Articles | Volume 40, issue 2
https://doi.org/10.5194/jm-40-195-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-40-195-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Joachim Schönfeld
CORRESPONDING AUTHOR
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstrasse
1–3, 24148 Kiel, Germany
Valentina Beccari
Department of Geosciences, University of Fribourg, Chemin du Musée
6, 1700 Fribourg, Switzerland
Sarina Schmidt
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstrasse
1–3, 24148 Kiel, Germany
Silvia Spezzaferri
Department of Geosciences, University of Fribourg, Chemin du Musée
6, 1700 Fribourg, Switzerland
Related authors
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
K. Haynert, J. Schönfeld, R. Schiebel, B. Wilson, and J. Thomsen
Biogeosciences, 11, 1581–1597, https://doi.org/10.5194/bg-11-1581-2014, https://doi.org/10.5194/bg-11-1581-2014, 2014
Joachim Schönfeld, Elena Golikova, Sergei Korsun, and Silvia Spezzaferri
J. Micropalaeontol., 32, 161–182, https://doi.org/10.1144/jmpaleo2012-022, https://doi.org/10.1144/jmpaleo2012-022, 2013
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann
Biogeosciences, 12, 6945–6954, https://doi.org/10.5194/bg-12-6945-2015, https://doi.org/10.5194/bg-12-6945-2015, 2015
Short summary
Short summary
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays, chimaeras) from the Swiss Jura to get ecological information. The main finding is that the extinct shark Asteracanthus (Hybodontiformes) could inhabit reduced salinity areas, although previous studies on other European localities always resulted in a clear marine isotopic signal for this genus. We propose a mainly marine ecology coupled with excursions into areas of lower salinity in our study site.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
K. Haynert, J. Schönfeld, R. Schiebel, B. Wilson, and J. Thomsen
Biogeosciences, 11, 1581–1597, https://doi.org/10.5194/bg-11-1581-2014, https://doi.org/10.5194/bg-11-1581-2014, 2014
Joachim Schönfeld, Elena Golikova, Sergei Korsun, and Silvia Spezzaferri
J. Micropalaeontol., 32, 161–182, https://doi.org/10.1144/jmpaleo2012-022, https://doi.org/10.1144/jmpaleo2012-022, 2013
Related subject area
Benthic foraminifera
Distribution of two notodendrodid foraminiferal congeners in McMurdo Sound, Antarctica: an example of extreme regional endemism?
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Alve, E.: Benthic foraminifera in sediment cores reflecting heavy metal
pollution in Soerfjord, Western Norway, J. Foramin. Res.,
21, 1–19, https://doi.org/10.2113/gsjfr.21.1.1, 1991.
Alve, E., Korsun, S., Schönfeld, J., Dijkstra, N.,
Golikova, E., Hess, S., Husum, K., and Panieri, G.: Foram-AMBI: a sensitivity
index based on benthic foraminiferal faunas from North-East Atlantic and
Arctic fjords, continental shelves and slopes, Mar. Micropaleontol.,
122, 1–12, https://doi.org/10.1016/j.marmicro.2015.11.001, 2016.
Alve, E., Hess, S., Bouchet, V. M. P., Dolven, J. K., and Rygg, B.:
Intercalibration of benthic foraminiferal and macrofaunal biotic indices: an
example from the Norwegian Skagerrak coast (NE North Sea), Ecol.
Indic., 96, 107–115, https://doi.org/10.1016/j.ecolind.2018.08.037,
2019.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and
Russo, A: The Adriatic Sea general circulation, Part II: baroclinic
circulation structure, J. Phys. Oceanogr., 27, 1515–1532,
https://doi.org/10.1175/1520-0485(1997)027, 1997.
Barbero, R. S., Albani, A. D., and Donnici, S.: Atlante dei foraminiferi
della laguna di Venezia, Istituto Veneto di Scienze, Lettere ed Arti,
Venezia (Italia), 120 pp., ISBN-10: 8895996046, 2008.
Barras, C., Jorissen, F. J., Labrune, C., Andral, B., and Boissery, P.: Live
benthic foraminiferal faunas from the French Mediterranean Coast: towards a
new biotic index of environmental quality, Ecol. Indic., 36,
719–743, https://doi.org/10.1016/j.ecolind.2013.09.028, 2014.
Bé, A. W. H.: Ecology of recent planktonic foraminifera: Part I – Areal
distribution in the western North Atlantic, Micropaleontology, 5, 77–100,
https://doi.org/10.2307/1484157, 1959.
Benton, M. J. and Pearson, P. N.: Speciation in the fossil record, Trend.
Ecol. Evol., 16, 405–411,
https://doi.org/10.1016/S0169-5347(01)02149-8, 2001.
Bird, C., Schweizer, M., Roberts, A., Austin, W. E. N., Knudsen, K .L.,
Evans, K. M., Filipsson, H. L., Sayer, M. D. J., Geslin, E., and Darling, K.
F.: The genetic diversity, morphology, biogeography, and taxonomic
designations of Ammonia (Foraminifera) in the Northeast Atlantic, Mar.
Micropaleontol., 155, 101726,
https://doi.org/10.1016/j.marmicro.2019.02.001, 2020.
Boltovskoy, E., Giussani, G., Watanabe, S., and Wright, R.: Atlas of benthic
shelf Foraminifera of the Southwest Atlantic, Dr. W. Jung bv Publishers, The
Hague, 146 pp., https://doi.org/10.1007/978-94-009-9188-0, 1980.
Bouchet, V. M. P., Alve, E., Rygg, B., and Telford, R. J.: Benthic
foraminifera provide a promising tool for ecological quality assessment of
marine waters, Ecol. Indic., 23, 66–75,
https://doi.org/10.1016/j.ecolind.2012.03.011, 2012.
Bouchet, V. M. P., Frontalini, F., Francescangeli, F., Sauriau, P.-G.,
Geslin, E., Martins, M. V. A., Almogi-Labin, A., Avnaim-Katav, S., Di Bella,
L., Cearreta, A., Coccioni, R., Costelloe, A., Dimiza, M. D., Ferraro, L.,
Haynert, K., Martiìnez-Coloìn, M., Melis, R., Schweizer, M., Triantaphyllou,
M. V., Tsujimoto, A., Wilson, B., and Armynot du Cha?telet, E.: Indicative
value of benthic foraminifera for biomonitoring: assignment to ecological
groups of sensitivity to total organic carbon of species from European
intertidal areas and transitional waters, Mar. Pollut. Bull., 164,
112071, https://doi.org/10.1016/j.marpolbul.2021.112071, 2021.
Bradshaw, J. D.: Laboratory experiments on the ecology of foraminifera,
Contributions from Cushman Foundation for Foraminiferal Research, 12,
87–106, https://doi.org/10.4236/ojg.2015.54020, 1961.
Bradshaw, J. D.: Environmental parameters and marsh foraminifera, Limnol. Oceanogr., 13, 26–38, https://doi.org/10.4319/lo.1968.13.1.0026,
1968.
Brünnich, M. T.: Zoologiae fundamenta, Praelectionibus
Academicis Accommodata, Grunde i Dyeloeren, Hafniae et Lipsiae, Copenhagen,
253 pp., https://doi.org/10.5962/bhl.title.42672, 1771.
Chayes, F.: A simple point counter for thin-section analysis, Am.
Mineral., 34, 1–11,
https://pubs.geoscienceworld.org/msa/ammin/article/34/1-2/1/541208/, 1949.
Cifelli, R.: The Morphology and structure of Ammonia beccarii (Linneì), Contributions from
the Cushman Foundation for Foraminiferal Research, 13, 119–127, 1962.
Cimerman, F. and Langer, M. R.: Mediterranean foraminifera, Slovenska
Akademija Znanosti in Umetnosti. Academia Scientiarum et Artium Slovencia,
Classis 4, Historia Naturalis, 30, 1–118, ISBN: 8671310531 9788671310536,
1991.
Cushman, J. A.: Recent foraminifera from Puerto Rico, Publications of the
Carnegie Institution of Washington, 342, 73–84, 1926.
Cushman, J. A.: On Rotalia beccarii (Linneì), Contributions from the Cushman Laboratory for
Foraminiferal Research, 4, 103–107, 1928.
d'Orbigny, A.: Tableau Methodique de la Classe des Cephalopodes, Ann.
