Articles | Volume 40, issue 2
https://doi.org/10.5194/jm-40-195-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-40-195-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Joachim Schönfeld
CORRESPONDING AUTHOR
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstrasse
1–3, 24148 Kiel, Germany
Valentina Beccari
Department of Geosciences, University of Fribourg, Chemin du Musée
6, 1700 Fribourg, Switzerland
Sarina Schmidt
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstrasse
1–3, 24148 Kiel, Germany
Silvia Spezzaferri
Department of Geosciences, University of Fribourg, Chemin du Musée
6, 1700 Fribourg, Switzerland
Related authors
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Cited articles
Alve, E.: Benthic foraminifera in sediment cores reflecting heavy metal
pollution in Soerfjord, Western Norway, J. Foramin. Res.,
21, 1–19, https://doi.org/10.2113/gsjfr.21.1.1, 1991.
Alve, E., Korsun, S., Schönfeld, J., Dijkstra, N.,
Golikova, E., Hess, S., Husum, K., and Panieri, G.: Foram-AMBI: a sensitivity
index based on benthic foraminiferal faunas from North-East Atlantic and
Arctic fjords, continental shelves and slopes, Mar. Micropaleontol.,
122, 1–12, https://doi.org/10.1016/j.marmicro.2015.11.001, 2016.
Alve, E., Hess, S., Bouchet, V. M. P., Dolven, J. K., and Rygg, B.:
Intercalibration of benthic foraminiferal and macrofaunal biotic indices: an
example from the Norwegian Skagerrak coast (NE North Sea), Ecol.
Indic., 96, 107–115, https://doi.org/10.1016/j.ecolind.2018.08.037,
2019.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and
Russo, A: The Adriatic Sea general circulation, Part II: baroclinic
circulation structure, J. Phys. Oceanogr., 27, 1515–1532,
https://doi.org/10.1175/1520-0485(1997)027, 1997.
Barbero, R. S., Albani, A. D., and Donnici, S.: Atlante dei foraminiferi
della laguna di Venezia, Istituto Veneto di Scienze, Lettere ed Arti,
Venezia (Italia), 120 pp., ISBN-10: 8895996046, 2008.
Barras, C., Jorissen, F. J., Labrune, C., Andral, B., and Boissery, P.: Live
benthic foraminiferal faunas from the French Mediterranean Coast: towards a
new biotic index of environmental quality, Ecol. Indic., 36,
719–743, https://doi.org/10.1016/j.ecolind.2013.09.028, 2014.
Bé, A. W. H.: Ecology of recent planktonic foraminifera: Part I – Areal
distribution in the western North Atlantic, Micropaleontology, 5, 77–100,
https://doi.org/10.2307/1484157, 1959.
Benton, M. J. and Pearson, P. N.: Speciation in the fossil record, Trend.
Ecol. Evol., 16, 405–411,
https://doi.org/10.1016/S0169-5347(01)02149-8, 2001.
Bird, C., Schweizer, M., Roberts, A., Austin, W. E. N., Knudsen, K .L.,
Evans, K. M., Filipsson, H. L., Sayer, M. D. J., Geslin, E., and Darling, K.
F.: The genetic diversity, morphology, biogeography, and taxonomic
designations of Ammonia (Foraminifera) in the Northeast Atlantic, Mar.
Micropaleontol., 155, 101726,
https://doi.org/10.1016/j.marmicro.2019.02.001, 2020.
Boltovskoy, E., Giussani, G., Watanabe, S., and Wright, R.: Atlas of benthic
shelf Foraminifera of the Southwest Atlantic, Dr. W. Jung bv Publishers, The
Hague, 146 pp., https://doi.org/10.1007/978-94-009-9188-0, 1980.
Bouchet, V. M. P., Alve, E., Rygg, B., and Telford, R. J.: Benthic
foraminifera provide a promising tool for ecological quality assessment of
marine waters, Ecol. Indic., 23, 66–75,
https://doi.org/10.1016/j.ecolind.2012.03.011, 2012.
