Articles | Volume 31, issue 1
https://doi.org/10.1144/0262-821X10-026
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.1144/0262-821X10-026
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New species of Neogene radiolarians from the Southern Ocean
Johan Renaudie
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
David B. Lazarus
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
Related authors
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 35, 26–53, https://doi.org/10.1144/jmpaleo2014-026, https://doi.org/10.1144/jmpaleo2014-026, 2016
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 32, 59–86, https://doi.org/10.1144/jmpaleo2011-025, https://doi.org/10.1144/jmpaleo2011-025, 2013
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 35, 26–53, https://doi.org/10.1144/jmpaleo2014-026, https://doi.org/10.1144/jmpaleo2014-026, 2016
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 32, 59–86, https://doi.org/10.1144/jmpaleo2011-025, https://doi.org/10.1144/jmpaleo2011-025, 2013
Cited articles
A., Abelmann: Oligocene to middle Miocene radiolarian stratigraphy of southern high latitudes from Leg 113, Sites 689–690, Maud RiseIn : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 113: 675–708., 1990.
A., Abelmann: Radiolarian taxa from Southern Ocean sediment traps (Atlantic sector), Polar Biology, 12, 373-385, 1992a.
A., Abelmann: Early to middle Miocene radiolarian stratigraphy of the Kerguelen Plateau, leg 120In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 120: 757–783., 1992b.
M. D., Abramoff, P. J., Magelhaes and S. J., Ram: Image processing with ImageJ, Biophotonics International, 11, 36-42, 2004.
J. W., Bailey: Notice of microscopic forms found in the soundings of the Sea of Kamtschatka, American Journal of Science and Arts, 22, 1-6, 1856.
J. A., Barron, J. G., Baldauf and E., Barrera: Biochronologic and Magnetochronologic synthesis of leg 119 sediments from the Kerguelen Plateau and Prydz Bay, AntarcticaIn : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 119: 813–847., 1991.
K. R., Bjørklund: Radiolaria from the Norwegian Sea, Leg 38 of the Deep Sea Drilling ProjectIn : (Eds), Initial Reports of the Deep Sea Drilling Project, Washington (US Govt Printing Office), 38: 1101–1168., 1976a.
K. R., Bjørklund: Actinomma haysi , n. sp., its Holocene distribution and size variation in Atlantic Ocean sediments, Micropaleontology, 23, 114-126, 1976b.
D., Boltovskoy: Classification and Distribution of South Atlantic recent Polycystine RadiolariaPalaeontologica Electronica, 1(2): http://palaeo-electronica.org/1998_2/boltovskoy/issue2.htm, 1998.
O., Bütschli: Beiträge zur Kenntnis der Radiolarienskelette, insbesondere der Cyrtida, Zeitschrift für wissenschaftliche Zoologie, 36, 485-540, 1882.
A. S., Campbell and B. L., Clark: Miocene Radiolarian faunas from Southern California, Geological Society of America, Special Papers, 51, 1-76, 1944.
J. P., Caulet: Radiolarians from the Southwest PacificIn : (Eds), Initial Reports of the Deep Sea Drilling Project, Washington (US Govt Printing Office), 90: 835–861., 1986.
J. P., Caulet: Radiolarians from the Kerguelen Plateau, ODP Leg 119In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 119: 513–546., 1991.
T., Cavalier-Smith: The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa, International Journal of Systematic and Evolutionary Microbiology, 52, 297-354, 2002.
P. H., Chen: Antarctic RadiolariaIn : (Eds), Initial Reports of the Deep Sea Drilling Project, Washington (US Govt Printing Office), 28: 437–513., 1975.
P. T., Cleve: Plankton collected by the Swedish Expedition to Spitzbergen in 1898, Kongliga Svenska Vetenskaps-Akademiens Handlingar, 32, 25-51, 1899.
P., De Wever, A., Sanfilippo, W. R., Riedel and B., Gruber: Triassic radiolarians from Greece, Sicily and Turkey, Micropaleontology, 25, 75-110, 1979.
P., Dumitrica: Middle Triassic Tripedurnulidae, n. fam. (Radiolaria) from the eastern Carpathians (Romania) and Vicentinian Alps (Italy), Revue de Micropaléontologie, 34, 261-278, 1991.
C. G., Ehrenberg: Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare OrganismenKöniglichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre 1838: 59–147., 1838.
C. G., Ehrenberg: Über 2 neue Lager von Gebirgsmassen aus Infusioren als Meeres-Absatz in Nord-Amerika und eine Vergleichung derselben mit den organischen Kreide-Gebirgen in Europa und AfrikaMonatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre 1844: 57–97., 1844a.
C. G., Ehrenberg: Einige vorlaufige Resultate seiner Untersuchungen der ihm von der Sudpolreise des Captain Ross, so wie von den Herren Schayerund Darwin zugekommenen Materialien über das Verhalten des kleinsten Lebens in den Oceanen und den grossten Bisher zuganglichen Tiefen des WeltmeeresKöniglichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre 1844: 182–207., 1844b.
C. G., Ehrenberg: Über die mikroskopischen kieselschaligen Polycystinen als mächtige Gebirgsmasse von Barbados und über das Verhältniss deraus mehr als 300 neuen Arten bestehenden ganz eigenthümlichen Formengruppe jener Felsmasse zu den jetzt lebenden Thieren und zur KreidebildungKöniglichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre 1847: 40–60., 1847.
C. G., Ehrenberg: Die systematische Charakteristik der neuen Mikroskopischen Organismen des Tiefen Atlantischen OceansKöniglichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre 1854: 236–250., 1854.
C. G., Ehrenberg: Mikrogeologische Studien über das kleinste Leben der Meeres-Tiefgründe aller Zonen und dessen geologischen EinflussMonatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin: 265–322., 1872.
C. G., Ehrenberg: Grössere Felsproben des Polycystinen-mergels von Barbados mit weiteren ErläuterungenMonatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre 1873: 213–263., 1874.
C. G., Ehrenberg: Fortsetzung der mikrogeologischen Studien als Gesammt übersicht der mikroskopischen Paläontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rücksicht auf den Polycystinen-mergel Von BarbadosKöniglichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre 1875: 1–225., 1876.
H. P., Foreman: Radiolaria of Leg 10 with systematics and ranges for the families Amphipyndacidae, Artostrobiidae, and TheoperidaeIn: (Eds), Initial Reports of the Deep Sea Drilling Project, Washington (US Govt Printing Office), 10: 407–474., 1973.
J. K., Friend and W. R., Riedel: Cenozoic orosphaerid radiolarians from tropical Pacific sediments, Micropaleontology, 13, 217-232, 1967.
S., Funakawa: Lophophaeninae (Radiolaria) from the upper Oligocene to lower Miocene and intrageneric variation in their internal skeletal structures, Journal of Geosciences, Osaka City University, 38, 13-59, 1995.
S., Funakawa: Internal skeletal structures of the Cenozoic genera Gondwanaria, Lipmanella and Lithomelissa (Plagiacanthidae, Nassellaria) and their taxonomy, Micropaleontology, 46, 97-121, 2000.
R., Gersonde, A., Abelmann and L. H., Burckle: Biostratigraphic synthesis of Neogene siliceous microfossils from the Antarctic Ocean, ODP Leg 113 (Weddell Sea)In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 113: 915–936., 1990.
R. M., Goll: Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in the Pacific and Caribbean Basins, Part I, Journal of Paleontology, 42, 1409-1432, 1968.
R. M., Goll: Pliocene–Pleistocene radiolarians from the East Pacific Rise and the Galapagos spreading, Deep Sea Drilling Project Leg 54In : (Eds), Initial Reports of the Deep Sea Drilling Project, Washington (US Govt Printing Office), 54: 425–453., 1980.
E., Haeckel: Über neue, lebende Radiolarien des Mittelmeeres und die dazu gehörigen AbbildungenMonatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre 1860: 794–817., 1860.
E., Haeckel: Die Radiolarien (Rhizopoda Radiaria)Reimer, Berlin, 572pp., 1862.
E., Haeckel: Entwurf eines Radiolarien-systems auf grund von studien der Challenger-Radiolarien, Jenaische Zeitschrift für Naturwissenschaft, 15, 418-472, 1881.
E., Haeckel: Report on the Radiolaria collected By H.M.S. Challenger during the years 1873–1876, Report on the Scientific Results of the voyage of H.M.S. Challenger during the years 1873–1876, Zoology, 18-1887.
D. M., Harwood, D. B., Lazarus and A., Abelmann: Neogene integrated magnetobiostratigraphy of the central Kerguelen Plateau, leg 120In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 120: 1031–1052., 1992.
J. D., Hays: Radiolaria and late Tertiary and Quaternary history of Antarctic seasIn : (Ed.), Biology of the Antarctic Seas 2, Antarctic Research Serie, 5: 125–184., 1965.
R., Hertwig: Der organismus der RadiolarienGFischer, Jena, 149pp., 1879.
C. J., Hollis: Biostratigraphy and paleoceanographic significance of Paleocene radiolarians from offshore Eastern New Zealand, Marine Micropaleontology, 46, 265-316, 2002.
E., Jörgensen: The Protist plankton and the diatoms in bottom samplesVIIRadiolariaIn: (Ed.), Hydrographical and Biological investigations in Norwegian Fiords, Bergen Museum Skrifter, 114–141., 1905.
J., Keany: Early Pliocene radiolarian taxonomy and biostratigraphy in the Antarctic region, Micropaleontology, 25, 50-74, 1979.
D. E., Kellogg: The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria), Paleobiology, 1, 359-370, 1975.
J. P., Kennett: A review of polar climatic evolution during the Neogene, based on the marine sediment recordIn : (Eds), Paleoclimate and Evolution with Emphasis on Human OriginsYale University Press, New Haven, 49–64., 1995.
H., Kozur and H., Möstler: Entactinaria suborder nov., a new radiolarian suborder, Geologisch-Paläontlogische Mitteilungen Innsbruck, 11, 399-414, 1982.
D. B., Lazarus: Middle Miocene to Recent radiolarians from the Weddell sea, Antarctica, ODP Leg 113In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 113: 709–727., 1990.
D. B., Lazarus: Antarctic Neogene radiolarians from the Kerguelen Plateau, Legs 119 and 120In: (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 120: 785–809., 1992.
D. B., Lazarus: Late Miocene to early Pliocene radiolarians from glaciomarine drift deposits, ODP Leg 178, Hole 1095B (Bellinghausen Basin, Antarctic Ocean)In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 178: 1–22., 2001.
D. B., Lazarus, K., Faust and I., Popova-Goll: New species of prunoid radiolarians from the Antarctic Neogene, Journal of Micropaleontology, 24, 97-121, 2005.
J. M., Lees: GEOmap: Topographic and Geologic MappingR package version 1.5–4., 2010.
G., Lombari and D. B., Lazarus: Neogene cycladophorid radiolarians from North Atlantic, Antarctic, and North Pacific deep-sea sediments, Micropaleontology, 34, 97-135, 1988.
T. C., Moore: Method of randomly distributing grains for microscope examination, Jour. Sed. Petrology, 43, 904-906, 1973.
J., Müller: Über Sphaerozoum und Thalassicolla Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre 1855: 229–253., 1855.
J., Müller: Über die Thalassicollen, Polycystinen und Acanthometren des MittelmeeresKöniglichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre 1858: 1–62., 1858.
K., Nakaseko: On superfamily Liosphaericae (Radiolaria) from sediments in the sea near AntarcticaSpecial Publications from the Seto Marine Biology Laboratory, Osaka, Japan, 21pp., 1959.
C., Nigrini: Radiolaria in pelagic sediments from the Indian and Atlantic OceansBulletin of the Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 11: 1–125., 1967.
C., Nigrini: Radiolaria from eastern tropical Pacific Sediments, Micropaleontology, 14, 51-63, 1968.
C., Nigrini: Tropical Cenozoic Artostrobiidae (Radiolaria), Micropaleontology, 23, 241-269, 1977.
A., Nishimura and M., Yamauchi: Radiolarians from the Nankai Trough in the Northwest Pacific, News of Osaka Micropaleontologist, Special Volume, 6, 1-148, 1984.
H., Nishimura: Taxonomic study on Cenozoic Nassellaria (Radiolaria), Science Report of the Institute of Geosciences, University of Tsukuba, section B, 11, 69-172, 1990.
B., O’Connor: Seven new radiolarian species from the Oligocene of New Zealand, Micropaleontology, 40, 337-350, 1994.
B., O’Connor: Lower Miocene Radiolaria from Te Kopua Point, Kaipara Harbour, New Zealand, Micropaleontology, 43, 101-128, 1997.
B., O’Connor: Distribution and biostratigraphy of latest Eocene to latest Oligocene Radiolaria from the Mahurangi Limestone, Northland, New Zealand, New Zealand Journal of Geology and Geophysics, 42, 489-511, 1999a.
B., O’Connor: Radiolaria from the late Eocene Oamaru diatomite, South Island, New Zealand, Micropaleontology, 45, 1-55, 1999b.
K., Ogane, N., Suzuki, Y., Aita, T., Sakai and D., Lazarus: Ehrenberg’s Radiolarian Collection from BarbadosIn : (Eds), Joint Haeckel and Ehrenberg Project: Reexamination of the Haeckel and Ehrenberg Microfossil Collection as a Historical and Scientific Legacy, National Museum of Nature and Science Monographs, Tokyo, 40: 97–106., 2009.
M. G., Petrushevskaya: Osobennosti 1 konstruktsii skeleta radiolyarii Botryoidae (otr. Nassellaria), Trudy Zoologicheskogo Instituta, 35, 79-118, 1965.
M. G., Petrushevskaya: Radiolaryii otryadov Spumellaria 1 Nasselaria antarkticheskoi oblasti, Issledovaniya Fauny Morei, 4, 2-186, 1967.
M. G., Petrushevskaya: Gomologii v skeletakh radiolyarii Nasselaria. 1. Osnovnye dugi v semeistve Cyrtoidea, Zoologicheskii Zhurnal, 47, 1296-1310, 1968.
M. G., Petrushevskaya: Radiolyarii nassellaria v planktone mirovogo okeana, Issledovaniya Fauny Morei, 9, 1-294, 1971.
M. G., Petrushevskaya: Cenozoic radiolarians of the Antarctic, Leg 29, Deep Sea Drilling ProjectIn : (Eds), Initial Reports of the Deep Sea Drilling Project, Washington (US Govt Printing Office), 29: 541–676., 1975.
M. G., Petrushevskaya: Evolution of the Antarctissa Group, Marine Micropaleontology, 11, 185-195, 1986.
M. G., Petrushevskaya and G. E., Kozlova: Radiolaria: Leg 14, Deep Sea Drilling ProjectIn : (Eds), Initial Reports of the Deep Sea Drilling Project, Washington (US Govt Printing Office), 14: 495–648., 1972.
M. G., Petrushevskaya and G. E., Kozlova: Opisanie rodov i vidov Radiolyarii, Issledovaniya Fauny Morei, 23, 86-157, 1979.
A., Popofsky: Die Radiolarien der Antarktis, Deutsche Südpolar-Expedition 1901–1903, 10, 183-305, 1908.
A., Popofsky: Die Nassellarien des Warmwassergebietes, Deutsche Südpolar-Expedition 1901–1903, 14, 217-416, 1913.
W. R., Riedel: Some new families of Radiolaria, Geological Society of London, Proceedings, 1640, 148-149, 1967.
A., Sanfilippo and W. R., Riedel: A revised generic and suprageneric classification of the Artiscins (Radiolaria), Journal of Paleontology, 54, 1008-1011, 1980.
A. A., Strelkov and V. V., Reshetnjak: Koloniyalnie radiolyarii Spumellaria mirovogo okeana, Issledovaniya Fauny Morei, 9, 295-373, 1971.
K., Sugiyama: Syscioscenium velamen gen. et sp. nov., a new sethoformid Radiolaria from the lower to middle Miocene of central Japan, Bulletin of the Mizunami Fossil Museum, 19, 215-218, 1992.
K., Sugiyama: Skeletal structures of lower and middle Miocene lophophaenids (Radiolaria) from central Japan, Transactions and Proceedings of the Palaeontological society of Japan, New Series, 169, 44-72, 1993.
K., Sugiyama, T., Nobuhara and K., Inoue: Preliminary report on Pliocene radiolarians from the Nobori Formation, Tonohama Group, Shikoku, Southwest Japan, Journal of Earth and Planetary Science, Nagoya University, 39, 1-30, 1992.
K., Takahashi: Radiolaria: flux, ecology and taxonomy in the Pacific and AtlanticIn : (Ed.), Ocean Biocoenosis Series, Woods Hole, MA, US, Woods Hole Oceanographic Institution, 3: 1–303., 1991.
A., Takemura: Radiolarian Paleogene biostratigraphy in the southern Indian Ocean, Leg 120In: (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 120: 735–756., 1992.
R., Vigour and D. B., Lazarus: Biostratigraphy of late Miocene–early Pliocene radiolarians from ODP Leg 183 Site 1138In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 183: 1–17., 2002.
Y., Wang and Q., Yang: Neogene and Quaternary radiolarians from leg 125In: (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 125: 95–112., 1992.