Sci. Nat., 7, 96–314, 245–314, 1826.
d'Orbigny, A.: Foraminifeìres, in: Histoire physique, politique et naturelle
de L'ile de Cuba, edited by: De la Sagra, R. M. and Bertrand, A., Paris, 1–224,
https://doi.org/10.5962/bhl.title.51128, 1839.
Darling, K. F., Schweizer, M., Knudsen, K. L., Evans, K. M., Bird, C.,
Roberts, A., Filipsson, H. L., Kim, J.-H., Gudmundsson, G., Wade, C. M.,
Sayer, M. D. J., and Austin, W. E. N.: The genetic diversity, phylogeography
and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic, Mar.
Micropaleontol., 129, 1–23,
https://doi.org/10.1016/j.marmicro.2016.09.001, 2016.
Debenay, J.-P., Beneteau, E., Zhang, J., Stouff, V., Geslin, E., Redois, F.,
and Fernandez-Gonzalez, M.: Ammonia beccarii and Ammonia tepida (Foraminifera): morphofunctional arguments
for their distinction, Mar. Micropaleontol., 34, 235–244,
https://doi.org/10.1016/S0377-8398(98)00010-3, 1998.
de Chanvalon, T. A., Metzger, E., Mouret, A., Cesbron, F., Knoery, J.,
Rozuel, E., Launeau, P., Nardelli, M. P., Jorissen, F. J., and Geslin, E.:
Two-dimensional distribution of living benthic foraminifera in anoxic
sediment layers of an estuarine mudflat (Loire Estuary, France),
Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015,
2015.
Delage, Y. and Heìrouard, E.: Traite de Zoologie ConcreÌte. Volume 1. La
Cellule et les Protozoaires, Schleicher et FreÌres, Paris, 584 pp.,
https://doi.org/10.5962/bhl.title.11672, 1896.
Deldicq, N., Alve, E., Schweizer, M., Asteman, I.P., Hess, S., Darling, K.,
and Bouchet, V. M. P.: History of the introduction of a species resembling
the benthic foraminifera Nonionella stella in the Oslofjord (Norway): Morphological,
molecular and paleoecological evidences, Aquatic Invasions, 14, 182–205,
https://doi.org/10.3391/ai.2019.14.2.03, 2019.
de Nooijer, L.: Shallow-water benthic foraminifera as proxy for natural
versus human-induced environmental change, Geologica Ultraiectina, 272,
1–152, ISBN 90-5744-136-5 2007.
De Queiroz, K.: Species concepts and species delimitation, System.
Biol., 56, 879–886, https://doi.org/10.1080/10635150701701083, 2007.
Diz, P. and Francés, G.: Distribution of live benthic foraminifera in the
Riìa de Vigo (NW Spain), Mar. Micropaleontol., 66, 165–191,
https://doi.org/10.1016/j.marmicro.2007.09.001, 2008.
Donnici, S. and Barbero, R .S.: The benthic foraminiferal communities of the
northern Adriatic continental shelf, Mar. Micropaleontol., 44, 93–123,
https://doi.org/10.1016/S0377-8398(01)00043-3, 2002.
Donnici, S., Serandrei Barbero, R., and Taroni, G.: Living Benthic
Foraminifera in the Lagoon of Venice (Italy): Population Dynamics and its
Significance, Micropaleontology, 43, 440–454,
https://doi.org/10.2307/1485933 ,1997.
Drooger, C. W.: Radial Foraminifera, morphometrics and evolution,
Verhandelingen der Koninklijke Akademie van Wetenschappen, Afdeeling
Natuurkunde, Eerste Sectie, 41, 1–242, 1993.
Dupuy, C., Rossignol, L., Geslin, E., and Pascal, P. Y.: Predation of mudflat
meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia tepida (Cushman 1926),
J. Foramin. Res., 40, 305–312,
https://doi.org/10.2113/gsjfr.40.4.305, 2010.
Ehrenberg, C. G.: Über die Bildung der Kreidefelsen und
des Kreidemergels durch unsichtbare Organismen. Königlichen Akademie der Wissenschaften zu Berlin, Physikalische Abhandlungen,
1838, 59–147, 1839.
Ehrenberg, C. G.: Eine weitere Erläuterung des Organismus mehrerer in
Berlin lebend beobachterer Polythalamien der Nordsee, Bericht über die
zur Bekanntmachung geeigneten Verhandlungen der Königlichen Preussischen
Akademie der Wissenschaften zu Berlin, 1840, 18–23, 1840.
Ehrenberg, C. G.: Über noch jetzt zahlreich lebende Thierarten der
Kreidebildung und den Organismus der Polythalamien, Königliche Akademie
der Wissenschaften Berlin, Physikalische Abhandlungen, 1839, 81–174, 1841.
Ellis, B. F. and Messina, A.: Cataloque of Foraminifera, Micropaleontology
Press, New York, available at: http://www.micropress.org (last access: 5 December 2020),
1940.
Francescangeli, F., Milker, Y., Bunzel, D., Thomas, H., Norbisrath, M.,
Schönfeld, J., and Schmiedl, G.: Recent benthic foraminiferal distribution in
the Elbe Estuary (North Sea, Germany): A response to environmental
stressors, Estuarine, Coast. Shelf Sci., 251, 107198,
https://doi.org/10.1016/j.ecss.2021.107198, 2021.
Haake, F.-W.: Living benthic foraminifera in the Adriatic Sea: Influence of
water depth and sediment, J. Foramin. Res., 7, 62–75,
https://doi.org/10.2113/gsjfr.7.1.62, 1977.
Hammer Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
statistics software package for education and data analysis, Palaeontol.
Electron., 4, p. 9, 2001.
Hayek, L.-A. C., Buzas, M. A., Buzas-Stephens, P., and Buzas, J. S.: On
replicates for comparing species densities in space and time, J.
Foramin. Res., 51, 92–97, https://doi.org/10.2113/gsjfr.51.2.92,
2021.
Haynert, K., Gluderer, F., Pollierer, M. M., Scheu, S., and Wehrmann, A.:
Food spectrum and habitat-specific diets of benthic foraminifera from the
Wadden Sea – a fatty acid biomarker approach, Front. Mar. Sci.,
7, 510288, https://doi.org/10.3389/fmars.2020.510288, 2020.
Haynes, J. R.: Cardigan Bay recent Foraminifera (Cruises of the R.V. Antur,
1962–1964), British Museum (Natural History), Zoology. Supplement, 4,
1–245, 1973.
Hayward, B. W., Holzmann, M., Grenfell, H. R., Pawlowski, J., and Triggs,
C.M.: Morphological distinction of molecular types in Ammonia – towards a
taxonomic revision of the world's most commonly misidentified foraminifera,
Mar. Micropaleontol., 50, 237–271,
https://doi.org/10.1016/S0377-8398(03)00074-4, 2004.
Hayward, B. W., Holzmann, M., and Tsuchiya, M.: Combined molecular and
morphological taxonomy of the beccarii/T3 group of the foraminiferal genus
Ammonia, J. Foramin. Res., 49, 367–389,
https://doi.org/10.2113/gsjfr.49.4.367, 2019.
Hayward, B. W., Holzmann, M., Pawlowski, J., Parker, J. H., Kaushik, T.,
Toyofuku, M. S., and Tsuchiya, M.: Molecular and morphological taxonomy of
living Ammonia and related taxa (Foraminifera) and their biogeography,
Micropaleontology, 67, 109–313, available at: https://www.micropress.org/microaccess/micropaleontology/issue-368/article-2228, last access: 21 November 2021.
Heron-Allen E. and Earland A.: On some Foraminifera from the North Sea
dredged by the Fisheries Cruiser “Huxley” (International North Sea
Investigations – England), Journal of the Quekett Microscopical Club, 12, 121–138, https://doi.org/10.1111/j.1365-2818.1912.tb04934.x, 1913.
Hohenegger, J.: Larger foraminifera-microscopical greenhouses indicating
shallow-water tropical and subtropical environments in the present and past,
Kagoshima University Research Center for the Pacific Islands, Occasional
Papers, 32, 19–45, 1999.
Holzmann, M.: Species concept in Foraminifera: Ammonia as a case study,
Micropaleontology, 46, 21–37, 2000.
Holzmann, M. and Pawlowski, J.: Molecular, morphological, and ecological
evidence for species recognition in Ammonia (Foraminiferida), J.
Foramin. Res., 27, 311–318,
https://doi.org/10.1016/S0377-8398(03)00074-4, 1997.
Holzmann, M., Piller, W., Fenner, R., Martini, R., Serandrei-Barbero, R., and
Pawlowski, J.: Morphologic versus molecular variability in Ammonia spp.
