Articles | Volume 38, issue 1
https://doi.org/10.5194/jm-38-25-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-38-25-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calcareous nannofossil assemblages of the Late Cretaceous Fiqa Formation, north Oman
Zainab Al Rawahi
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Birmingham, Birmingham, B15
2TT, UK
Tom Dunkley Jones
Department of Earth Sciences, University of Birmingham, Birmingham, B15
2TT, UK
Related authors
No articles found.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Marcelo Augusto De Lira Mota, Guy Harrington, and Tom Dunkley Jones
J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, https://doi.org/10.5194/jm-39-1-2020, 2020
Short summary
Short summary
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain reveal more accurate age estimates for the critical Eocene–Oligocene transition (EOT), a global climate event marked by the rapid expansion of the first permanent Antarctic ice sheet 34 million years ago. These data suggest a coeval major increase in sedimentation rate. Future isotopic and palaeoecological work on this core can be more precisely integrated with other global records of the EOT.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Related subject area
Calcareous nannofossils
Nannofossils from the Middle Eocene Sabiñánigo Sandstone Formation in the Jaca Basin (southern Pyrenees): biostratigraphy and paleoenvironmental implications
Revisiting Early Jurassic Biscutaceae: Similiscutum giganteum sp. nov.
Lower Jurassic calcareous nannofossil taxonomy revisited according to the Neuquén Basin (Argentina) record
Revised taxonomy and early evolution of fasciculiths at the Danian–Selandian transition
Elizabeth R. Lasluisa, Oriol Oms, Eduard Remacha, Alba González-Lanchas, Hug Blanchar-Roca, and José Abel Flores
J. Micropalaeontol., 43, 55–68, https://doi.org/10.5194/jm-43-55-2024, https://doi.org/10.5194/jm-43-55-2024, 2024
Short summary
Short summary
We studied sediment samples containing marine plankton under the polarized microscope from the Sabiñánigo sandstone formation, a geological formation located in the Jaca Basin in Spain. The main result of this work was a more precise age for the formation, the Bartonian age, in the Middle Eocene period. In addition, we obtained information on the temperature of the ocean water in which the plankton lived, resulting in the surface ocean waters in this area being warm and poor in nutrients.
Samuel Mailliot, Emanuela Mattioli, Micaela Chaumeil Rodríguez, and Bernard Pittet
J. Micropalaeontol., 42, 1–12, https://doi.org/10.5194/jm-42-1-2023, https://doi.org/10.5194/jm-42-1-2023, 2023
Short summary
Short summary
Using biometric analysis, a new species, Similiscutum giganteum, has been described. Given its distinctive morphology and its stratigraphic range restricted to upper Pliensbachian and Toarcian, the potential stratigraphic use of this new species has to be explored. A method for biometry is also described in detail. This paper proves the value of biometric analysis in taxonomic description.
Micaela Chaumeil Rodríguez, Emanuela Mattioli, and Juan Pablo Pérez Panera
J. Micropalaeontol., 41, 75–105, https://doi.org/10.5194/jm-41-75-2022, https://doi.org/10.5194/jm-41-75-2022, 2022
Short summary
Short summary
We present a deep systematic and taxonomic revision of the Early Jurassic calcareous nannofossils from the Neuquén Basin. The study focuses on characterizing the assemblages and identifying bioevents. The Pliensbachian associations from the Los Molles Formation are ilustrated for the first time, along with new biostratigraphic data from the area. Similarities found with locaties from the proto-Atlantic region suggest a connection between the Pacific and Tethys oceans during the Early Jurassic.
Francesco Miniati, Carlotta Cappelli, and Simonetta Monechi
J. Micropalaeontol., 40, 101–144, https://doi.org/10.5194/jm-40-101-2021, https://doi.org/10.5194/jm-40-101-2021, 2021
Short summary
Short summary
This study presents a taxonomic revision of calcareous nannoplankton, known as fasciculiths (family Fasciculithaceae). The investigation approach is based on a direct light microscope and SEM comparison of the same individual specimen, providing a key to clarify a correct classification of several taxa. The new findings document the early evolutionary history of fasciculiths, demonstrating the biostratigraphic relevance of this group in the early Paleocene (Danian–Selandian transition).
Cited articles
Al-Wosabi, A. and Alaug, S.: Calcareous nannofossil biostratigraphy of the
Late Campanian-Early Maastrichtian Age, Block 16, Jiza'-Qamar Basin, Eastern
Yemen, Arab. J. Geosci., 6, 3581–3594, https://doi.org/10.1007/s12517-012-0642-2, 2013.
Barrier, E. and Vrielynck, B.: Paleotectonic Maps of the Middle East, Middle East Basins Evolution Programme, CGMW, Atlas, Maps, 1–14, 2008.
Bechennec, F., Le Metour, J., Rabu, D., Bourdillon-de-Grissac, C., de Wever,
P., Beurrier, M., and Villey, M.: The Hawasina Nappes: stratigraphy,
palaeogeography and structural evolution of a fragment of the south-Tethyan
passive continental margin, in: The Geology and Tectonics of the Oman Region,
edited by: Robertson, A. H. F., Searle, M. P., and Ries, A. C., Geological
Society Publishing House, London, 213–223, 1990.
Boote, D. R. D., Mou, D., and Waite, R. I.: Structural evolution of the
Suneinah Foreland, Central Oman Mountains, in: The geology and tectonics of
the Oman Region, edited by: Robertson, A. H., Searle, M. P., and Ries, A. C.,
Geological Society Publishing House, London, 397–418, 1990.
Bown, P. R. and Young, J. R.: Mesozoic calcareous nannoplankton
classification, Journal of Nannoplankton Research, 19, 21–36, 1997.
Bown, P. R. and Young, J. R.: Techniques, in: Calcareous Nannofossil
Biostratigraphy, edited by: Bown, P. R., Kluwer Academic Publishers, London,
16–28, 1998.
Bown, P. R., Lees, J. A., and Young, J. R.: Calcareous nannoplankton
evolution and diversity through time, in: Coccolithophores from Molecular
Processes to Global Impact, edited by: Thierstein, H. R. and Young, J. R.,
Springer-Verlag, Berlin, 481–508, 2004.
Bukry, D.: Coccolith and silicoflagellate stratigraphy, Tasman Sea and
southwestern Pacific Ocean, Deep Sea Drilling Project Leg 21, Initial Rep.
Deep Sea, 21, 885–893, https://doi.org/10.2973/dsdp.proc.21.127.1973, 1973.
Burnett, J.: New species and new combinations of Cretaceous nannofossil and a
note on the origin of Petrarhabdus (Deflandre) Wind and Wise, Journal of
Nannoplankton Research, 19, 133–146, 1997.
Burnett, J.: Upper Creraceous, in: Calcareous Nannofossil Biostratigraphy,
edited by: Bown, P. R., Kluwer Academic Publishers, London, 132–199, 1998.
Cramer, B. S., Miller, K. G., Barrett, P. J., and Wright J. D.: Late
Cretaceous–Neogene trends in deep ocean temperature and continental ice
volume: Reconciling records of benthic foraminiferal geochemistry
(δ18O and Mg∕Ca) with sea level history, J. Geophys.
Res., 116, C12023, https://doi.org/10.1029/2011jc007255, 2011.
Crux, J. A.: Albian calcareous nannofossils from the Gault Clay of Munday's
Hill (Bedfordshire, England), J. Micropalaeontol., 10, 203–221,
https://doi.org/10.1144/jm.10.2.203, 1991.
Eleson, J. W. and Bralower, T. J.: Evidence of changes in surface water
temperature and productivity at the Cenomanian/ Turonian Boundary,
Micropaleontology, 51, 319–332, https://doi.org/10.2113/gsmicropal.51.4.319, 2005.
Erba, E.: Middle Cretaceous calcareous nannofossil from the western Pacific
(Leg 129): evidence for paleoequatorial crossings, Proceedings of the Ocean
Drilling Program Scientific Results, 129, 189–201,
https://doi.org/10.2973/odp.proc.sr.129.119.1992, 1992.
Erba, E.: Calcareous nannofossil and Mesozoic oceanic anoxic events, Mar.
Micropaleontol., 52, 85–106, https://doi.org/10.1016/j.marmicro.2004.04.007, 2004.
Erba, E., Castradori, D., Guasti, G., and Ripepe, M.: Calcareous nannofossil
and Milankovitch cycles: the example of the Albian Gault Clay Formation
(southern England), Palaeogeogr. Palaeoecl., 93, 47–69,
https://doi.org/10.1016/0031-0182(92)90183-6, 1992.
Faris, M. and Abu Shama, A. M.: Calcareous nannofossils of the
Campanian-Maastrichtian Sudr Formation in Abu Zenima area, West Central
Sinai, Egypt, J. Paleontol., 6, 251–274, 2006.
Farouk, F., Thibault, N., Jaff, R., Faris, M., Ahmad, F., and Khashaba, A.:
An integrated study of upper Campanian-lower Maastrichtian carbon isotopes
and calcareous plankton biostratigraphy of the Kurdistan Region, northeastern
Iraq, Cretaceous Res., 82, 64–80, https://doi.org/10.1016/j.cretres.2017.09.020, 2018.
Farouk, S. and Faris, M.: Late Cretaceous calcareous nannofossil and
planktonic foraminiferal bioevents of the shallow-marine carbonate platform
in the Mitla Pass, west central Sinai, Egypt, Cretaceous Res., 33, 50–65,
https://doi.org/10.1016/j.cretres.2011.08.002, 2012.
Fisher, C. G. and Hay, W. W.: Calcareous nannofossil as indicators of
Mid-Cretaceous paleofertility along an ocean front, U. S. Western Interior,
in: Special Paper 332: Evolution of the Cretaceous Ocean-Climate System,
edited by: Barrera, E. and Johnson, C. C., The Geological Society of America,
USA, 161–180, 1999.
Forbes, G. A., Jansen H. S. M., and Schreurs, J. (Eds.): Lexicon of Oman
subsurface stratigraphy: Reference guide to the stratigraphy of Oman's
hydrocarbon basins, Gulf PetroLink, Bahrain, 2010.
Foroughi, F., Gadin, S., Lotfali Kani, A., and Vahidinia, M.: Calcareous
Nannofossil biostratigraphy of Campanian strata (Abtalkh Formation) from East
of Koppeh-Dagh Basin, NE Iran, Cretaceous Res., 70, 55–70,
https://doi.org/10.1016/j.cretres.2016.10.002, 2017.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to Late
Cretaceous oceans – a 55 my record of Earth's temperature and carbon cycle,
Geology, 40, 107–110, https://doi.org/10.1130/g32701.1, 2012.
Glennie, K. W., Boeuf, M. G., Hughes-Clarke, M. H. W., Moody-Stuart, M.,
Pilaar, W. F., and Reinhardt, B.: Geology of the Oman Mountains, Royal Dutch
Geological and Mining Society, Amsterdam, 1974.
Grun, W. and Zweili, F.: Das kalkige Nannoplankton der Dogger-Malm-Grenz im Berner Jura bei Liesberg (Schweiz), Jb. Geol. Bundesanst., 123, 231–341, 1980.
Hardas, P. and Mutterlose, J.: Calcareous nannofossil assemblages of Oceanic
Anoxic Event 2 in the equatorial Atlantic: Evidence of an eutrophication
event, Mar. Micropaleontol., 66, 52–69, https://doi.org/10.1016/j.marmicro.2007.07.007,
2007.
Herrle, J. O.: Paleoceanographic and paleoclimatic implications on
mid-Cretaceous black shale formation in the Vocontian Basin and the Atlantic:
evidence from calcareous nannofossil and stable isotopes, Tubinger
Mikropalaontologische Mitteilungen, 27, 1–115, 2002.
Herrle, J. O., Pross, J., Friedrich, O., and Hemleben, C.: Short-term
environmental changes in the Cretaceous Tethyan Ocean: micropaleontological
evidence from the Early Albian Oceanic Anoxic Event lb, Terra Nova, 15,
14–19, https://doi.org/10.1046/j.1365-3121.2003.00448.x, 2003.
Hughes Clarke, M. W.: Stratigraphy and rock unit nomenclature in the oil producing area of interior Oman, J. Petroleum Geol., 11, 5–60, https://doi.org/10.1306/bf9ab689-0eb6-11d7-8643000102c1865d, 1988.
Keller, G.: Cretaceous climate, volcanism, impacts, and biotic effects,
Cretaceous Res., 29, 754–771, https://doi.org/10.1016/j.cretres.2008.05.030, 2008.
Kita, Z., Watkins, D., and Bergen, J.: A new calcareous nannofossil species
of the genus Helicolithus from the Santonian and its
biostratigraphic significance in the Cretaceous Western Interior Seaway,
Journal of Nannoplankton Research, 36, 77–82, 2016.
Lauer, G.: Manual of Upper Cretaceous calcareous nannoplankton
(Arkhangelskiellaceae) based on the Fiqa Formation of Central Oman
(Santonian-Campanian), internal SIPM report, 1973.
Lees, J., Bown, P., and Mattioli, E.: Problems with proxies? Cautionary tales
of calcareous nannofossil paleoenvironmental indicators, Micropaleontology,
51, 333–343, https://doi.org/10.2113/gsmicropal.51.4.333, 2005.
Lees, J., Bown, P., and Young, J.: Photic zone palaeoenvironments of the
Kimmeridge Clay Formation (Upper Jurassic, UK) suggested by calcareous
nannoplankton palaeoecology, Palaeogeogr. Palaeocl., 235, 110–134,
https://doi.org/10.1016/j.palaeo.2005.09.026, 2006.
Lees, J. A.: Calcareous nannofossil biogeography illustrates palaeoclimate
change in the Late Cretaceous Indian Ocean, Cretaceous Res., 23, 537–634,
https://doi.org/10.1006/cres.2003.1021, 2002.
Lees, J. A.: New and rarely reported calcareous nannofossil from the Late
Cretaceous of coastal Tanzania: outcrop samples and Tanzania Drilling Project
Sites 5, 9 and 15, Journal of Nannoplankton Research, 29, 39–65, 2007.
Lees, J. A. and Bown, P. R.: Upper Cretaceous calcareous nannofossil
biostratigraphy, ODP Leg 198 (Shatsky Rise, northwest Pacific Ocean), in:
Proceedings of the Ocean Drilling Program, Scientific Results Volume 198,
edited by: Bralower, T. J., Premoli Silva, I., and Malone, M. J., 1–60,
2005.
Linnert, C. and Mutterlose, J.: Biometry of the Late Cretaceous
Arkhangelskiella group: ecophenotypes controlled by nutrient flux, Cretaceous
Res., 30, 1193–1204, https://doi.org/10.1016/j.cretres.2009.06.001, 2009a.
Linnert, C. and Mutterlose, J.: Evidence of increasing surface water
oligotrophy during the Campanian–Maastrichtian boundary interval: Calcareous
nannofossils from DSDP Hole 390A (Blake Nose), Mar. Micropaleontol., 73,
26–36, https://doi.org/10.1016/j.marmicro.2009.06.006, 2009b.
Linnert, C., Mutterlose, J., and Herrle, J. O.: Late Cretaceous
(Cenomanian–Maastrichtian) calcareous nannofossils from Goban Spur (DSDP
Sites 549, 551): Implications for the palaeoceanography of the proto North
Atlantic, Palaeogeogr. Palaeocl., 299, 507–528,
https://doi.org/10.1016/j.palaeo.2010.12.001, 2011.
Linnert, C., Mutterlose, J., and Bown, P. R.: Biometry of Upper Cretaceous
(Cenomanian-Maastrichtian) coccoliths – a record of long-term stability and
interspecies size shifts, Revue de Micropaleontologie, 57, 125–140,
https://doi.org/10.1016/j.revmic.2014.09.001, 2014a.
Linnert, C., Robinson, S. A., Lees, J. A., Bown, P. R., Pérez
Rodríguez, I., Petrizzo, M. R., Falzoni, F., Littler, K., Arz, J. A.,
and Russell, E. E.: Evidence for global cooling in the Late Cretaceous, Nat.
Commun., 5, 4194, https://doi.org/10.1038/ncomms5194, 2014b.
Linnert, C., Engelke, J., Wilmsen, M., and Mutterlose, J.: The impact of the
Maastrichtian cooling on the marine nutrient regime-Evidence from
mid-latitudinal calcareous nannofossils, Paleoceanography, 31, 694–714,
https://doi.org/10.1002/2015pa002916, 2016.
Lippard, S. J., Shelton, A. W., and Gass, I. G.: The ophiolite of Northern
Oman, Blackwell Scientific Publications, London, 1986.
Mandur, M.: Late Cretaceous Calcareous Nannofossil Biostratigraphy and
Paleoecology in the Northwestern Desert, Egypt, Arab. J. Sci. Eng., 41,
2271–2284, https://doi.org/10.1007/s13369-015-1872-x, 2016.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G.
S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and
Pekar, S. F.: The Phanerozoic record of global sea-level change, Science,
310, 1293–1298, https://doi.org/10.1126/science.1116412, 2005.
Müller, C., Higazi, F., Hamdan, W., and Mroueh, M.: Revised stratigraphy of
the Upper Cretaceous and Cenozoic series of Lebanon based on nannofossil, in:
Evolution of the Levant Margin and Western Arabia Platform since the
Mesozoic, edited by: Homberg, C. and Bachmann, M., The Geological Society of
London, London, 287–303, 2010.
Mutterlose, J., Bornemann, A., and Herrle, J.: Mesozoic calcareous
nannofossils – state of the art, Palaeont. Z., 79, 113–133,
https://doi.org/10.1007/bf03021757, 2005.
Osterloff, P., Al Harthy, A., Nasser Al Rahmah, M., and Al Zadjali, F.: Basal
Fiqa Formation, North Oman: a stratigraphic review, internal PDO report,
2001.
Packer, S. R.: Fiqa Formation study IV: Biostratigraphic analysis of selected
intervals from PDO wells Qalah-2, Burhaan-5, Hanya-1, Wadi Umayri-1, Wadi
Umayri-2 and Jahiz-1, North Oman, internal Millennia report for PDO,
2002.
Perch-Nielsen, K.: Mesozoic calcareous nannofossil, in: Plankton
Stratigraphy, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen,
K., Cambridge University Press, Cambridge, 329–426, 1985.
Prins, B. and Roersma, H. J.: Late Santonian to Late Campanian calcareous
nannoplankton from the Fiqa Formation, Central Oman, internal SIPM report,
1983.
Razmjooei, M., Thibault, N., Kani, A., Mahanipour, A., Boussah, M., and
Korte, C.: Coniacian-Maastrichtian calcareous nannofossil biostratigraphy and
carbon-isotope stratigraphy in the Zagros Basin (Iran): consequences for the
correlation of Late Cretaceous Stage Boundaries between the Tethyan and
Boreal realms, Newsl. Stratigr., 47, 183–209,
https://doi.org/10.1127/0078-0421/2014/0045, 2014.
Razmjooei, M., Thibault, N., Kani, A., Dinarès-Turell, J., Pucéat,
E., Shahriari, S., Radmacher, W., Jamali, A., Ullmann, C., Voigt, S., and
Cocquerez, T.: Integrated bio- and carbon-isotope stratigraphy of the Upper
Cretaceous Gurpi Formation (Iran): A new reference for the eastern Tethys and
its implications for large-scale correlation of stage boundaries, Cretaceous
Res., 91, 312–340, https://doi.org/10.1016/j.cretres.2018.07.002, 2018.
Robertson, A.: Upper Cretaceous Muti formation: transition of a Mesozoic
carbonate platform to a foreland basin in the Oman Mountains, Sedimentology,
34, 1123–1142, https://doi.org/10.1111/j.1365-3091.1987.tb00596.x, 1987.
Roth, P. H.: Mid-Cretaceous calcareous nannoplankton from the central
Pacific: Implications for paleoceanography, Initial Rep. Deep Sea., 62,
471–489, https://doi.org/10.2973/dsdp.proc.62.113.1981, 1981.
Roth, P. H.: Preservation of calcareous nannofossil and fine-grained
carbonate particles in mid-Cretaceous sediments from the southern Angola
Basin, Site 530, Initial Rep. Deep Sea., 75, 651–655,
https://doi.org/10.2973/dsdp.proc.75.112.1984, 1984.
Roth, P. H. and Bowdler, J. L.: Middle Cretaceous calcareous nannoplankton
biogeography and oceanography of the Atlantic Ocean, The Deep Sea Drilling
Project: A Decade of Progress, Soc. Sediment. Geol. SP, 32, 517–546,
https://doi.org/10.2110/pec.81.32.0517, 1981.
Shafik, S.: Late Cretaceous nannofossil biostratigraphy and biogeography of
the Australian western margin, BMR bulletin, 295, 1–164, 1990.
Shamrock, J. L. and Watkins, D. K.: Evolution of the Cretaceous calcareous
nannofossil genus Eiffellithus and its biostratigraphic
significance, Cretaceous Res., 30, 1083–1102,
https://doi.org/10.1016/j.cretres.2009.03.009, 2009.
Sikkema, W.: Micropalaeontological zonation and range charts of the
Cretaceous in Oman, internal PDO report, 1991.
Sissingh, W.: A preliminary calcareous nannoplankton zonation of the
Cretaceous-Early Paleocene interval, internal SIPM report,
1974.
Sissingh, W.: Biostratigraphy of Cretaceous calcareous nannoplankton, Geol.
Mijnbouw, 56, 37–65, 1977.
Street, C. and Bown, P. R.: Palaeobiogeography of Early Cretaceous
(Berriasian-Barremian) calcareous nannoplankton, Mar. Micropaleontol., 39,
265–291, https://doi.org/10.1016/s0377-8398(00)00024-4, 2000.
Styzen, M.: Cascading counts of nannofossil abundance, Journal of
Nannoplankton Research, 19, p. 49, 1997.
Takahashi, G.: Sample preparation for X-ray fluorescence analysis III.
Pressed and loose powder methods, Rigaku Journal, 31, 26–30, 2015.
Thibault, N.: Biometric analysis of the Arkhangelskiella group in the upper
Campanian-Maastrichtian of the Stevns-1 borehole, Denmark: taxonomic
implications and evolutionary trends, Geobios, 43, 639–652,
https://doi.org/10.1016/j.geobios.2010.06.002, 2010.
Thierstein, H. R.: Mesozoic calcareous nannoplankton biostratigraphy of
marine sediments, Mar. Micropaleontol., 1, 325–362,
https://doi.org/10.1016/0377-8398(76)90015-3, 1976.
Thierstein, H. R.: Selective
dissolution of Late Cretaceous and earliest Tertiary calcareous nannofossil:
experimental evidence, Cretaceous Res., 2, 2–12,
https://doi.org/10.1016/0195-6671(80)90023-3, 1980.
Thierstein, H. R.: Late Cretaceous nannoplankton and the change at the
Cretaceous-Tertiary boundary, in: The Deep Sea Drilling Project: a decade of
progress, edited by: Warme, J. E., Douglas, R. G., and Winterer, E. L.,
Society of Economic Paleontologists and Mineralogists, Tulsa, 355–394, 1981.
van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude
calculator for paleoclimate studies (model version 2.1), PLoS ONE, 10, 1–21,
https://doi.org/10.1371/journal.pone.0126946, 2015.
Varol, O.: Quantitative analysis of the Arkhangelskiella cymbiformis Group
and Biostratigraphic usefulness in the North Sea Area, J. Micropalaeontol.,
8, 131–134, https://doi.org/10.1144/jm.8.2.131, 1989.
Varol, O.: Nannofossil biostratigraphy of Petroleum Development Oman wells Al
Husain-1, Musallim-2 and Yibal-5, internal Varol Research report for PDO,
1996.
Varol, O.: Nannofossil biostratigraphy of Petroleum Development Oman wells
Mabrouk-2 & Al Ghubar-15, internal Varol Research report for PDO,
1997.
Wagreich, M.: A review of low-latitude Tethyan calcareous nannoplankton
assemblages of the Cretaceous, in: New Aspects on Tethyan Cretaceous Fossil
Assemblages, edited by: Kollmann, H. A. and Zapfe, H., Springer-Verlag,
Vienna, 45–55, https://doi.org/10.1007/978-3-7091-5644-5_4, 1992.
Watkins, D. K., Wise, S. W., Pospichal, J. J., and Crux, J.: Upper Cretaceous
calcareous nannofossil biostratigraphy and paleoceanography of the Southern
Ocean, in: Microfossil and Oceanic Environments, the proceedings of the ODP
and Marine Biosphere international conference, Aberystwyth, Wales,
19–21 April 1994, 355–381, 1996.
Williams, J. R. and Bralower, J.: Nannofossil assemblages, fine fraction
stable isotopes, and the paleoceanography of the Valanginian-Barremian (Early
Cretaceous) North Sea Basin, Paleoceanography, 10, 815–839,
https://doi.org/10.1029/95pa00977, 1995.
Wind, F. H.: Maestrichtian–Campanian nannofloral prov inces of the southern
Atlantic and Indian Oceans, in: Deep drilling results in the Atlantic Ocean:
continental margins and paleoenvironment, edited by: Talwani, M., Hay, W. W.,
and Ryan, W. B. F., American Geophysical Union, Washington DC, 123–137,
1979.
Wise, S. W.: Mesozoic and Cenozoic calcareous nannofossil recovered by Deep
Sea Drilling Project Leg 71 in the Falkland Plateau Region, Southwest
Atlantic Ocean, Initial Rep. Deep Sea., 71, 481–550,
https://doi.org/10.2973/dsdp.proc.71.121.1983, 1983.
Wise, S. W.: Mesozoic-Cenozoic history of calcareous nannofossil in the
region of the Southern Ocean, Palaeogeogr. Palaeocl., 67, 157–179,
https://doi.org/10.1016/0031-0182(88)90127-7, 1988.
Wyton, J. and Bown, P.: Palaeoecological trends in Turonian-Coniacian (Late
Cretaceous) calcareous nannofossils from Chalk Group sections, SE England,
Journal of Nannoplankton Research, 29, 31–37, 2007.
Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A.,
Jordan, R. W., Kleijne, A., van Niel, B. E., Ton Romein, A. J., and von
Salis, K.: Guidelines for coccolith and calcareous nannofossil terminology,
Paleontology, 40, 875–912, 1997.
Ziegler, M. A.: Late Permian to Holocene Paleofacies Evolution of the Arabian
Plate and its Hydrocarbon Occurrences, GeoArabia, 6, 445–504, 2001.
Short summary
This research studies nannofossils (microscopic fossil remains of unicellular marine planktonic algae) recovered from the Late Cretaceous, pelagic shale Fiqa Formation of Oman. The study emphasises taxonomy and assemblage change application to understand changes in the past climate and environment during the time of deposition. This has been achieved by analysing rock samples under the microscope. The analysis of these fossils could be applied in future work for age determination.
This research studies nannofossils (microscopic fossil remains of unicellular marine planktonic...