas e Braga, M., Bernales, J., Prange, M., Stroeven, A. P., and Rogozhina, I.: Sensitivity of the Antarctic ice sheets to the warming of marine isotope substage 11c, The Cryosphere, 15, 459–478, https://doi.org/10.5194/tc-15-459-2021, 2021.
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H., Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan, F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, R., Ven de Putte, A., van den Broeke, M., von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge, B., Tronstad, S., and Melvaer, Y.: Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands, Environ. Model. Softw., 140, 105015, https://doi.org/10.1016/j.envsoft.2021.105015, 2021.
Mercer, J.: West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978.
Mollenhauer, G., Basse, A., Kim, J.-H., Sinninghe Damsté, J. S., and Fischer, G.: A four-year record of – and TEX86-derived sea surface temperature estimates from sinking particles in the filamentous upwelling region off Cape Blanc, Mauritania, Deep-Sea Res. Pt. I, 97, 67–79, https://doi.org/10.1016/j.dsr.2014.11.015, 2015.
Morlighem, M., Rignot, E., Binder, T., et al.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Orsi, A. H. and Webb, C. J.: Impact of Sea Ice Production off Sabrina Coast, East Antarctica, Geophys. Res. Lett., 49, e2021GL095613, https://doi.org/10.1029/2021GL095613, 2022.
Orsi, A., Whitworth III, T., and Nowlin Jr., W.: On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Patterson, M. O., Levy, R. H., Kulhanek, D. K., van de Flierdt, T., Horgan, H., Dunbar, G. B., Naish, T. R., Ash, J., Pyne, A., Mandeno, D., Winberry, P., Harwood, D. M., Florindo, F., Jimenez-Espejo, F. J., Läufer, A., Yoo, K.-C., Seki, O., Stocchi, P., Klages, J. P., Lee, J. I., Colleoni, F., Suganuma, Y., Gasson, E., Ohneiser, C., Flores, J.-A., Try, D., Kirkman, R., Koch, D., and the SWAIS 2C Science Team: Sensitivity of the West Antarctic Ice Sheet to +2 °C (SWAIS 2C), Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, 2022.
Postel, U., Glemser, B., Salazar Aleksayeva, K., Lena Eggers, S., Groth, M., Glockner, G., Uwe, J., Mock, T., Klemm, K., Valentin, K., and Besteri, B.: Adaptive divergence across Southern Ocean gradients in the pelagic diatom Fragilariopsis kerguelensis, Mol. Ecol., 29, 4913–4924, https://doi.org/10.1111/mec.15554, 2020.
Ruggiero, J.: Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature, U.S. Antarctic Program (USAP) Data Center [data set], https://doi.org/10.15784/601804, 2024.
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation, ICE-OCEAN MODELING OF THWAITES GLACIER, Geophys. Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017.
Shackleton, N. J.: The last interglacial in the marine and terrestrial records, Proc. Roy. Soc. Lond. Ser. B, 174, 135–154, https://doi.org/10.1098/rspb.1969.0085, 1969.
Shukla, S. K. and Crosta, X.: Fragilariopsis kerguelensis size variability from the Indian subtropical Southern Ocean over the last 42 000 years, Ant. Sci., 29, 139–146, https://doi.org/10.1017/S095410201600050X, 2017.
Shukla, S. K., Crosta, X., Cortese, G., and Nayak, G. N.: Climate mediated size variability of diatom Fragilariopsis kerguelensis in the Southern Ocean, Quaternary Sci. Rev., 69, 49–58, https://doi.org/10.1016/j.quascirev.2013.03.005, 2013.
Testa, G., Piñones, A., and Castro, L. R.: Physical and Biogeochemical Regionalization of the Southern Ocean and the CCAMLR Zone 48.1, Front. Mar. Sci., 8, 592378, https://doi.org/10.3389/fmars.2021.592378, 2021.
Turney, C. S. M., Fogwill, C. J., Golledge, N., R., McKay, N. P., van Sebille, E., Jones, R. T., Etheridge, D., Rubino, M., Thornton, D. P., Davies, S. M., Bronk Ramsey, C., Thomas, Z. A., Bird, M. I., Munksgaard, N. C., Kohno, M., Woodward, J., Winter, K., Weyrich, L. S., Rootes, C. M., and Millman, H.: Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica, P. Natl. Acad. Sci. USA, 117, 3996–4006, https://doi.org/10.1073/pnas.1902469117, 2020.
Uenzelmann-Neben, G. and Gohl, K.: Amundsen Sea sediment drifts: Archives of modifications in oceanographic and climatic conditions, Mar. Geol., 299–302, 51–62, https://doi.org/10.1016/j.margeo.2011.12.007, 2012.
Wåhlin, A. K., Muench, R. D., Arneborg, L., Björk, G., Ha, H. K., Lee, S. H., and Alsén, H.: Some Implications of Ekman Layer Dynamics for Cross-Shelf Exchange in the Amundsen Sea, J. Phys. Oceanogr., 42, 1461–1474, https://doi.org/10.1175/JPO-D-11-041.1, 2012.
Warnock, J. P. and Scherer, R. P.: A revised method for determining the absolute abundance of diatoms, J. Paleolim., 53, 157–163, https://doi.org/10.1007/s10933-014-9808-0, 2015.
Zielinski, U., Gersonde, R., Sieger, R., and Fütterer, D.: Quaternary surface water temperature estimations, Calibration of a diatom transfer function for the Southern Ocean, Paleoceanography, 13, 365–383, https://doi.org/10.1029/98PA01320, 1998.
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom...