Articles | Volume 44, issue 2
https://doi.org/10.5194/jm-44-431-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-44-431-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A high-resolution late Paleocene–early Eocene organic-walled dinoflagellate cyst zonation of the United States Atlantic Coastal Plain
Dept. Ocean Systems research (OCS), NIOZ Royal Netherlands Institute of Sea Research, Texel, the Netherlands
Dept. Earth Sciences, Marine Paleoceanography and Palynology (MPP), Laboratory of Palaeobotany and Palynology, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Appy Sluijs
Dept. Earth Sciences, Marine Paleoceanography and Palynology (MPP), Laboratory of Palaeobotany and Palynology, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Debra A. Willard
U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA 20192, USA
Henk Brinkhuis
Dept. Ocean Systems research (OCS), NIOZ Royal Netherlands Institute of Sea Research, Texel, the Netherlands
Dept. Earth Sciences, Marine Paleoceanography and Palynology (MPP), Laboratory of Palaeobotany and Palynology, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Related authors
No articles found.
Peter K. Bijl, Kasia K. Śliwińska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa A. Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond D. Eefting, Felix J. Elling, Pierrick Fenies, Gordon N. Inglis, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yi Ge Zhang
Biogeosciences, 22, 6465–6508, https://doi.org/10.5194/bg-22-6465-2025, https://doi.org/10.5194/bg-22-6465-2025, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducible, reusable, comparable and consistent data.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 22, 4689–4704, https://doi.org/10.5194/bg-22-4689-2025, https://doi.org/10.5194/bg-22-4689-2025, 2025
Short summary
Short summary
In this study, we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in the depletion of 13C in the residual sporomorph, leaving rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying that diagenesis results in the depletion of 13C in pollen.
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Mustafa Yücel Kaya, Henk Brinkhuis, Chiara Fioroni, Serdar Görkem Atasoy, Alexis Licht, Dirk Nürnberg, and Taylan Vural
Clim. Past, 21, 1405–1429, https://doi.org/10.5194/cp-21-1405-2025, https://doi.org/10.5194/cp-21-1405-2025, 2025
Short summary
Short summary
The Eocene–Oligocene Transition (EOT) marked global cooling and Antarctic glaciation, but its impact on marginal seas is less known. This study analyzes the Karaburun section in the eastern Paratethys, using biostratigraphy and geochemistry to reveal boreal water ingress due to Arctic–Atlantic gateway closure. Findings highlight the interplay of global and regional climate dynamics in shaping marginal marine environments.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Cited articles
Alberti, G.: Zur kenntnis der Gattung Deflandrea Eisenack (Dinoflag.) in der kreide und im Alttertiar Nord und Mitteldeutschlands: Mitt Geol, Stlnst. Hamb, 28, 93–105, 1959.
Aubry, M. P.: Towards an Upper Paleocene-Lower Eocene high resolution stratigraphy based on calcareous nannofossil stratigraphy, ISR. J. EARTH SCI., 44, 239–253, 1996.
Aubry, M.-P., Cramer, B. S., Miller, K. G., Wright, J. D., Kent, D. V., and Olsson, R. K.: Late Paleocene event chronology; unconformities, not diachrony, Bulletin de la Société Géologique de France, 171, 367–378, https://doi.org/10.2113/171.3.367, 2000.
Awad, W. K. and Oboh-Ikuenobe, F. E.: Early Paleogene dinoflagellate cysts from ODP Hole 959D, Côte d'Ivoire-Ghana Transform Margin, West Africa: New species, biostratigraphy and paleoenvironmental implications, Journal of African Earth Sciences, 123, 123–144, https://doi.org/10.1016/j.jafrearsci.2016.07.014, 2016.
Babila, T. L., Rosenthal, Y., Wright, J. D., and Miller, K. G.: A continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum, Geology, 44, 275–278, https://doi.org/10.1130/G37522.1, 2016.
Babila, T. L., Penman, D. E., Standish, C. D., Doubrawa, M., Bralower, T. J., Robinson, M. M., Self-Trail, J. M., Speijer, R. P., Stassen, P., Foster, G. L., and Zachos, J. C.: Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum, Sci. Adv., 8, eabg1025, https://doi.org/10.1126/sciadv.abg1025, 2022.
Bijl, P. K., Sluijs, A., and Brinkhuis, H.: A magneto- and chemostratigraphically calibrated dinoflagellate cyst zonation of the early Palaeogene South Pacific Ocean, Earth-Science Reviews, 124, 1–31, https://doi.org/10.1016/j.earscirev.2013.04.010, 2013.
Bijl, P. K., Brinkhuis, H., Egger, L. M., Eldrett, J. S., Frieling, J., Grothe, A., Houben, A. J. P., Pross, J., Śliwińska, K. K., and Sluijs, A.: Comment on `Wetzeliella and its allies – the “hole” story: a taxonomic revision of the Paleogene dinoflagellate subfamily Wetzelielloideae' by Williams et al. (2015), Palynology, 41, 423–429, https://doi.org/10.1080/01916122.2016.1235056, 2016.
Bowen, G. J. and Zachos, J. C.: Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum, Nature Geosci., 3, 866–869, https://doi.org/10.1038/ngeo1014, 2010.
Bowen, G. J., Maibauer, B. J., Kraus, M. J., Röhl, U., Westerhold, T., Steimke, A., Gingerich, P. D., Wing, S. L., and Clyde, W. C.: Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene thermal maximum, Nature Geosci., 8, 44–47, https://doi.org/10.1038/ngeo2316, 2015.
Brinkhuis, H. and Schiøler, P.: Palynology of the Geulhemmerberg Cretaceous/Tertiary boundary section (Limburg, SE Netherlands), Geologie en Mijnbouw, 75, 193–213, 1996.
Brinkhuis, H., Romein, A. J. T., Smit, J., and Zachariasse, J.: Danian‐selandian dinoflagellate cysts from lower latitudes with special reference to the El Kef section, NW Tunisia, GFF, 116, 46–48, https://doi.org/10.1080/11035899409546146, 1994.
Bujak, J. P. and Brinkhuis, H.: Global warming and dinocyst changes across the Paleocene/Eocene Epoch boundary, in: Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records, edited by: Aubry, M.-P., Lucas, S. G., and Berggren, W. A., Columbia University Press, New York, 277–295, ISBN 978-0-231-10238-4, 1998.
Bujak, J. and Mudge, D.: A high-resolution North Sea Eocene dinocyst zonation, JGS, 151, 449–462, https://doi.org/10.1144/gsjgs.151.3.0449, 1994.
Bütschli, O.: Dinoflagellata, Dr. HG Bronn's Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. II. Abtheilung: Mastigophora, Leipzig und Heidelberg, CF Winter’sche Verlagshandlung, 906–1029, 1885.
Bybell, L. M. and Gibson, T. G.: Calcareous nannofossils and foraminifers from Paleocene and Eocene strata in Maryland and Virginia, in: Paleocene–Eocene Boundary: Sedimentation in the Potomac River Valley, Virginia and Maryland (Field Trip Guidebook, IGCP Project 308), U.S. Geological Survey, Reston, VA, 15–29, USGS Publication ID 70221644, 1991.
Bybell, L. M., Self-Trail, J. M., Govoni, D. L., Seefelt, E. L., and Owens, J. P.: Cenozoic Calcareous Nannofossil Occurrences from Mid-Atlantic Coastal Plain Cores, Wells, and Outcrops, https://doi.org/10.5066/P97VCDNX, 2021.
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., Naafs, B. D. A., Behrooz, L., Remmelzwaal, S., Monteiro, F. M., Rohrssen, M., Farnsworth, A., Buss, H. L., Dickson, A. J., Valdes, P. J., Lunt, D. J., and Pancost, R. D.: Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum, Global and Planetary Change, 157, 114–138, https://doi.org/10.1016/j.gloplacha.2017.07.014, 2017.
Casas-Gallego, M., Gogin, I., and Vieira, M.: Two new dinoflagellate cyst species and their biostratigraphical application in the Eocene and Oligocene of the North Sea, Palynology, 45, 337–349, https://doi.org/10.1080/01916122.2020.1819457, 2021.
Cookson, I. C. and Eisenack, A.: Microplankton from the Browns Creek clays, SW, Victoria, Zenodo, https://doi.org/10.5281/zenodo.16109950, 1965a.
Cookson, I. C. and Eisenack, A.: Microplankton from the Dartmoor Formation, SW Victoria, Proceedings of the Royal Society of Victoria, 79, 133–137, 1965b.
Cookson, I. C. and Eisenack, A.: Some microplankton from the paleocene Rivernook Bed, Victoria, Proceedings of the Royal Society of Victoria, 80, 247–257, 1967.
Cramer, B. S., Aubry, M.-P., Miller, K. G., Olsson, R. K., Wright, J. D., and Kent, D. V.: An exceptional chronologic, isotopic, and clay mineralogic record of the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX, Bulletin de la Société Géologique de France, 170, 883–897, 1999.
Crouch, E. M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H. E. G., Rogers, K. M., Egger, H., and Schmitz, B.: Global dinoflagellate event associated with the late Paleocene thermal maximum, Geology, 29, 315–318, https://doi.org/10.1130/0091-7613(2001)029<0315:GDEAWT>2.0.CO;2, 2001.
Crouch, E. M., Dickens, G. R., Brinkhuis, H., Aubry, M.-P., Hollis, C. J., Rogers, K. M., and Visscher, H.: The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene thermal maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand, Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 387–403, https://doi.org/10.1016/S0031-0182(03)00334-1, 2003.
Crouch, E. M., Willumsen, P. S., Kulhanek, D. K., and Gibbs, S. J.: A revised Paleocene (Teurian) dinoflagellate cyst zonation from eastern New Zealand, Review of Palaeobotany and Palynology, 202, 47–79, https://doi.org/10.1016/j.revpalbo.2013.12.004, 2014.
Damassa, S. P.: Danian dinoflagellates from the Franciscan Complex, Mendocino County, California, Palynology, 3, 191–207, 1979.
Davey, R. J., Williams, G. L., Downie, C., and Sarjeant, W. A. S.: The genus Hystrichosphaeridium and its allies, Studies on Mesozoic and Cainozoic dinoflagellate cysts, 3, 53–106, 1966.
De Coninck, J.: Microfossiles à paroi organique de l'Yprésien du bassin belge, Professional Paper of the Geological Survey of Belgium, 12, Geological Survey of Belgium, Brussels, 174 pp., ISSN 0378-0902, 1975.
Deflandre, G. and Cookson, I. C.: Fossil microplankton from Australian late Mesozoic and Tertiary sediments, Marine and Freshwater Research, 6, 242–314, 1955.
Denison, C. N.: Stratigraphic and sedimentological aspects of the worldwide distribution of apectodinium in paleocene eocene thermal maximum deposits, in: Geological Society Special Publication, Geological Society of London, 511, 269–308, https://doi.org/10.1144/SP511-2020-46, 2021.
de Verteil, L. and Norris, G.: Miocene dinoflagellate stratigraphy and systematics of Maryland and Virginia, Micropaleontology, 42, 1–172, 1996.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965–971, https://doi.org/10.1029/95PA02087, 1995.
Doubrawa, M., Stassen, P., Robinson, M. M., Babila, T. L., Zachos, J. C., and Speijer, R. P.: Shelf Ecosystems Along the U.S. Atlantic Coastal Plain Prior to and During the Paleocene-Eocene Thermal Maximum: Insights Into the Stratigraphic Architecture, Paleoceanography and Paleoclimatology, 37, e2022PA004475, https://doi.org/10.1029/2022PA004475, 2022.
Drugg, W. S.: Palynology of the Upper Moreno Formation (Late Cretaceous-Paleocene), Escarpado Canyon, California, The Claremont Graduate University, 342 pp., 1965.
Ehrenberg, C. G.: Ueber das Massenverhältniss der jetzt lebenden Kiesel‐Infusorien und über ein neues Infusorien‐Conglomerat als Polirschiefer von Jastraba in Ungarn, Annalen der Physik, 117, 555–558, https://doi.org/10.1002/andp.18371170712, 1837.
Eisenack, A.: Die Phosphoritknollen der Bernsteinformation als Überlieferer tertiären Planktons:(Vorläufige Mitteilg), Physikalisch-Ökonomische Gesellschaft zu Königsberg, 181–188, 1938.
Eisenack, A.: Mikrofossilien aus Phosphoriten des samländischen Unteroligozäns und über die Einheitlichkeit der Hystrichosphaerideen, Palaeontographica Abteilung A: Paläozoologie, Stratigraphie, 105, 49–95, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, ISSN 0375-0442, 1954.
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L.: A Classification of Living and Fossil Dinoflagellates, Micropaleontology, Special Publication, 7, American Museum of Natural History, New York, 351 pp., ISBN 0-913424-18-X, 1993.
Fensome, R. A., Williams, G. L., and MacRae, R. A.: Late Cretaceous and Cenozoic fossil dinoflagellates and other palynomorphs from the scotian margin, offshore eastern Canada, Journal of Systematic Palaeontology, 7, 1–79, https://doi.org/10.1017/S1477201908002538, 2009.
Fensome, R. A., Williams, G. L., and MacRae, R.A.: The Lentin and Williams index of fossil dinoflagellages, American Association of Stratigraphic Palynologists Foundation, Houston, Texas, USA, 1100 pp., 2019.
Frederiksen, N. O.: Paleogene Sporomorph Biostratigraphy, Northeastern Virginia, Palynology, 3, 129–167, 1979.
Frieling, J. and Sluijs, A.: Towards quantitative environmental reconstructions from ancient non-analogue microfossil assemblages: Ecological preferences of Paleocene – Eocene dinoflagellates, Earth-Science Reviews, 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014, 2018.
Frieling, J., Iakovleva, A. I., Reichart, G.-J., Aleksandrova, G. N., Gnibidenko, Z. N., Schouten, S., and Sluijs, A.: Paleocene–Eocene warming and biotic response in the epicontinental West Siberian Sea, Geology, 42, 767–770, https://doi.org/10.1130/G35724.1, 2014.
Frieling, J., Reichart, G.-J., Middelburg, J. J., Röhl, U., Westerhold, T., Bohaty, S. M., and Sluijs, A.: Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, 2018.
Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., and Wilson, P. A.: Nannoplankton Extinction and Origination Across the Paleocene-Eocene Thermal Maximum, Science, 314, 1770–1773, https://doi.org/10.1126/science.1133902, 2006a.
Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C., and Bybell, L. M.: Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients, Geology, 34, 233–236, https://doi.org/10.1130/G22381.1, 2006b.
Gibson, T. G. and Bybell, L. M.: Paleogene stratigraphy of the Solomons Island, Maryland, corehole, USGS Report, https://doi.org/10.3133/ofr94708, 1994a.
Gibson, T. G. and Bybell, L. M.: Sedimentary patterns across the Paleocene-Eocene boundary in the Atlantic and Gulf Coastal Plains of the United States, Bulletin – Societe Belge de Geologie, 103, 237–265, 1994b.
Gibson, T. G., Andrews, G. W., Bybell, L. M., Witmer, R. J., and Van Nieuwenhuise, D. S.: Biostratigraphy of the Tertiary strata of the core, Geology of the Oak Grove Core, Virginia Division of Mineral Resources Publication 20, 14–30, 1980.
Gibson, T. G., Bybell, L. M., and Owens, J. P.: Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey, Paleoceanography, 8, 495–514, https://doi.org/10.1029/93PA01367, 1993.
Gibson, T. G., Bybell, L. M., and Mason, D. B.: Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin, Sedimentary Geology, 134, 65–92, https://doi.org/10.1016/S0037-0738(00)00014-2, 2000.
Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., and Oddone, M.: Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps, Geological Society of America Bulletin, 119, 391–412, https://doi.org/10.1130/B25994.1, 2007.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic Time Scale 2012, Elsevier, Amsterdam, 1176 pp., ISBN 978-0-444-59425-9, 2012.
Gradstein, F. M. and Ogg, J. G.: The chronostratigraphic scale, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, 21–32, ISBN 978-0-12-824360-2, 2020.
Guerstein, G. R., Williams, G. L., and Fensome, R. A.: Cannosphaeropsis quattrocchiae, a new species of dinoflagellate cyst from the mid Cenozoic of the Colorado Basin, Argentina, Micropaleontology, 47, 155–167, 2001.
Harland, R.: Agerasphaera nov. gen., an “Eisenackia”-like dinoflagellate cyst from the Thanet Sands (Paleocene) of southeast England, Review of Palaeobotany and Palynology, 28, 27–35, ISSN 0034-6667, 1979a, 1979a.
Harland, R.: The Wetzeliella (Apectodinium) homomorphum plexus from the Paleogene/earliest Eocene of north-west Europe, in: Proceedings of the Fourth International Palynology Conference, Lucknow, 1976–1977, Vol. 2, Birbal Sahni Institute of Palaeobotany, Lucknow, India, 59–70, 1979b.
Harris, A. D., Miller, K. G., Browning, J. V., Sugarman, P. J., Olsson, R. K., Cramer, B. S., and Wright, J. D.: Integrated stratigraphic studies of Paleocene–lowermost Eocene sequences, New Jersey Coastal Plain: Evidence for glacioeustatic control, Paleoceanography, 25, https://doi.org/10.1029/2009PA001800, 2010.
Hedberg, H. D. (Ed.): International Stratigraphic Guide: A Guide to Stratigraphic Classification, Terminology, and Procedure, John Wiley & Sons, New York, 200 pp., 1976.
Iakovleva, A. I. and Aleksandrova, G. N.: To the question of updating the Paleocene-Eocene dinocyst zonation of western Siberia, Bulletin of Moscow Society of Naturalists, Geological Series, 88, 59–82, 2013.
Iakovleva, A. I., Quesnel, F., and Dupuis, C.: New insights on the Late Paleocene – Early Eocene dinoflagellate cyst zonation for the Paris and Dieppe basins, BSGF – Earth Sciences Bulletin, 192, https://doi.org/10.1051/bsgf/2021035, 2021.
Jan du Chêne, R. E. and Adediran, S. A.: Late Paleocene to early Eocene dinoflagellates from Nigeria, Cahiers de Micropaléontologie, 3, Editions du Centre National de la Recherche Scientifique, Paris, 5–38, 1985.
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., and Bralower, T. J.: North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling, Paleoceanography, 23, 2007PA001465, https://doi.org/10.1029/2007PA001465, 2008.
Jolley, D., Vieira, M., Jin, S., and Kemp, D. B.: Palynofloras, palaeoenvironmental change and the inception of the Paleocene Eocene Thermal Maximum; the record of the Forties Fan, Sele Formation, North Sea Basin, FigShare, https://doi.org/10.6084/m9.figshare.c.6080873, 2022.
Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353, 225–229, https://doi.org/10.1038/353225a0, 1991.
Kent, D. V., Cramer, B. S., Lanci, L., Wang, D., Wright, J. D., and Van Der Voo, R.: A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion, Earth and Planetary Science Letters, 211, 13–26, https://doi.org/10.1016/S0012-821X(03)00188-2, 2003.
Kirtland Turner, S., Hull, P. M., Kump, L. R., and Ridgwell, A.: A probabilistic assessment of the rapidity of PETM onset, Nat. Commun., 8, 353, https://doi.org/10.1038/s41467-017-00292-2, 2017.
Klumpp, B.: Beitrag zur Kenntnis der Mikrofossilien des mittleren und oberen Eozän, Palaeontographica Abteilung A: Paläozoologie, Stratigraphie, 103, 377–406, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, ISSN 0375-0442, 1953.
Kopp, R. E., Schumann, D., Raub, T. D., Powars, D. S., Godfrey, L. V., Swanson-Hysell, N. L., Maloof, A. C., and Vali, H.: An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum, Paleoceanography, 24, https://doi.org/10.1029/2009PA001783, 2009.
Li, M., Bralower, T. J., Kump, L. R., Self-Trail, J. M., Zachos, J. C., Rush, W. D., and Robinson, M. M.: Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain, Nat. Commun., 13, 5618, https://doi.org/10.1038/s41467-022-33390-x, 2022.
Lindeman, E.: Abteilung Peridineae (Dinoflagellatae), Die Naturlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen, 1b, 3–104, 1928.
Liu, C., Browning, J. V., Miller, K. G., and Olsson, R. K.: Paleocene benthic foraminiferal biofacies and sequence stratigraphy, Island Beach borehole, New Jersey, Proc. Ocean Drill. Program Sci. results, 156, 267–275, 1997.
Lyons, S. L., Baczynski, A. A., Babila, T. L., Bralower, T. J., Hajek, E. A., Kump, L. R., Polites, E. G., Self-Trail, J. M., Trampush, S. M., Vornlocher, J. R., Zachos, J. C., and Freeman, K. H.: Palaeocene–Eocene Thermal Maximum prolonged by fossil carbon oxidation, Nature Geosci., 12, 54–60, https://doi.org/10.1038/s41561-018-0277-3, 2019.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Proceedings of the Second Planktonic Conference, Rome, 1970, Vol. 2, edited by: Farinacci, A., Tecnoscienza, Rome, 739–785, 1971.
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future, Annu. Rev. Earth Planet. Sci., 39, 489–516, https://doi.org/10.1146/annurev-earth-040610-133431, 2011.
McLachlan, S. M. S., Pospelova, V., and Humphrey, E. C.: Vesiculation in the dinoflagellate cyst Cannosphaeropsis franciscana Damassa, 1979 across the K/Pg boundary (Vancouver Island, Canada) with implications for spiniferate gonyaulacacean taxonomy and ecophenotypy, Review of Palaeobotany and Palynology, 292, 104452, https://doi.org/10.1016/j.revpalbo.2021.104452, 2021.
McNeil, D. H. and Parsons, M. G.: The Paleocene-Eocene thermal maximum in the Arctic Beaufort-Mackenzie Basin – Palynomorphs, carbon isotopes and benthic foraminiferal turnover, Bulletin of Canadian Petroleum Geology, 61, 157–186, https://doi.org/10.2113/gscpgbull.61.2.157, 2013.
Miller, K. G., Sugarman, P. J., Browning, J. V., Olsson, R. K., Pekar, S. F., Reilly, T. J., Cramer, B. S., Aubry, M.-P., Lawrence, R. P., Curran, J., Stewart, M., Metzger, J. M., Uptegrove, J., Bukry, D., Burckle, L. H., Wright, J. D., Feigenson, M. D., Brenner, G. J., and Dalton, R. F. (Eds.): Proceedings of the Ocean Drilling Program, Initial Reports, 174AX, Ocean Drilling Program, Texas A&M University, College Station, TX, USA, https://doi.org/10.2973/odp.proc.ir.174AX.1998, 1998.
Morgenroth, P.: Mikrofossilien und Konkretionen des nordwestdeutschen Untereozäns, Palaeontographica Abteilung B, 118, 1–53, 1966.
Mudge, D. C. and Bujak, J. P.: Palaeocene biostratigraphy and sequence stratigraphy of the UK central North Sea, 13, 295–312, 1996.
Nelissen, M., Sluijs, A., Willard, D. A., and Brinkhuis, H.: Nelissen et al., Supplementary data set ACP dinocyst zonation, Zenodo [data set], https://doi.org/10.5281/zenodo.17473795, 2025.
Pascher, A.: Uber flagellaten und algen, Deutsche Botanische Gesellschaft, Berichte, 32, 136–160, 1914.
Piedrahita, V. A., Heslop, D., Roberts, A. P., Rohling, E. J., Galeotti, S., Florindo, F., and Li, J.: Assessing the Duration of the Paleocene-Eocene Thermal Maximum, Geophysical Research Letters, 52, e2024GL113117, https://doi.org/10.1029/2024GL113117, 2025.
Poag, C. W. and Sevon, W. D.: A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin, Geomorphology, 2, 119–157, https://doi.org/10.1016/0169-555X(89)90009-3, 1989.
Podrecca, L. G., Makarova, M., Miller, K. G., Browning, J. V., and Wright, J. D.: Clear as mud: Clinoform progradation and expanded records of the Paleocene-Eocene Thermal Maximum, Geology, 49, 1441–1445, https://doi.org/10.1130/G49061.1, 2021.
Powell, A. J. (Ed.): Dinoflagellate cysts of the Tertiary System, in: A Stratigraphic Index of Dinoflagellate Cysts, British Micropalaeontological Society Publication Series, 1, CRC Press, Boca Raton, FL, 155–251, 1992.
Powell, A. J., Brinkhuis, H., and Bujak, J. P.: Upper Paleocene-Lower Eocene dinoflagellate cyst sequence biostratigraphy of southeast England, Geological Society Special Publication, 101, 145–183, https://doi.org/10.1144/GSL.SP.1996.101.01.10, 1996.
Pross, J. and Brinkhuis, H.: Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts, Paläontol. Z., 79, 53–59, https://doi.org/10.1007/BF03021753, 2005.
Radionova, E. P., Khokhlova, I. E., Beniamovskii, V. N., Shcherbinina, E. A., Iakovleva, A. I., and Sadchikova, T. A.: Paleocene/Eocene transition in the northeastern Peri-Tethys area; Sokolovskii key section of the Turgay Passage (Kazakhstan), Bulletin de la Société géologique de France, 172, 245–256, 2001.
Reinhardt, J., Newell, W. L., and Mixon, R. B.: Geology of the Oak Grove core, Virginia Division of Mineral Resources Publication, 20, 1–13, 1980.
Robinson, M. M. and Spivey, W. E.: Environmental and Geomorphological Changes on the Eastern North American Continental Shelf Across the Paleocene-Eocene Boundary, Paleoceanography and Paleoclimatology, 34, 715–732, https://doi.org/10.1029/2018PA003357, 2019.
Robinson, M. M., Miller, K. G., Babila, T. L., Bralower, T. J., Browning, J. V., Cramwinckel, M. J., Doubrawa, M., Foster, G. L., Fung, M. K., Kinney, S., Makarova, M., McLaughlin, P. P., Pearson, P. N., Röhl, U., Schaller, M. F., Self-Trail, J. M., Sluijs, A., Westerhold, T., Wright, J. D., and Zachos, J. C.: Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses, Scientific Drilling, 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, 2024.
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the duration of the Paleocene-Eocene thermal maximum (PETM), Geochemistry, Geophysics, Geosystems, 8, https://doi.org/10.1029/2007GC001784, 2007.
Rush, W., Self-Trail, J., Zhang, Y., Sluijs, A., Brinkhuis, H., Zachos, J., Ogg, J. G., and Robinson, M.: Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA, Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, 2023.
Rush, W. D., Kiehl, J. T., Shields, C. A., and Zachos, J. C.: Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory, Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110289, https://doi.org/10.1016/j.palaeo.2021.110289, 2021.
Self-Trail, J. M.: Paleogene Calcareous Nannofossils of the South Dover Bridge core, Southern Maryland (USA), J. Nannoplankton Res., 32, 1–28, https://doi.org/10.58998/jnr2219, 2011.
Self-Trail, J. M., Powars, D. S., Watkins, D. K., and Wandless, G. A.: Calcareous nannofossil assemblage changes across the Paleocene–Eocene Thermal Maximum: Evidence from a shelf setting, Marine Micropaleontology, 92–93, 61–80, https://doi.org/10.1016/j.marmicro.2012.05.003, 2012.
Self-Trail, J. M., Robinson, M. M., Bralower, T. J., Sessa, J. A., Hajek, E. A., Kump, L. R., Trampush, S. M., Willard, D. A., Edwards, L. E., Powars, D. S., and Wandless, G. A.: Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA, Paleoceanography, 32, 710–728, https://doi.org/10.1002/2017PA003096, 2017.
Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf, Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, 2009.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart, G. J., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens, G. R.: Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary, Nature, 450, 1218–1221, https://doi.org/10.1038/nature06400, 2007.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L., Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G.-J., Schouten, S., Pancost, R. D., Damsté, J. S. S., Welters, N. L. D., Lotter, A. F., and Dickens, G. R.: Eustatic variations during the Paleocene-Eocene greenhouse world, Paleoceanography, 23, https://doi.org/10.1029/2008PA001615, 2008.
Stassen, P., Thomas, E., and Speijer, R. P.: Integrated stratigraphy of the Paleocene-Eocene thermal maximum in the New Jersey Coastal Plain: Toward understanding the effects of global warming in a shelf environment, Paleoceanography, 27, https://doi.org/10.1029/2012PA002323, 2012.
Stassen, P., Thomas, E., and Speijer, R. P.: Paleocene–Eocene Thermal Maximum environmental change in the New Jersey Coastal Plain: benthic foraminiferal biotic events, Marine Micropaleontology, 115, 1–23, https://doi.org/10.1016/j.marmicro.2014.12.001, 2015.
Steeman, T., De Weirdt, J., Smith, T., De Putter, T., Mees, F., and Louwye, S.: Dinoflagellate cyst biostratigraphy and palaeoecology of the early Paleogene Landana reference section, Cabinda Province, Angola, Palynology, 44, 280–309, https://doi.org/10.1080/01916122.2019.1575091, 2020.
Steurbaut, E., Magioncalda, R., Dupuis, C., Van Simaeys, S., Roche, E., and Roche, M.: Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium, in: Causes and consequences of globally warm climates in the early Paleogene, Geological Society of America, https://doi.org/10.1130/0-8137-2369-8.291, 2003.
Stover, L. E. and Evitt, W. R.: Analyses of pre-Pleistocene organic-walled dinoflagellates, Stanford University Publications, Geological Sciences, 15, 1–300, 1978.
Taylor, F. J. R.: On dinoflagellate evolution, Biosystems, 13, 65–108, https://doi.org/10.1016/0303-2647(80)90006-4, 1980.
Vail, P. R., Mitchum, R. M., and Sangree, J. B.: Concepts of depositional sequences, in: Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Histories, edited by: Armentrout, J. M. and Rosen, N. C., Gulf Coast Section SEPM Foundation, Houston, TX, ISBN 978-0-9836096-8-1, https://doi.org/10.5724/gcs.02.22, 2002.
Vieira, M. and Jolley, D.: Stratigraphic and spatial distribution of palynomorphs in deep-water turbidites: A meta-data study from the UK central North Sea paleogene, Marine and Petroleum Geology, 122, https://doi.org/10.1016/j.marpetgeo.2020.104638, 2020.
Vieira, M., Mahdi, S., and Holmes, N.: High resolution biostratigraphic zonation for the UK central North Sea Paleocene, Marine and Petroleum Geology, 117, https://doi.org/10.1016/j.marpetgeo.2020.104400, 2020.
Wetzel, O.: Die Typen der baltischen Geschiebefeuersteine, beurteilt nach ihrem Gehalt an Mikrofossilien, 76th edn., E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 1–80, 1932.
Williams, G. L. and Downie, C.: Further dinoflagellate cysts from the London Clay, Studies on Mesozoic and Cainozoic dinoflagellate cysts, British Museum (Natural History) Geology, Bulletin, Supplement, 3, 215–236, 1966.
Witmer, R. J.: Tertiary dinoflagellate, acritarch, and chlorophyte assemblages from the Oak Grove core, Virginia coastal plain, unpublished PhD thesis, Virginia Polytechnic Inst. and State Univ., 1987.
Wrenn, J. H. and Hart, G. F.: Paleogene dinoflagellated cyst biostratigraphy of Seymour Island, Antarctica, Geology and Paleontology of Seymour Island, Antarctic Peninsula, Geological Society of America Memoir, 169, 321–447, 1988.
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., and Bralower, T. J.: Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data, Geol., 34, 737, https://doi.org/10.1130/G22522.1, 2006.
Zeebe, R. E. and Lourens, L. J.: Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy, Science, 365, 926–929, https://doi.org/10.1126/science.aax0612, 2019.
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release rate unprecedented during the past 66 million years, Nature Geosci., 9, 325–329, https://doi.org/10.1038/ngeo2681, 2016.
Short summary
We studied a short-lived episode of major warming ~56 million years ago, often seen as a past analogue for modern climate change. We developed a scheme to correlate biological signals from this warming period across six sediment cores from the US East Coast. Based on the occurrences and distribution of organic remains of planktonic microfossils, we can correlate events in time, allowing detailed reconstructions of how climate and environments changed regionally during this extreme warming.
We studied a short-lived episode of major warming ~56 million years ago, often seen as a past...