(Foraminifera, Protozoa) from the Lagoon of Venice, Italy, Rev.
Micropaléontol., 41, 59–69,
https://doi.org/10.1016/S0035-1598(98)90098-8, 1998.
Hottinger, L.: Comparative anatomy of elementary shell structures in
selected larger foraminifera, in: Foraminifera, Vol. 3, edited by: Hedley,
R. H. and Adams, C. G., Academic Press, London, 203–266, 1978.
Hottinger, L.: Illustrated glossary of terms used in foraminiferal research,
Carnets de Geìologie/Notebooks on Geology Memoir, 2006/02, 1–126,
https://doi.org/10.4267/2042/5832, 2006.
Jorissen, F. J.: Benthic foraminifera from the Adriatic Sea; principles of
phenotypic variation, Utrecht Micropaleontological Bulletin, 37, 7–139,
ISSN 0083-4963, 1988.
Jorissen, F. J., Nardelli, M. P., Almogi-Labin, A., Barras, C., Bergamin,
L., Bicchi, E., El Kateb, A., Ferraro, L., McGann, M., Morigi, C., Romano,
E., Sabbatini, A., Schweizer, M., and Spezzaferri, S.: Developing Foram-AMBI
for biomonitoring in the Mediterranean: species assignments to ecological
categories, Mar. Micropaleontol., 140, 33–45,
https://doi.org/10.1016/j.marmicro.2017.12.006, 2018.
Keul, N., Langer, G., de Nooijer, L. J., and Bijma, J.: Effect of ocean
acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in
carbonate ion concentration, Biogeosciences, 10, 6185–6198,
https://doi.org/10.5194/bg-10-6185-2013, 2013.
Koho, K. A., LeKieffre, C., Nomaki, H., Salonen, I., Geslin, E., Mabilleau,
G., Søgaard Jensen, L. H., and Reichart, G.-J.: Changes in ultrastructural
features of the foraminifera Ammonia spp. in response to anoxic conditions: Field
and laboratory observations, Mar. Micropaleontol., 138, 72–82,
https://doi.org/10.1016/j.marmicro.2017.10.011, 2018.
Labaj, P., Topa, P., Tyszka, J., and Alda, W.: 2D and 3D numerical models of
the growth of foraminiferal shells, Lect. Notes Comput. Sci., 2657,
669–678, https://doi.org/10.1007/3-540-44860-8_69, 2003.
Langer, M., Hottinger, L., and Huber, B.: Functional morphology in
low-diverse benthic foraminiferal assemblages from tidal flats of the North
Sea, Senck. Marit., 20, 81–99, ISSN 0080-889X, 1989.
Lehmann, G.: Vorkommen, Populationsentwicklung, Ursache flächenhafter
Besiedlung und Fortpflanzungsbiologie von Foraminiferen in Salzwiesen und
Flachwasser der Nord- und Ostseeküste Schleswig-Holsteins, Dissertation,
Christian-Albrechts-Universität zu Kiel, Germany, 218 pp.,
available at: http://macau.uni-kiel.de/receive/dissertation_diss_413 (last access: 21 November 2021), 2000.
LeKieffre, C., Spangenberg, J. E., Mabilleau, G., Escrig, S., Meibom, A., and
Geslin, E.: Surviving anoxia in marine sediments: The metabolic response of
ubiquitous benthic foraminifera (Ammonia tepida), PLoS ONE, 12, e0177604,
https://doi.org/10.1371/journal.pone.0177604, 2017.
Less, G. and Kovács, L. Oì.: Typological versus morphometric separation of
orthophragminid species in single samples – a case study from Horsarrieu
(upper Ypresian, SW Aquitaine, France), Seìparation typologique et
morphomeìtrique des espeÌces d'Orthophragmines dans des eìchantillons
isoleìs – application aÌ un eìchantillon provenant de Horsarrieu (Ypreìsien
supeìrieur, Sud-Ouest de l'Aquitaine, France), Revue de Micropaleìontologie,
52, 267–288, https://doi.org/10.1016/j.revmic.2008.10.001, 2009.
Li, M., Lei, Y., Li, T., and Dong, S.: Response of intertidal foraminiferal
assemblages to salinity changes in a laboratory culture experiment, J. Foramin. Res., 50, 319–329,
https://doi.org/10.2113/gsjfr.50.4.319, 2020.