Bouchet, V. M. P., Frontalini, F., Francescangeli, F., Sauriau, P.-G.,
Geslin, E., Martins, M. V. A., Almogi-Labin, A., Avnaim-Katav, S., Di Bella,
L., Cearreta, A., Coccioni, R., Costelloe, A., Dimiza, M. D., Ferraro, L.,
Haynert, K., Martiìnez-Coloìn, M., Melis, R., Schweizer, M., Triantaphyllou,
M. V., Tsujimoto, A., Wilson, B., and Armynot du Cha?telet, E.: Indicative
value of benthic foraminifera for biomonitoring: assignment to ecological
groups of sensitivity to total organic carbon of species from European
intertidal areas and transitional waters, Mar. Pollut. Bull., 164,
112071, https://doi.org/10.1016/j.marpolbul.2021.112071, 2021.
Bradshaw, J. D.: Laboratory experiments on the ecology of foraminifera,
Contributions from Cushman Foundation for Foraminiferal Research, 12,
87–106, https://doi.org/10.4236/ojg.2015.54020, 1961.
Bradshaw, J. D.: Environmental parameters and marsh foraminifera, Limnol. Oceanogr., 13, 26–38, https://doi.org/10.4319/lo.1968.13.1.0026,
1968.
Brünnich, M. T.: Zoologiae fundamenta, Praelectionibus
Academicis Accommodata, Grunde i Dyeloeren, Hafniae et Lipsiae, Copenhagen,
253 pp., https://doi.org/10.5962/bhl.title.42672, 1771.
Chayes, F.: A simple point counter for thin-section analysis, Am.
Mineral., 34, 1–11,
https://pubs.geoscienceworld.org/msa/ammin/article/34/1-2/1/541208/, 1949.
Cifelli, R.: The Morphology and structure of Ammonia beccarii (Linneì), Contributions from
the Cushman Foundation for Foraminiferal Research, 13, 119–127, 1962.
Cimerman, F. and Langer, M. R.: Mediterranean foraminifera, Slovenska
Akademija Znanosti in Umetnosti. Academia Scientiarum et Artium Slovencia,
Classis 4, Historia Naturalis, 30, 1–118, ISBN: 8671310531 9788671310536,
1991.
Cushman, J. A.: Recent foraminifera from Puerto Rico, Publications of the
Carnegie Institution of Washington, 342, 73–84, 1926.
Cushman, J. A.: On Rotalia beccarii (Linneì), Contributions from the Cushman Laboratory for
Foraminiferal Research, 4, 103–107, 1928.
d'Orbigny, A.: Tableau Methodique de la Classe des Cephalopodes, Ann.
Sci. Nat., 7, 96–314, 245–314, 1826.
d'Orbigny, A.: Foraminifeìres, in: Histoire physique, politique et naturelle
de L'ile de Cuba, edited by: De la Sagra, R. M. and Bertrand, A., Paris, 1–224,
https://doi.org/10.5962/bhl.title.51128, 1839.
Darling, K. F., Schweizer, M., Knudsen, K. L., Evans, K. M., Bird, C.,
Roberts, A., Filipsson, H. L., Kim, J.-H., Gudmundsson, G., Wade, C. M.,
Sayer, M. D. J., and Austin, W. E. N.: The genetic diversity, phylogeography
and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic, Mar.
Micropaleontol., 129, 1–23,
https://doi.org/10.1016/j.marmicro.2016.09.001, 2016.
Debenay, J.-P., Beneteau, E., Zhang, J., Stouff, V., Geslin, E., Redois, F.,
and Fernandez-Gonzalez, M.: Ammonia beccarii and Ammonia tepida (Foraminifera): morphofunctional arguments
for their distinction, Mar. Micropaleontol., 34, 235–244,
https://doi.org/10.1016/S0377-8398(98)00010-3, 1998.
de Chanvalon, T. A., Metzger, E., Mouret, A., Cesbron, F., Knoery, J.,
Rozuel, E., Launeau, P., Nardelli, M. P., Jorissen, F. J., and Geslin, E.:
Two-dimensional distribution of living benthic foraminifera in anoxic
sediment layers of an estuarine mudflat (Loire Estuary, France),
Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015,
2015.
Delage, Y. and Heìrouard, E.: Traite de Zoologie ConcreÌte. Volume 1. La
Cellule et les Protozoaires, Schleicher et FreÌres, Paris, 584 pp.,
https://doi.org/10.5962/bhl.title.11672, 1896.
Deldicq, N., Alve, E., Schweizer, M., Asteman, I.P., Hess, S., Darling, K.,
and Bouchet, V. M. P.: History of the introduction of a species resembling
the benthic foraminifera Nonionella stella in the Oslofjord (Norway): Morphological,
molecular and paleoecological evidences, Aquatic Invasions, 14, 182–205,
https://doi.org/10.3391/ai.2019.14.2.03, 2019.
de Nooijer, L.: Shallow-water benthic foraminifera as proxy for natural
versus human-induced environmental change, Geologica Ultraiectina, 272,
1–152, ISBN 90-5744-136-5 2007.
De Queiroz, K.: Species concepts and species delimitation, System.
Biol., 56, 879–886, https://doi.org/10.1080/10635150701701083, 2007.
Diz, P. and Francés, G.: Distribution of live benthic foraminifera in the
Riìa de Vigo (NW Spain), Mar. Micropaleontol., 66, 165–191,
https://doi.org/10.1016/j.marmicro.2007.09.001, 2008.
Donnici, S. and Barbero, R .S.: The benthic foraminiferal communities of the
northern Adriatic continental shelf, Mar. Micropaleontol., 44, 93–123,
https://doi.org/10.1016/S0377-8398(01)00043-3, 2002.
Donnici, S., Serandrei Barbero, R., and Taroni, G.: Living Benthic
Foraminifera in the Lagoon of Venice (Italy): Population Dynamics and its
Significance, Micropaleontology, 43, 440–454,
https://doi.org/10.2307/1485933 ,1997.
Drooger, C. W.: Radial Foraminifera, morphometrics and evolution,
Verhandelingen der Koninklijke Akademie van Wetenschappen, Afdeeling
Natuurkunde, Eerste Sectie, 41, 1–242, 1993.
Dupuy, C., Rossignol, L., Geslin, E., and Pascal, P. Y.: Predation of mudflat
meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia tepida (Cushman 1926),
J. Foramin. Res., 40, 305–312,
https://doi.org/10.2113/gsjfr.40.4.305, 2010.
Ehrenberg, C. G.: Über die Bildung der Kreidefelsen und
des Kreidemergels durch unsichtbare Organismen. Königlichen Akademie der Wissenschaften zu Berlin, Physikalische Abhandlungen,
1838, 59–147, 1839.
Ehrenberg, C. G.: Eine weitere Erläuterung des Organismus mehrerer in
Berlin lebend beobachterer Polythalamien der Nordsee, Bericht über die
zur Bekanntmachung geeigneten Verhandlungen der Königlichen Preussischen
Akademie der Wissenschaften zu Berlin, 1840, 18–23, 1840.
Ehrenberg, C. G.: Über noch jetzt zahlreich lebende Thierarten der
Kreidebildung und den Organismus der Polythalamien, Königliche Akademie
der Wissenschaften Berlin, Physikalische Abhandlungen, 1839, 81–174, 1841.
Ellis, B. F. and Messina, A.: Cataloque of Foraminifera, Micropaleontology
Press, New York, available at: http://www.micropress.org (last access: 5 December 2020),
1940.
Francescangeli, F., Milker, Y., Bunzel, D., Thomas, H., Norbisrath, M.,
Schönfeld, J., and Schmiedl, G.: Recent benthic foraminiferal distribution in
the Elbe Estuary (North Sea, Germany): A response to environmental
stressors, Estuarine, Coast. Shelf Sci., 251, 107198,
https://doi.org/10.1016/j.ecss.2021.107198, 2021.
Haake, F.-W.: Living benthic foraminifera in the Adriatic Sea: Influence of
water depth and sediment, J. Foramin. Res., 7, 62–75,
https://doi.org/10.2113/gsjfr.7.1.62, 1977.
Hammer Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
statistics software package for education and data analysis, Palaeontol.
Electron., 4, p. 9, 2001.
Hayek, L.-A. C., Buzas, M. A., Buzas-Stephens, P., and Buzas, J. S.: On
replicates for comparing species densities in space and time, J.
Foramin. Res., 51, 92–97, https://doi.org/10.2113/gsjfr.51.2.92,
2021.
Haynert, K., Gluderer, F., Pollierer, M. M., Scheu, S., and Wehrmann, A.:
Food spectrum and habitat-specific diets of benthic foraminifera from the
Wadden Sea – a fatty acid biomarker approach, Front. Mar. Sci.,
7, 510288, https://doi.org/10.3389/fmars.2020.510288, 2020.
Haynes, J. R.: Cardigan Bay recent Foraminifera (Cruises of the R.V. Antur,
1962–1964), British Museum (Natural History), Zoology. Supplement, 4,
1–245, 1973.
Hayward, B. W., Holzmann, M., Grenfell, H. R., Pawlowski, J., and Triggs,
C.M.: Morphological distinction of molecular types in Ammonia – towards a
taxonomic revision of the world's most commonly misidentified foraminifera,
Mar. Micropaleontol., 50, 237–271,
https://doi.org/10.1016/S0377-8398(03)00074-4, 2004.
Hayward, B. W., Holzmann, M., and Tsuchiya, M.: Combined molecular and
morphological taxonomy of the beccarii/T3 group of the foraminiferal genus
Ammonia, J. Foramin. Res., 49, 367–389,
https://doi.org/10.2113/gsjfr.49.4.367, 2019.
Hayward, B. W., Holzmann, M., Pawlowski, J., Parker, J. H., Kaushik, T.,
Toyofuku, M. S., and Tsuchiya, M.: Molecular and morphological taxonomy of
living Ammonia and related taxa (Foraminifera) and their biogeography,
Micropaleontology, 67, 109–313, available at: https://www.micropress.org/microaccess/micropaleontology/issue-368/article-2228, last access: 21 November 2021.
Heron-Allen E. and Earland A.: On some Foraminifera from the North Sea
dredged by the Fisheries Cruiser “Huxley” (International North Sea
Investigations – England), Journal of the Quekett Microscopical Club, 12, 121–138, https://doi.org/10.1111/j.1365-2818.1912.tb04934.x, 1913.
Hohenegger, J.: Larger foraminifera-microscopical greenhouses indicating
shallow-water tropical and subtropical environments in the present and past,
Kagoshima University Research Center for the Pacific Islands, Occasional
Papers, 32, 19–45, 1999.
Holzmann, M.: Species concept in Foraminifera: Ammonia as a case study,
Micropaleontology, 46, 21–37, 2000.
Holzmann, M. and Pawlowski, J.: Molecular, morphological, and ecological
evidence for species recognition in Ammonia (Foraminiferida), J.
Foramin. Res., 27, 311–318,
https://doi.org/10.1016/S0377-8398(03)00074-4, 1997.
Holzmann, M., Piller, W., Fenner, R., Martini, R., Serandrei-Barbero, R., and
Pawlowski, J.: Morphologic versus molecular variability in Ammonia spp.
(Foraminifera, Protozoa) from the Lagoon of Venice, Italy, Rev.
Micropaléontol., 41, 59–69,
https://doi.org/10.1016/S0035-1598(98)90098-8, 1998.
Hottinger, L.: Comparative anatomy of elementary shell structures in
selected larger foraminifera, in: Foraminifera, Vol. 3, edited by: Hedley,
R. H. and Adams, C. G., Academic Press, London, 203–266, 1978.
Hottinger, L.: Illustrated glossary of terms used in foraminiferal research,
Carnets de Geìologie/Notebooks on Geology Memoir, 2006/02, 1–126,
https://doi.org/10.4267/2042/5832, 2006.
Jorissen, F. J.: Benthic foraminifera from the Adriatic Sea; principles of
phenotypic variation, Utrecht Micropaleontological Bulletin, 37, 7–139,
ISSN 0083-4963, 1988.
Jorissen, F. J., Nardelli, M. P., Almogi-Labin, A., Barras, C., Bergamin,
L., Bicchi, E., El Kateb, A., Ferraro, L., McGann, M., Morigi, C., Romano,
E., Sabbatini, A., Schweizer, M., and Spezzaferri, S.: Developing Foram-AMBI
for biomonitoring in the Mediterranean: species assignments to ecological
categories, Mar. Micropaleontol., 140, 33–45,
https://doi.org/10.1016/j.marmicro.2017.12.006, 2018.
Keul, N., Langer, G., de Nooijer, L. J., and Bijma, J.: Effect of ocean
acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in
carbonate ion concentration, Biogeosciences, 10, 6185–6198,
https://doi.org/10.5194/bg-10-6185-2013, 2013.
Koho, K. A., LeKieffre, C., Nomaki, H., Salonen, I., Geslin, E., Mabilleau,
G., Søgaard Jensen, L. H., and Reichart, G.-J.: Changes in ultrastructural
features of the foraminifera Ammonia spp. in response to anoxic conditions: Field
and laboratory observations, Mar. Micropaleontol., 138, 72–82,
https://doi.org/10.1016/j.marmicro.2017.10.011, 2018.
Labaj, P., Topa, P., Tyszka, J., and Alda, W.: 2D and 3D numerical models of
the growth of foraminiferal shells, Lect. Notes Comput. Sci., 2657,
669–678, https://doi.org/10.1007/3-540-44860-8_69, 2003.
Langer, M., Hottinger, L., and Huber, B.: Functional morphology in
low-diverse benthic foraminiferal assemblages from tidal flats of the North
Sea, Senck. Marit., 20, 81–99, ISSN 0080-889X, 1989.
Lehmann, G.: Vorkommen, Populationsentwicklung, Ursache flächenhafter
Besiedlung und Fortpflanzungsbiologie von Foraminiferen in Salzwiesen und
Flachwasser der Nord- und Ostseeküste Schleswig-Holsteins, Dissertation,
Christian-Albrechts-Universität zu Kiel, Germany, 218 pp.,
available at: http://macau.uni-kiel.de/receive/dissertation_diss_413 (last access: 21 November 2021), 2000.
LeKieffre, C., Spangenberg, J. E., Mabilleau, G., Escrig, S., Meibom, A., and
Geslin, E.: Surviving anoxia in marine sediments: The metabolic response of
ubiquitous benthic foraminifera (Ammonia tepida), PLoS ONE, 12, e0177604,
https://doi.org/10.1371/journal.pone.0177604, 2017.
Less, G. and Kovács, L. Oì.: Typological versus morphometric separation of
orthophragminid species in single samples – a case study from Horsarrieu
(upper Ypresian, SW Aquitaine, France), Seìparation typologique et
morphomeìtrique des espeÌces d'Orthophragmines dans des eìchantillons
isoleìs – application aÌ un eìchantillon provenant de Horsarrieu (Ypreìsien
supeìrieur, Sud-Ouest de l'Aquitaine, France), Revue de Micropaleìontologie,
52, 267–288, https://doi.org/10.1016/j.revmic.2008.10.001, 2009.
Li, M., Lei, Y., Li, T., and Dong, S.: Response of intertidal foraminiferal
assemblages to salinity changes in a laboratory culture experiment, J. Foramin. Res., 50, 319–329,
https://doi.org/10.2113/gsjfr.50.4.319, 2020.
Linné, C.: Systemae naturae, edition 10, tomus 1, Stockholm, Sweden, 710
pp., available at: https://www.biodiversitylibrary.org/page/726886 (last access: 21 November 2021), 1758.
Lister, J. J.: Contributions to the life-history of the Foraminifera,
Philos. Trans. Roy. Soc., B186, 401–453,
https://doi.org/10.1098/rstb.1895.0008, 1895.
Montanari, R. and Marasmi, C.: New tools for coastal management in
Emilia-Romagna, Regione Emilia-Romagna, Assessorato alla Sicurezza
Territoriale Difesa del Suolo e della Costa Protezione Civile, Bologna,
Italy, 72 pp., 2012.
Moodley, L. and Hess, C.: Tolerance of infaunal benthic foraminifera for low
and high oxygen concentrations, Biol. Bull., 183, 94–98,
https://doi.org/10.2307/1542410 1992.
Morigi, C., Jorissen, F. J., Fraticelli, S., Horton, B. P., Principi, M.,
Sabbatini, A., Capotondi, L., Curzi, P. V., and Negri, A.: Benthic
foraminiferal evidence for the formation of the Holocene mud-belt and
bathymetrical evolution in the central Adriatic Sea, Mar.
Micropaleontol., 57, 25–49,
https://doi.org/10.1016/j.marmicro.2005.06.001, 2005.
Mouanga, G. H.: Impact and range extension of invasive foraminifera in the
NW Mediterranean Sea: Implications for diversity and ecosystem functioning,
Dissertation, Universität Bonn, Bonn, 230 pp., available at:
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7491 (last access: 21 November 2021), 2017.
Murray, J. W.: Ecology and Palaeoecology of Benthic Foraminifera, Longman
Scientific & Technical, Essex, United Kingdom, 397 pp.,
https://doi.org/10.4324/9781315846101, 1991.
Murray, J. W.: Unravelling the life cycle of “Polystomella crispa”: the roles of Lister, Jepps
and Myers, J. Micropalaeontol., 31, 121–129.,
https://doi.org/10.1144/0262-821X11-034, 2012.
Murray, J. W.: Some trends in sampling modern living (stained) benthic
foraminifera in fjord, shelf and deep sea: Atlantic Ocean and adjacent seas,
J. Micropalaeontol., 34, 101–104,
https://doi.org/10.1144/jmpaleo2014-004, 2015.
Murray, J. W. and Alve, E.: Major aspects of foraminiferal variability
(standing crop and biomass) on a monthly scale in an intertidal zone,
J. Foramin. Res., 30, 177–191,
https://doi.org/10.2113/0300177, 2000.
Myers, E. H.: Life activities of foraminifera in relation to marine ecology,
Am. Philos. Soc. Proceed., 86, 439–458, 1943.
Natland, M. L.: New species of Foraminifera from off the west coast of North
America and from the later Tertiary of the Los Angeles basin, Bulletin of
the Scripps Institution of Oceanography of the University of California,
Tech. Ser., 4, 137-163, 1938.
Nixon, K. C. and Wheeler, Q. D.: An amplification of the phylogenetic
species concept, Cladistics, 6, 211–223,
https://doi.org/10.1111/j.1096-0031.1990.tb00541.x, 1990.
Otto, G. H.: A modified logarithmic probability graph for the interpretation
of mechanical analyses of sediments, J. Sediment. Res., 9,
62–76, https://doi.org/10.1306/D4269044-2B26-11D7-8648000102C1865D, 1939.
Parent, B., Hyams-Kaphzan, O., Barras, C., Lubinevsky, H., and Jorissen, F.:
Testing foraminiferal environmental quality indices along a well-defined
organic matter gradient in the Eastern Mediterranean, Ecol. Indic.,
125, 107498, https://doi.org/10.1016/j.ecolind.2021.107498, 2021.
Pascal, P.-Y., Dupuy, C., Richard, P., and Niquil, N.: Bacterivory in the
common foraminifer Ammonia tepida: isotope tracer experiment and the controlling factors,
J. Exp. Mar. Biol. Ecol., 359, 55–61,
https://doi.org/10.1016/j.jembe.2008.02.018, 2008.
Pawlowski, J., Holzmann, M., and Tyszka, J.: New supraordinal classification
of foraminifera: molecules meet morphology, Mar. Micropaleontol., 100,
1–10, https://doi.org/10.1016/j.marmicro.2013.04.002, 2013.
Plancus, J.: Jani Planci Ariminensis de conchis minus notis, tomus 56,
Venetis, available at: https://www.biodiversitylibrary.org/page/15178957 (last access: 21 November 2021), 1739.
Poag, C. W.: Paired foraminiferal ecophenotypes in Gulf Coast estuaries:
Ecological and paleoecological implications, Transactions of the Gulf Coast
Assoc. Geol. Soc., 28, 395–421, 1978.
Polovodova, I. and Schönfeld, J.: Foraminiferal test abnormalities in
the western Baltic Sea, J. Foramin. Res., 38, 318–336,
https://doi.org/10.2113/gsjfr.38.4.318, 2008.
Preti, M.: Ripascimento di spiagge con sabbie sottomarine in Emilia-Romagna,
Studi Costieri, 5, 107–134, available at: http://oceanrep.geomar.de/id/eprint/53247 (last access: 21 November 2021),
2000.
Prioli, I.: Difesa della Costa, l'Emilia-Romagna anticipa il Recovery: 22
milioni di euro per il ripascimento di 15 km di spiagge, available at:
https://www.regione.emilia-romagna.it/notizie/2021/,
last access: 8 Juni 2021.
Raw, F.: The development of Leptoplastus salteri and other trilobites, Q. J.
Geol. Soc. Lond., 81, 223–324,
https://doi.org/10.1144/GSL.JGS.1925.081.01-04.12, 1925.
Richirt, J., Schweizer, M., Bouchet, V. M. P., Mouret, A., Quinchard, S., and
Jorissen, F. J.: Morphological distinction of three Ammonia phylotypes occurring
along European coasts, J. Foramin. Res., 49, 76–93,
https://doi.org/10.2113/gsjfr.49.1.76, 2019.
Richirt, J., Schweizer, M., Mouret, A., Quinchard, S., Saad, S .A., Bouchet,
V. M. P., Wade, C. M., and Jorissen, F. J.: Biogeographic distribution of
three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great
Britain: new insights from combined molecular and morphological recognition,
J. Micropalaeontol., 40, 61–74,
https://doi.org/10.5194/jm-40-61-2021, 2021.
Richter, G.: Beobachtungen zur Ökologie einiger Foraminiferen des
Jade-Gebietes, Natur und Museum, 91, 163-170, 1961.
Roberts, A., Austin, W., Evans, K., Bird, C., Schweizer, M., and Darling, K.:
A new integrated approach to taxonomy: the fusion of molecular and
morphological systematics with type material in benthic foraminifera, PLoS
One, 11, e0158754, https://doi.org/10.1371/journal.pone.0158754, 2016.
Rouvillois, A.: Un foraminifère méconnu du plateau continental du
golfe de Gascogne: Pseudoeponides falsobeccarii n. sp., Cahiers de Micropaleontologie, 3, 3–7, 1974.
Saidova, Kh. M.: O sovremennom sostoyanii sistemi nadvidovykh taksonov
Kaynozoyskikh bentosnykh foraminifer, Institut Okeanologii P.P. Shirshova,
Akademiya Nauk SSR, Moscow, 73 pp., 1981.
Schönfeld, J. and Voigt, T.: Sediment geometry, facies analysis and
palaeobathymetry of the Schrammstein Formation (upper Turonian–lower
Coniacian) in southern Saxony, Germany, Z. Dtsch.
Ges. Geowiss., 171, 199–209,
https://doi.org/10.1127/zdgg/2020/0220, 2020.
Schönfeld, J., Alve, E., Geslin, E., Jorissen, F.,
Korsun, S., and Spezzaferri, S.: The FOBIMO (FOraminiferal BIo-MOnitoring)
initiative – towards a standardised protocol for benthic foraminiferal
monitoring studies, Mar. Micropaleontol., 94–95, 1–13,
https://doi.org/10.1016/j.marmicro.2012.06.001, 2012.
Schultze, M. J. S.: über den Organismus der Polythalamien
(Foraminiferen), nebst Bemerkungen über die Rhizopoden im
allgemeinen, Ingelmann, Leipzig, 68 pp.,
available at: https://books.google.pt/books?id=o7rk00_xueQC (last access: 21 November 2021), 1854.
Schweizer, M., Polovodova, I., Nikulina, A., and Schönfeld, J.: Molecular
identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel
Fjord (SW Baltic Sea) with rDNA sequences, Helgoland Mar. Res., 65,
1–10, https://doi.org/10.1007/s10152-010-0194-3, 2011.
Sen, A. and Bhadury, P.: Exploring the seasonal dynamics within the benthic
foraminiferal biocoenosis in a tropical monsoon-influenced coastal lagoon,
Aquat. Biol., 25, 121–138, https://doi.org/10.3354/ab00658, 2016.
Serandrei-Barbero, R., Albani, A. D., and Donnici, S.: Atlante dei
Foraminiferi della Laguna di Venezia, Istituto Veneto di Scienze, Lettere ed
Arti, Venezia, 164 pp., 2008.
Seuront, L. and Bouchet, V. M. P.: The devil lies in details: new insights
into the behavioural ecology of intertidal foraminifera, J.
Foramin. Res., 45, 390–401,
https://doi.org/10.2113/gsjfr.45.4.390, 2015.
Simmons, M. and Bidgood, M.: Thinking about species, Newsletter of
Micropalaeontology, 103, 37–41, 2021.
Simonini, R., Ansaloni, I., Bonvicini Pagliai, A. M., Cavallini, F., Iotti,
M., Mauri, M., Montanari, G., Preti, M., Rinaldi, A., and Prevedelli, D.: The
effects of sand extraction on the macrobenthos of a relict sands area
(northern Adriatic Sea): results 12 months post-extraction, Mar. Pollut.
Bull., 50, 768–777, https://doi.org/10.1016/j.marpolbul.2005.02.009,
2005.
Stouff, V., Geslin, E., Debenaj, J., and Lesourd, M.: Origin of morphological
abnormalities in Ammonia (Foraminifera): studies in laboratory and natural
environments, J. Foramin. Res., 29, 152–170,
https://doi.org/10.2113/gsjfr.29.2.152, 1999a.
Stouff, V., Lesourd, M., and Debenay, J.-P.: Laboratory observations of
asexual reproduction (schizogony) and ontogeny of Ammonia tepida, J. Foramin.
Res., 29, 75–84, https://doi.org/10.2113/gsjfr.29.1.75, 1999b.
Turner, G. L. E.: The microscope as a technical frontier in science, in:
Historical Aspects of Microscopy, edited by: Bradbury, S. and Turner, G. L.
E., W. Heffer & Sons, Cambridge, 175–197, 1967.
Tyszka, J.: Morphospace of foraminiferal shells. in: Abstract Volume,
Seventh International Workshop on Agglutinated Foraminifera, Urbino, 2–8
October 2005, 3 pp., https://doi.org/10.1080/00241160600575808, 2005.
Tyszka, J.: Morphospace of foraminiferal shells: results from the moving
reference model, Lethaia, 39, 1–12,
https://doi.org/10.1080/00241160600575808, 2006.
Tyszka, J., Topa, P., and Saczka, K.: State-of-the-art in modelling of
foraminiferal shells: searching for an emergent model, Stud. Geol.
Polon., 124, 143–157, 2005.
von Daniels, C. H.: Quantitative Ökologische Analyse der
zeitlichen und räumlichen Verteilung rezenter
Foraminferen im Limski-kanal bei Rovinj (nordliche Adria),
Göttinger Arbeiten zur Geologie und
Paläontologie, 8, 1–109, 1970.
Walker, G. and Jacob, E.: in: Essays on the Microscope, 2nd Edition with
considerable additions and improvements by F. Kanmacher, edited by: Adams,
E., Dillon and Keeting, London, 712 pp., 1798.
Walton, W. R. and Sloan, B. J.: The genus Ammonia Brünnich 1772: Its geographic
distribution and morphologic variability, J. Foramin. Res.,
20, 128–156, https://doi.org/10.2113/gsjfr.20.2.128, 1990.
Ward, A. J. W., Webster, M. M., and Hart, P. J. B.: Intraspecific food
competition in fishes, Fish Fish., 7, 231–261,
https://doi.org/10.1111/j.1467-2979.2006.00224.x, 2006.
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken...