Articles | Volume 35, issue 1
https://doi.org/10.1144/jmpaleo2014-026
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.1144/jmpaleo2014-026
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New species of Neogene radiolarians from the Southern Ocean – part IV
Johan Renaudie
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
David B. Lazarus
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
Related authors
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 32, 59–86, https://doi.org/10.1144/jmpaleo2011-025, https://doi.org/10.1144/jmpaleo2011-025, 2013
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 31, 29–52, https://doi.org/10.1144/0262-821X10-026, https://doi.org/10.1144/0262-821X10-026, 2012
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 32, 59–86, https://doi.org/10.1144/jmpaleo2011-025, https://doi.org/10.1144/jmpaleo2011-025, 2013
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 31, 29–52, https://doi.org/10.1144/0262-821X10-026, https://doi.org/10.1144/0262-821X10-026, 2012
Cited articles
A., Abelmann: Oligocene to middle Miocene radiolarian stratigraphy of southern high latitudes from Leg 113, Sites 689 and 690, Maud RiseIn : (eds) Proceedings of the ODP, Scientific Results, 113Ocean Drilling Program, College Station, TX, 675–708., 1990.
A., Abelmann: Early to Middle Miocene radiolarian stratigraphy of the Kerguelen Plateau, Leg 120In : (eds) Proceedings of the ODP, Scientific Results, 120Ocean Drilling Program, College Station, TX, 757–783., 1992.
M. D., Abramoff, P. J., Magelhaes and S. J., Ram: Image Processing with ImageJ, Biophotonics International, 11, 36-42, 2004.
S. M., Adl and A. G. B., Simpson: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists, The Journal of Eukaryotic Microbiology, 52, 399-451, 2005.
J. W., Bailey: Notice of microscopic forms found in the soundings of the Sea of Kamtschatka, American Journal of Science and Arts, 2nd Series, 22, 1-6, 1856.
J. A., Barron and J. G., Baldauf: Biochronologic and magnetochronologic synthesis of Leg 119 sediments from the Kerguelen Plateau and Prydz Bay, AntarcticaIn : (eds) Proceedings of the ODP, Scientific Results, 119Ocean Drilling Program, College Station, TX, 813–847., 1991.
W. A., Berggren, D. V., Kent, C. C., Swisher and M.-P., Aubry: A revised Cenozoic geochronology and chronostratigraphyIn : (eds) Geochronology, time scales and global stratigraphic correlations: a unified temporal framework for a historical geologySEPM special publication, 54, 129–212., 1995.
K. R., Bjørklund: Radiolaria from the Norwegian Sea, Leg 38 of the Deep Sea Drilling ProjectIn : (eds) Initial Reports of the Deep Sea Drilling Project, 38US Government Printing Office, Washington, DC, 1101–1168., 1976.
K. R., Bjørklund, T., Itaki and J. K., Dolven: Per Theodore Cleve: A short résumé and his radiolarian results from the Swedish Expedition to Spitsbergen in 1898Journal of Micropalaeontology, 33, 59–93, http://doi.org/10.1144/jmpaleo2012-024, 2014.
J. R., Blueford: Miocene actinommid Radiolaria from the Equatorial Pacific, Micropaleontology, 28, 189-213, 1982.
S. M., Bohaty, S. W., Wise, R. A., Duncan, C. L., Moore and P. J., Wallace: Neogene diatom biostratigraphy, tephra stratigraphy, and chronology of ODP Hole 1138A, Kerguelen PlateauIn : (eds) Proceedings of the ODP, Scientific ResultsOcean Drilling Program, College Station, TX, 183, 1–53., 2003.
D., Boltovskoy: Sedimentary record of radiolarian biogeography in the equatorial to antarctic western Pacific Ocean, Micropaleontology, 33, 267-281, 1987.
D., Boltovskoy: Classification and distribution of South Atlantic recent Polycystine RadiolariaPalaeontologia Electronica, 1, http://palaeo-electronica.org/content/recent-radiolaria-of-the-south-atlantic, 1998.
D., Boltovskoy, S. A., Kling, K., Takahashi and K. R., Bjørklund: World atlas of distribution of recent Polycystina (Radiolaria), Palaeontologia Electronica, 13, 1-230, 2010.
A., Borgert: Die Tripyleen Radiolarien der Plankton-Expedition. Concharidae, Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, 3, 195-237, 1907.
A. S., Campbell and B. L., Clark: Miocene Radiolarian faunas from Southern CaliforniaGeological Society of America, Special Papers, 51, 1–76., 1944.
P., Carnevale: Radiolarie e Silicoflagellati di Bergonzano (Reggio Emilia), Memorie del Reale Istituo Veneto di Scienze, Lettere ed Arti, 28, 1-46, 1908.
J.-P., Caulet: La silice biogène dans les sédiments néogènes et queternaires de l’océan Indien austral, Bulletin de la Société géologique de France, 19, 1021-1022, 1977.
J.-P., Caulet: Les dépôts à radiolaries d’âge Pliocène supérieur à Pleistocène dans l’océan Indien central: Nouvelle zonation biostratigraphique, Mémoires du Museum National d’Histoire Naturelle, Série C, 43, 119-141, 1979.
J.-P., Caulet: Radiolarians from the Kerguelen Plateau, ODP Eg 119In : (eds) Proceedings of the ODP, Scientific ResultsOcean Drilling Program, College Station, TX, 119, 513–546., 1991.
T., Cavalier-Smith: A revised Six Kingdoms of Life, Biological Reviews, 73, 203-266, 1998.
T., Cavalier-Smith: The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa, International Journal of Systematic and Evolutionary Microbiology, 52, 297-354, 2002.
P. H., Chen: Antarctic RadiolariaIn : (eds) Initial Reports of the Deep Sea Drilling Project, 28US Government Printing Office, Washington, DC, 437–513., 1975.
B. S., Clark and A. S., Campbell: Radiolaria from the Kreyenhagen Formation near Los Banos, CaliforniaGeological Society of America, Memoirs, 10, 1–66., 1945.
P. T., Cleve: Plankton collected by the Swedish Expedition to Spitzbergen in 1898, Kongliga Svenska Vetenskaps-Akademiens Handlingar, 32, 1-51, 1899.
P. T., Cleve: Notes on some Atlantic plankton organisms, Kongliga Svenska Vetenskaps-Akademiens Handlingar, 34, 1-22, 1900.
P., De Wever, A., Sanfilippo, W. R., Riedel and B., Gruber: Triassic radiolarians from Greece, Sicily and Turkey, Micropaleontology, 25, 75-110, 1979.
P., De Wever, P., Dumitrica, J.-P., Caulet, C., Nigrini and M., Caridroit: Radiolarians in the sedimentary recordGordon and Breach, Amsterdam, 533., 2001.
J. K., Dolven, K. R., Bjørklund and T., Itaki: Jørgensen’s polycystine radiolarian slide collection and new speciesJournal of Micropalaeontology, 33, 21–58, http://doi.org/10.1144/jmpaleo2012-027, 2014.
F., Dreyer: Die Pylombildungen in vergleichend-anatomischer und entwicklungsgeschichtlicher Beziehung bei Radiolarien und bei Protisten überhaupt, nebst System und Beschreibung neuer und der bis jetzt bekannten pylomatischen Spumellarien, Jenaische Zeitschrift für Naturwissenschaft, Jena, 23, 77-214, 1889.
P., Dumitrica: Cretaceous and Quaternary Radiolaria in deep sea sediments from the Northwest Atlantic Ocean and Mediterranean SeaIn : (eds) Initial Reports of the Deep Sea Drilling Project, 13US Government Printing Office, Washington, DC, 829–901., 1973.
P., Dumitrica: Badenian Radiolaria from central ParatethysIn : (ed.) Chronostratigraphie und Neostratotypen Miozän der Zentralen ParatethysVerlag der Slowakischen Academie der Wissenschaften, Bratislava, 6, 231–261., 1978.
P., Dumitrica: Middle Triassic Tripedurnulidae, n. fam. (Radiolaria) from the eastern Carpathians (Romania) and Vicentinian Alps (Italy), Revue de Micropaléontologie, 34, 261-278, 1991.
P., Dumitrica: Cleveiplegma nov. gen., a new generic name for the radiolarian species Rhizoplegma boreale (Cleve, 1899), Revue de Micropaléontologie, 56, 21-25, 2013.
R. N., Dzinoridze, A. P., Jousé, G. S., Koroleva-Golikova, G. E., Kozlova, G. S., Nagaeva, M. G., Petrushevskaya and N. I., Strelnikova: Diatom and radiolarian Cenozoic stratigraphy, Norwegian Basin; DSDP Leg 38In : (eds) Initial Reports of the Deep Sea Drilling Project, 38US Government Printing Office, Washington, DC, 289–427., 1978.
C. G., Ehrenberg: Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre, 1838, 59-147, 1839.
C. G., Ehrenberg: Über 2 neue Lager von Gebirgsmassen aus Infusorien als Meeres-Absatz in Nord-Amerika und eine Vergleichung derselben mit den organischen Kreide-Gebirgen in Europa und Afrika, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre, 1844, 57-97, 1844.
C. G., Ehrenberg: Über die mikroskopischen kieselschaligen Polycystinen als mächtige Gebirgsmasse von Barbados und über das Verhältniss der aus mehr als 300 neuen Arten bestehenden ganz eigenthümlichen Formengruppe jener Felsmasse zu den jetzt lebenden Thieren und zur Kreidebildung, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre, 1847, 40-60, 1847.
C. G., Ehrenberg: Die systematische Charakteristik der neuen Mikroskopischen Organismen des Tiefen Atlantischen Oceans, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre, 1854, 236-250, 1854.
C. G., Ehrenberg: Über den Tiefgrund des stillen Oceans zwischen Californien und des Sandwich-Inseln, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Monatsbericht, Jahre, 1860, 819-833, 1861.
C. G., Ehrenberg: Mikrogeologische Studien über das kleinste Leben der Meeres-Tiefgründe aller Zonen und dessen geologischen Einfluss, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre, 1872, 265-322, 1873.
C. G., Ehrenberg: Größere Felsproben des Polycystinen-Mergels von Barbados mit weiteren Erläuterungen, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre, 1873, 213-262, 1874.
C. G., Ehrenberg: Fortsetzung der mikrogeologischen Studien als Gesammt übersicht der mikroskopischen Paläontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rücksicht auf den Polycystinen-mergel von Barbados, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre, 1875, 1-225, 1876.
H. P., Foreman: Upper Maastrichtian Radiolaria of California, Special Papers in Palaeontology, 3, 1-82, 1968.
H. P., Foreman: Radiolaria of Leg 10 with systematics and ranges for the families Amphipyndacidae, Artostrobiidae, and TheoperidaeIn : (eds) Initial Reports of the Deep Sea Drilling Project, 10US Government Printing Office, Washington, DC, 407–474., 1973.
S., Funakawa: Plagiacanthidae (Radiolaria) from the upper Miocene of eastern Hokkaido, Japan, Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 174, 458-483, 1994.
S., Funakawa: Intrageneric variation and temporal change in the internal skeletal structure of plagiacanthids (Radiolaria) from Hokkaido, Japan, Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 180, 208-225, 1995.
S., Funakawa: Lophophaeninae (Radiolaria) from the upper Oligocene to lower Miocene and intrageneric variation in their internal skeletal structures, Journal of Geosciences, Osaka City University, 38, 13-59, 1995.
S., Funakawa: Internal skeletal structures of the Cenozoic genera Gondwanaria, Lipmanella and Lithomelissa (Plagiacanthidae, Nassellaria) and their taxonomy, Micropaleontology, 46, 97-121, 2000.
S., Funakawa and H., Nishi: Late middle Eocene to late Oligocene radiolarian biostratigraphy in the Southern Ocean (Maud Rise, ODP Leg 113, Site 689), Marine Micropaleontology, 54, 213-247, 2005.
R., Gersonde and A., Abelmann: Biostratigraphic synthesis of Neogene siliceous microfossils from the Antarctic Ocean, ODP Leg 113 (Weddell Sea)In : (eds) Proceedings of the ODP, Scientific Results, 113Ocean Drilling Program, College Station, TX, 915–936., 1990.
R. M., Goll: Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in the Pacific and Caribbean Basins, Part I, Journal of Paleontology, 42, 1409-1432, 1968.
R. M., Goll: Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in the Pacific and Caribbean Basins, Part II, Journal of Paleontology, 43, 322-339, 1969.
R. M., Goll: Systematics of eight Tholospyris taxa (Trissocyclidae, Radiolaria), Micropaleontology, 18, 443-475, 1972.
R. M., Goll: Morphological intergradation between modern populations of Lophospyris an d Phormospyris (Trissocyclidae, Radiolaria), Micropaleontology, 22, 379-418, 1976.
R. M., Goll: Pliocene–Pleistocene radiolarians from the East Pacific Rise and the Galapagos spreading, Deep Sea Drilling Project Leg 54In : (eds) Initial Reports of the Deep Sea Drilling Project, 54US Government Printing Office, Washington, DC, 425–453., 1980.
R. M., Goll and K. R., Bjørklund: A new radiolarian biostratigraphy for the Neogene of the Norwegian Sea: ODP Leg 104In : (eds) Proceedings of the ODP, Scientific Results, 104Ocean Drilling Program, College Station, TX, 697–737., 1989.
E., Haeckel: Die Radiolarien (Rhizopoda Radiaria)Reimer, Berlin., 1862.
E., Haeckel: Naturliche SchopfungsgeschichteReimer, Berlin., 1879.
E., Haeckel: Entwurf eines Radiolarien-Systems auf Grund von Studien der Challenger-Radiolarien, Jenaische Zeitschrift für Naturwissenschaft, 15, 418-472, 1881.
E., Haeckel: Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876, Report on the Scientific Results of the voyage of H.M.S. Challenger during the years 1873–1876. Zoology, 18, 1-1803, 1887.
V., Haecker: Altertümliche Spharellarien und Cyrtellarien aus grossen Meerestiefen, Archiv für Protistenkunde, 10, 114-126, 1907.
D. M., Harwood and D. B., Lazarus: Neogene integrated magnetobiostratigraphy of the central Kerguelen Plateau, Leg 120In : (eds) Proceedings of the ODP, Scientific Results, 120Ocean Drilling Program, College Station, TX, 1031–1052., 1992.
J. D., Hays: Radiolaria and late Tertiary and Quaternary history of Antarctic seasIn : (ed.) Biology of the Antarctic Seas IIAntarctic Research Series, b, 125–184., 1965.
R., Hertwig: Der organismus der RadiolarienGFischer, Jena., 1879.
A., Hollande and M., Enjumet: Cytologie, évolution et systématique des Sphaeroïdés (Radiolaires), Archives du Muséum National d’Histoire Naturelle, 7, 1-134, 1960.
S.-J., Jackett, P. O., Baumgartner and A. N., Bandini: A new low-latitude late Paleocene–early Eocene radiolarian biozonation based on unitary associations: Applications for accreted terranes, Stratigraphy, 54, 39-62, 2008.
E., Jørgensen: Protophyten und Protozöen in Plankton aus der norwegischen Westküste, Bergens Museums Aarbog, 6, 51-112, 1900.
E., Jørgensen: The Protist plankton and the diatoms in bottom samplesVIIRadiolariaIn : (ed.) Hydrographical and Biological Investigations in Norwegian FiordsBergen Museum Skrifter, 114–141., 1905.
S.-I., Kamikuri: New late Neogene radiolarian species from the middle to high latitudes of the North Pacific, Revue de Micropaléontologie, 53, 85-106, 2010.
S. A., Kling: Radiolaria from the eastern North Pacific, Deep Sea Drilling Project, Leg 18In : (eds) Initial Reports of the Deep Sea Drilling Project, 18US Government Printing Office, Washington, DC, 617–671., 1973.
G. E., Kozlova: Radiolarii paleogene boreal’noi oblasti Rossii, Practicheskoe rykovodstvo po microfayne Rossii, VNIGRI, 9, 1-320, 1999.
D. B., Lazarus: Middle Miocene to Recent radiolarians from the Weddell sea, Antarctica, ODP Leg 113In : (eds) Proceedings of the ODP, Scientific Results, 113Ocean Drilling Program, College Station, TX, 709–727., 1990.
D. B., Lazarus: Antarctic Neogene radiolarians from the Kerguelen Plateau, Legs 119 and 120In : (eds) Proceedings of the ODP, Scientific Results, 120Ocean Drilling Program, College Station, TX, 785–809., 1992.
D. B., Lazarus: The Micropaleontological Reference Center Network, Scientific Drilling, 3, 46-49, 2006.
D., Lazarus: The deep-sea microfossil record of macroevolutionary change in plankton and its studyIn : (eds) Comparing the Geological and Fossil Records: Implications for Biodiversity StudiesGeological Society, London, Special Publications, 358, 141–166, http://doi.org/10.1144/SP358.10, 2011.
D. B., Lazarus and A., Pallant: Oligocene and Neogene radiolarians from the Labrador Sea, ODP Leg 105In : (eds) Proceedings of the ODP, Scientific Results, 105Ocean Drilling Program, College Station, TX, 349–380., 1989.
D. B., Lazarus, K., Faust and I., Popova-Goll: New species of prunoid radiolarians from the Antarctic NeogeneJournal of Micropalaeontology, 24, 97–121, http://doi.org/10.1144/jm.24.2.97, 2005.
J. M., Lees: GEOmap: Topographic and Geologic Mapping, 2010.
H. Y., Ling: Radiolaria: Leg 31 of the deep sea drilling projectIn : (eds) Initial Reports of the Deep Sea Drilling Project, 31US Government Printing Office, Washington, DC, 703–761., 1975.
R. Kh, Lipman: Novye eotsenovyie radiolyarii Turchayskogo prochiba i Severnogo PriaraiyaNovyie Vyidyi Drevnyikh Rastenyyi i Bespozvonochnyikh SSSR, Nauka, Moskva, Akademiya Nauk SSSR, Nauchnyiy Sovet po Probleme, 42–56., 1972.
A. K., Maharapatra and V., Sharma: Trissocyclid Radiolaria from the late Early Miocene sequences of Colebrook, North Passage and Great Nicobar Islands, northeast Indian Ocean, Micropaleontology, 40, 157-168, 1994.
T. C., Moore: Mid-Tertiary evolution of the radiolarian genus Calocycletta , Micropaleontology, 18, 144-152, 1972.
T. C., Moore: Method of randomly distributing grains for microscope examination, Journal of Sedimentary Petrology, 43, 904-906, 1973.
I., Motoyama: Late Neogene radiolarian biostratigraphy in the subarctic Northwest Pacific, Micropaleontology, 42, 221-262, 1996.
J., Müller: Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre, 1858, 1-62, 1858.
K., Nakaseko: Neogene Cyrtoidea (Radiolaria) from the Isozaki Formation in Ibaraki Prefecture, Japan, Science Reports, College of General Education, Osaka University, 12, 165-198, 1963.
K., Nakaseko and A., Nishimura: Miocene radiolarian fossils of the Oki Islands in Shimane Prefecture, Japan, Science Reports, College of General Education, Osaka University, 23, 45-73, 1974.
K., Nakaseko, K., Nagata and A., Nishimura: Pentactinosphaera hokurikuensis (Nakaseko): A revised Early Miocene Radiolaria, Science Reports, College of General Education, Osaka University, 32, 31-37, 1983.
C., Nigrini: Radiolaria from eastern tropical Pacific Sediments, Micropaleontology, 14, 51-63, 1968.
C., Nigrini: Radiolarian zones in the Quaternary of the equatorial Pacific OceanIn : (eds) The Micropaleontology of the OceansCambridge University Press, Cambridge, 443–461., 1971.
C., Nigrini: Tropical Cenozoic Artostrobiidae (Radiolaria), Micropaleontology, 23, 241-269, 1977.
C., Nigrini and J.-P., Caulet: The genus Anthocyrtidium (Radiolaria) from the tropical late Neogene of the Indian and Pacific Oceans, Micropaleontology, 34, 341-360, 1988.
C., Nigrini and G., Lombari: A guide to Miocene RadiolariaCushman Foundation for Foraminiferal Research, Special Publication, 22., 1984.
A., Nishimura: Paleocene radiolarian biostratigraphy in the northwest Atlantic at Site 384, Leg 43, of the Deep Sea Drilling Project, Micropaleontology, 38, 317-362, 1992.
A., Nishimura and M., Yamauchi: Radiolarians from the Nankai Trough in the Northwest Pacific, News of Osaka Micropaleontologists, Special Volume, 6, 1-148, 1984.
H., Nishimura: Taxonomic study on Cenozoic Nassellaria (Radiolaria), Science Report of the Institute of Geosciences, University of Tsukuba, section B, 11, 69-172, 1990.
B., O’Connor: Lower Miocene Radiolaria from Te Kopua Point, Kaipara Harbour, New Zealand, Micropaleontology, 43, 101-128, 1997.
K., Ogane, N., Suzuki, Y., Aita, T., Sakai and D., Lazarus: Ehrenberg’s radiolarian collections from BarbadosIn : (eds) Joint Haeckel and Ehrenberg Project: Reexamination of the Haeckel and Ehrenberg Microfossil Collection as a historical and scientific legacyNational Museum of Nature and Science Monographs, Tokyo, 40, 97–106., 2009.
M. G., Petrushevskaya: Osobennosti i konstruktsii skeleta radiolyarii Botryoidae (otr. Nassellaria), Trudy Zoologicheskogo Instituta, 35, 79-118, 1965.
M. G., Petrushevskaya: Radiolaryii otryadov Spumellaria i Nasselaria antarkticheskoi oblasti, Issledovaniya Fauny Morei, 4, 2-186, 1967.
M. G., Petrushevskaya: Gomologii v skeletakh radiolyarii Nassellaria. 1. Osnovnye dugi v semeistve Cyrtoidea, Zoologicheskii Zhurnal, 47, 1296-1310, 1968.
M. G., Petrushevskaya: Radiolyarii Nassellaria v planktone mirovogo okeana, Issledovaniya Fauny Morei, 9, 1-294, 1971.
M. G., Petrushevskaya: Cenozoic radiolarians of the Antarctic, Leg 29, Deep Sea Drilling ProjectIn : (eds) Initial Reports of the Deep Sea Drilling Project, 29US Government Printing Office, Washington, DC, 541–676., 1975.
M. G., Petrushevskaya: Radiolyarii otryada Nassellaria mirovogo okeanaOpredeliteli po faune S.S.S.R., Izdavemye Zoologitcheskyim Institutom Akademyi Nauk S.S.S.R., 128., 1981.
M. G., Petrushevskaya and G. E., Kozlova: Radiolaria: Leg 14, Deep Sea Drilling ProjectIn : (eds) Initial Reports of the Deep Sea Drilling Project, 14US Government Printing Office, Washington, DC, 495–648., 1972.
A., Popofsky: Die Radiolarien der Antarktis, Deutsche Südpolar-Expedition 1901–1903, 10, 183-305, 1908.
A., Popofsky: Die Sphaerellarien des Warmwassergebietes, Deutsche Südpolar-Expedition 1901–1903, 13, 73-159, 1912.
A., Popofsky: Die Nassellarien des Warmwassergebietes, Deutsche Südpolar-Expedition 1901–1903, 14, 217-416, 1913.
J., Renaudie and D. B., Lazarus: New species of Neogene radiolarians from the Southern OceanJournal of Micropalaeontology, 31, 29–52, http://doi.org/10.1144/0262-821X10-026, 2012.
J., Renaudie and D. B., Lazarus: a New species of Neogene radiolarians from the Southern Ocean – Part IIJournal of Micropalaeontology, 32, 59–86, http://doi.org/10.1144/jmpaleo2011-025, 2013.
J., Renaudie and D. B., Lazarus: On the accuracy of paleodiversity reconstructions: A case study in Antarctic radiolarians, Paleobiology, 39, 491-509, 2013.
J., Renaudie and D. B., Lazarus: New species of Neogene radiolarians from the Southern Ocean – Part IIIJournal of Micropalaeontology, 34, 181–209, http://doi.org/10.1144/jmpaleo2013-034, 2015.
R. A., Reynolds: Radiolarians from the western north Pacific, Leg 57, Deep Sea Drilling ProjectIn : (eds) Initial Reports of the Deep Sea Drilling Project, 56US Government Printing Office, Washington, DC, 735–769., 1980.
W. R., Riedel: Radiolaria in Antarctic sediments, Reports of the B.A.N.Z. Antarctic Research Expedition, 6, 218-254, 1958.
W. R., Riedel: Some new families of Radiolaria, Geological Society of London, Proceedings, 1640, 148-149, 1967.
W. R., Riedel and A., Sanfilippo: Cenozoic Radiolaria from the Western Tropical Pacific, Leg 7In : (eds) Initial Reports of the Deep Sea Drilling Project, 7US Government Printing Office, Washington, DC, 1529–1672., 1971.
T., Sakai: Radiolarians from Sites 434, 435, and 436, Northwest Pacific, Leg 56, Deep Sea Drilling ProjectIn : (eds) Initial Reports of the Deep Sea Drilling Project, 56US Government Printing Office, Washington, DC, 695–733., 1980.
A., Sanfilippo and W. R., Riedel: Cenozoic Radiolaria (exclusive of Theoperids, Artostrobiids and Amphipyndacids) from the Gulf of Mexico, DSDP Leg 10In : (eds) Initial Reports of the Deep Sea Drilling Project, 10US Government Printing Office, Washington, DC, 475–611., 1973.
A., Sanfilippo and W. R., Riedel: A revised generic and suprageneric classification of the Artiscins (Radiolaria), Journal of Paleontology, 54, 1008-1011, 1980.
A., Sanfilippo and W. R., Riedel: The origin and evolution of Pterocorythidae (Radiolaria): A Cenozoic phylogenetic study, Micropaleontology, 38, 1-36, 1992.
A., Sanfilippo, L. H., Burckle, E., Martini and W. R., Riedel: Radiolarians, diatoms, silicoflagellates and calcareous nannofossils in the Mediterranean Neogene, Micropaleontology, 19, 209-234, 1973.
A., Sanfilippo, M. J., Westberg-Smith and W. R., Riedel: Cenozoic RadiolariaIn : (eds) Plankton StratigraphyCambridge University Press, Cambridge, 631–712., 1985.
K., Sashida and T., Kurihara: Recent radiolarian faunas in the surface water off the coast of Shimoda, Izu Peninsula, Japan, Science Report of the Institute of Geosciences, University of Tsukuba, section B, 20, 115-144, 1999.
G., Seguenza: Le formazioni terziare nella provincia di Reggio (Calabria), Atti della Real Accademia dei Lincei, Serie Terza, Memorie della classe di Scienze Fisiche, Matematiche e Naturali, 6, 1-446, 1880.
C., Spencer-Cervato: The Cenozoic deep-sea microfossil record: Explorations of the DSDP/ODP sample set using the Neptune database, Palaeontologia electronica, 2, 1-270, 1999.
E., Stöhr: Die Radiolarienfauna der Tripoli von Grotte, Provinz Girgenti in Sicilien, Palaeontographica, 26, 69-124, 1880.
L. S., Streeter: Two species (one new) of Plio-Pleistocene Radiolaria from the central equatorial Indian Ocean, Micropaleontology, 34, 63-66, 1988.
K., Sugiyama: New spumellarians (Radiolaria) from the lower Miocene Toyohama Formation, Morozaki Group, central Japan, Bulletin of the Mizunami Fossil Museum, 19, 193-197, 1992.
K., Sugiyama: Skeletal structures of lower and middle Miocene lophophaenids (Radiolaria) from central Japan, Transactions and Proceedings of the Palaeontological society of Japan, New Series, 169, 44-72, 1993.
K., Sugiyama and H., Furutani: Middle Miocene radiolarians from the Oidawara Formation, Mizunami Group, Gifu Prefecture, central Japan, Bulletin of the Mizunami Fossil Museum, Dr. Junji Itoigawa memorial volume, 19, 199-213, 1992.
N., Suzuki, K., Ogane and K., Chiba: Middle to Late Eocene polycystine radiolarians from the Site 1172, leg 189, southwest Pacific, News of Osaka Micropaleontologists, Special Volume, 14, 239-296, 2009.
N., Suzuki, K., Ogane, Y., Aita, T., Sakai and D., Lazarus: b Reexamination of Ehrenberg’s Neogene Radiolarian collections and its impact on taxonomic stabilityIn : (eds) Joint Haeckel and Ehrenberg Project: Reexamination of the Haeckel and Ehrenberg Microfossil Collection as a historical and scientific legacyNational Museum of Nature and Science Monographs, Tokyo, 40, 87–96., 2009.
P. E., Vinassa de Regny: Radiolari Miocenici Italiani, Memorie della Reale Accademia delle scienze dell’Istituto di Bologna, 5, 227-257, 1900.
V. S., Vishnevskaya: New species of the Family Heliodiscidae Haeckel (Radiolaria), Paleontological Journal, 40, 134-142, 2006.
F. M., Weaver: Antarctic Radiolaria from the southeast Pacific Basin, Deep Sea Drilling Project, Leg 35In : (eds) Initial Reports of the Deep Sea Drilling Project, 35US Government Printing Office, Washington, DC, 569–603., 1976.
F. M., Weaver: Cenozoic radiolarians from the Southwest Atlantic, Falkland Plateau region, Deep Sea Drilling Project, Leg 71In : (eds) Initial Reports of the Deep Sea Drilling Project, 71US Government Printing Office, Washington, DC, 667–686., 1983.