Linné, C.: Systemae naturae, edition 10, tomus 1, Stockholm, Sweden, 710
pp., available at: https://www.biodiversitylibrary.org/page/726886 (last access: 21 November 2021), 1758.
Lister, J. J.: Contributions to the life-history of the Foraminifera,
Philos. Trans. Roy. Soc., B186, 401–453,
https://doi.org/10.1098/rstb.1895.0008, 1895.
Montanari, R. and Marasmi, C.: New tools for coastal management in
Emilia-Romagna, Regione Emilia-Romagna, Assessorato alla Sicurezza
Territoriale Difesa del Suolo e della Costa Protezione Civile, Bologna,
Italy, 72 pp., 2012.
Moodley, L. and Hess, C.: Tolerance of infaunal benthic foraminifera for low
and high oxygen concentrations, Biol. Bull., 183, 94–98,
https://doi.org/10.2307/1542410 1992.
Morigi, C., Jorissen, F. J., Fraticelli, S., Horton, B. P., Principi, M.,
Sabbatini, A., Capotondi, L., Curzi, P. V., and Negri, A.: Benthic
foraminiferal evidence for the formation of the Holocene mud-belt and
bathymetrical evolution in the central Adriatic Sea, Mar.
Micropaleontol., 57, 25–49,
https://doi.org/10.1016/j.marmicro.2005.06.001, 2005.
Mouanga, G. H.: Impact and range extension of invasive foraminifera in the
NW Mediterranean Sea: Implications for diversity and ecosystem functioning,
Dissertation, Universität Bonn, Bonn, 230 pp., available at:
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7491 (last access: 21 November 2021), 2017.
Murray, J. W.: Ecology and Palaeoecology of Benthic Foraminifera, Longman
Scientific & Technical, Essex, United Kingdom, 397 pp.,
https://doi.org/10.4324/9781315846101, 1991.
Murray, J. W.: Unravelling the life cycle of “Polystomella crispa”: the roles of Lister, Jepps
and Myers, J. Micropalaeontol., 31, 121–129.,
https://doi.org/10.1144/0262-821X11-034, 2012.
Murray, J. W.: Some trends in sampling modern living (stained) benthic
foraminifera in fjord, shelf and deep sea: Atlantic Ocean and adjacent seas,
J. Micropalaeontol., 34, 101–104,
https://doi.org/10.1144/jmpaleo2014-004, 2015.
Murray, J. W. and Alve, E.: Major aspects of foraminiferal variability
(standing crop and biomass) on a monthly scale in an intertidal zone,
J. Foramin. Res., 30, 177–191,
https://doi.org/10.2113/0300177, 2000.
Myers, E. H.: Life activities of foraminifera in relation to marine ecology,
Am. Philos. Soc. Proceed., 86, 439–458, 1943.
Natland, M. L.: New species of Foraminifera from off the west coast of North
America and from the later Tertiary of the Los Angeles basin, Bulletin of
the Scripps Institution of Oceanography of the University of California,
Tech. Ser., 4, 137-163, 1938.
Nixon, K. C. and Wheeler, Q. D.: An amplification of the phylogenetic
species concept, Cladistics, 6, 211–223,
https://doi.org/10.1111/j.1096-0031.1990.tb00541.x, 1990.
Otto, G. H.: A modified logarithmic probability graph for the interpretation
of mechanical analyses of sediments, J. Sediment. Res., 9,
62–76, https://doi.org/10.1306/D4269044-2B26-11D7-8648000102C1865D, 1939.
Parent, B., Hyams-Kaphzan, O., Barras, C., Lubinevsky, H., and Jorissen, F.:
Testing foraminiferal environmental quality indices along a well-defined
organic matter gradient in the Eastern Mediterranean, Ecol. Indic.,
125, 107498, https://doi.org/10.1016/j.ecolind.2021.107498, 2021.
Pascal, P.-Y., Dupuy, C., Richard, P., and Niquil, N.: Bacterivory in the
common foraminifer Ammonia tepida: isotope tracer experiment and the controlling factors,
J. Exp. Mar. Biol. Ecol., 359, 55–61,
https://doi.org/10.1016/j.jembe.2008.02.018, 2008.
Pawlowski, J., Holzmann, M., and Tyszka, J.: New supraordinal classification
of foraminifera: molecules meet morphology, Mar. Micropaleontol., 100,
1–10, https://doi.org/10.1016/j.marmicro.2013.04.002, 2013.
Plancus, J.: Jani Planci Ariminensis de conchis minus notis, tomus 56,
Venetis, available at: https://www.biodiversitylibrary.org/page/15178957 (last access: 21 November 2021), 1739.
Poag, C. W.: Paired foraminiferal ecophenotypes in Gulf Coast estuaries:
Ecological and paleoecological implications, Transactions of the Gulf Coast
Assoc. Geol. Soc., 28, 395–421, 1978.
Polovodova, I. and Schönfeld, J.: Foraminiferal test abnormalities in
the western Baltic Sea, J. Foramin. Res., 38, 318–336,
https://doi.org/10.2113/gsjfr.38.4.318, 2008.
Preti, M.: Ripascimento di spiagge con sabbie sottomarine in Emilia-Romagna,
Studi Costieri, 5, 107–134, available at: http://oceanrep.geomar.de/id/eprint/53247 (last access: 21 November 2021),
2000.
Prioli, I.: Difesa della Costa, l'Emilia-Romagna anticipa il Recovery: 22
milioni di euro per il ripascimento di 15 km di spiagge, available at:
https://www.regione.emilia-romagna.it/notizie/2021/,
last access: 8 Juni 2021.
Raw, F.: The development of Leptoplastus salteri and other trilobites, Q. J.
Geol. Soc. Lond., 81, 223–324,
https://doi.org/10.1144/GSL.JGS.1925.081.01-04.12, 1925.
Richirt, J., Schweizer, M., Bouchet, V. M. P., Mouret, A., Quinchard, S., and
Jorissen, F. J.: Morphological distinction of three Ammonia phylotypes occurring
along European coasts, J. Foramin. Res., 49, 76–93,
https://doi.org/10.2113/gsjfr.49.1.76, 2019.
Richirt, J., Schweizer, M., Mouret, A., Quinchard, S., Saad, S .A., Bouchet,
V. M. P., Wade, C. M., and Jorissen, F. J.: Biogeographic distribution of
three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great
Britain: new insights from combined molecular and morphological recognition,
J. Micropalaeontol., 40, 61–74,
https://doi.org/10.5194/jm-40-61-2021, 2021.
Richter, G.: Beobachtungen zur Ökologie einiger Foraminiferen des
Jade-Gebietes, Natur und Museum, 91, 163-170, 1961.
Roberts, A., Austin, W., Evans, K., Bird, C., Schweizer, M., and Darling, K.:
A new integrated approach to taxonomy: the fusion of molecular and
morphological systematics with type material in benthic foraminifera, PLoS
One, 11, e0158754, https://doi.org/10.1371/journal.pone.0158754, 2016.
Rouvillois, A.: Un foraminifère méconnu du plateau continental du
golfe de Gascogne: Pseudoeponides falsobeccarii n. sp., Cahiers de Micropaleontologie, 3, 3–7, 1974.
Saidova, Kh. M.: O sovremennom sostoyanii sistemi nadvidovykh taksonov
Kaynozoyskikh bentosnykh foraminifer, Institut Okeanologii P.P. Shirshova,
Akademiya Nauk SSR, Moscow, 73 pp., 1981.
Schönfeld, J. and Voigt, T.: Sediment geometry, facies analysis and
palaeobathymetry of the Schrammstein Formation (upper Turonian–lower
Coniacian) in southern Saxony, Germany, Z. Dtsch.
Ges. Geowiss., 171, 199–209,
https://doi.org/10.1127/zdgg/2020/0220, 2020.
Schönfeld, J., Alve, E., Geslin, E., Jorissen, F.,
Korsun, S., and Spezzaferri, S.: The FOBIMO (FOraminiferal BIo-MOnitoring)
initiative – towards a standardised protocol for benthic foraminiferal
monitoring studies, Mar. Micropaleontol., 94–95, 1–13,
https://doi.org/10.1016/j.marmicro.2012.06.001, 2012.
Schultze, M. J. S.: über den Organismus der Polythalamien
(Foraminiferen), nebst Bemerkungen über die Rhizopoden im
allgemeinen, Ingelmann, Leipzig, 68 pp.,
available at: https://books.google.pt/books?id=o7rk00_xueQC (last access: 21 November 2021), 1854.
Schweizer, M., Polovodova, I., Nikulina, A., and Schönfeld, J.: Molecular
identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel
Fjord (SW Baltic Sea) with rDNA sequences, Helgoland Mar. Res., 65,
1–10, https://doi.org/10.1007/s10152-010-0194-3, 2011.
Sen, A. and Bhadury, P.: Exploring the seasonal dynamics within the benthic
foraminiferal biocoenosis in a tropical monsoon-influenced coastal lagoon,
Aquat. Biol., 25, 121–138, https://doi.org/10.3354/ab00658, 2016.
Serandrei-Barbero, R., Albani, A. D., and Donnici, S.: Atlante dei
Foraminiferi della Laguna di Venezia, Istituto Veneto di Scienze, Lettere ed
Arti, Venezia, 164 pp., 2008.
Seuront, L. and Bouchet, V. M. P.: The devil lies in details: new insights
into the behavioural ecology of intertidal foraminifera, J.
Foramin. Res., 45, 390–401,
https://doi.org/10.2113/gsjfr.45.4.390, 2015.
Simmons, M. and Bidgood, M.: Thinking about species, Newsletter of
Micropalaeontology, 103, 37–41, 2021.
Simonini, R., Ansaloni, I., Bonvicini Pagliai, A. M., Cavallini, F., Iotti,
M., Mauri, M., Montanari, G., Preti, M., Rinaldi, A., and Prevedelli, D.: The
effects of sand extraction on the macrobenthos of a relict sands area
(northern Adriatic Sea): results 12 months post-extraction, Mar. Pollut.
Bull., 50, 768–777, https://doi.org/10.1016/j.marpolbul.2005.02.009,
2005.
Stouff, V., Geslin, E., Debenaj, J., and Lesourd, M.: Origin of morphological
abnormalities in Ammonia (Foraminifera): studies in laboratory and natural
environments, J. Foramin. Res., 29, 152–170,
https://doi.org/10.2113/gsjfr.29.2.152, 1999a.
Stouff, V., Lesourd, M., and Debenay, J.-P.: Laboratory observations of
asexual reproduction (schizogony) and ontogeny of Ammonia tepida, J. Foramin.
Res., 29, 75–84, https://doi.org/10.2113/gsjfr.29.1.75, 1999b.
Turner, G. L. E.: The microscope as a technical frontier in science, in:
Historical Aspects of Microscopy, edited by: Bradbury, S. and Turner, G. L.
E., W. Heffer & Sons, Cambridge, 175–197, 1967.
Tyszka, J.: Morphospace of foraminiferal shells. in: Abstract Volume,
Seventh International Workshop on Agglutinated Foraminifera, Urbino, 2–8
October 2005, 3 pp., https://doi.org/10.1080/00241160600575808, 2005.
Tyszka, J.: Morphospace of foraminiferal shells: results from the moving
reference model, Lethaia, 39, 1–12,
https://doi.org/10.1080/00241160600575808, 2006.
Tyszka, J., Topa, P., and Saczka, K.: State-of-the-art in modelling of
foraminiferal shells: searching for an emergent model, Stud. Geol.
Polon., 124, 143–157, 2005.
von Daniels, C. H.: Quantitative Ökologische Analyse der
zeitlichen und räumlichen Verteilung rezenter
Foraminferen im Limski-kanal bei Rovinj (nordliche Adria),
Göttinger Arbeiten zur Geologie und
Paläontologie, 8, 1–109, 1970.
Walker, G. and Jacob, E.: in: Essays on the Microscope, 2nd Edition with
considerable additions and improvements by F. Kanmacher, edited by: Adams,
E., Dillon and Keeting, London, 712 pp., 1798.
Walton, W. R. and Sloan, B. J.: The genus Ammonia Brünnich 1772: Its geographic
distribution and morphologic variability, J. Foramin. Res.,
20, 128–156, https://doi.org/10.2113/gsjfr.20.2.128, 1990.
Ward, A. J. W., Webster, M. M., and Hart, P. J. B.: Intraspecific food
competition in fishes, Fish Fish., 7, 231–261,
https://doi.org/10.1111/j.1467-2979.2006.00224.x, 2006.
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken...