Articles | Volume 41, issue 2
J. Micropalaeontol., 41, 165–182, 2022
https://doi.org/10.5194/jm-41-165-2022
J. Micropalaeontol., 41, 165–182, 2022
https://doi.org/10.5194/jm-41-165-2022
Research article
04 Nov 2022
Research article | 04 Nov 2022

Artificial intelligence applied to the classification of eight middle Eocene species of the genus Podocyrtis (polycystine radiolaria)

Veronica Carlsson et al.

Related authors

Astronomical calibration of late middle Eocene radiolarian bioevents from ODP Site 1260 (equatorial Atlantic, Leg 207) and refinement of the global tropical radiolarian biozonation
Mathias Meunier and Taniel Danelian
J. Micropalaeontol., 41, 1–27, https://doi.org/10.5194/jm-41-1-2022,https://doi.org/10.5194/jm-41-1-2022, 2022
Short summary
The Paleocene record of marine diatoms in deep-sea sediments
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018,https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016,https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
New species of Neogene radiolarians from the Southern Ocean – part IV
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 35, 26–53, https://doi.org/10.1144/jmpaleo2014-026,https://doi.org/10.1144/jmpaleo2014-026, 2016
New species of Neogene radiolarians from the Southern Ocean – part II
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 32, 59–86, https://doi.org/10.1144/jmpaleo2011-025,https://doi.org/10.1144/jmpaleo2011-025, 2013

Related subject area

Siliceous microfossils
An assessment of diatom assemblages in the Sea of Okhotsk as a proxy for sea-ice cover
Hiroki Nakamura, Yusuke Okazaki, Susumu Konno, and Takeshi Nakatsuka
J. Micropalaeontol., 39, 77–92, https://doi.org/10.5194/jm-39-77-2020,https://doi.org/10.5194/jm-39-77-2020, 2020
Short summary
Skeletal architecture of middle Cambrian spicular radiolarians revealed using micro-CT
Jiani Sheng, Sarah Kachovich, and Jonathan C. Aitchison
J. Micropalaeontol., 39, 61–76, https://doi.org/10.5194/jm-39-61-2020,https://doi.org/10.5194/jm-39-61-2020, 2020
Short summary
Species of the diatom taxa Aulacodiscus and Trinacria with biostratigraphic utility in Palaeogene and Neogene North Sea sediments
Alexander G. Mitlehner
J. Micropalaeontol., 38, 67–81, https://doi.org/10.5194/jm-38-67-2019,https://doi.org/10.5194/jm-38-67-2019, 2019
Short summary

Cited articles

Aitchison, J. C., Suzuki, N., Caridroit, M., Danelian, T., and Noble, P.: Paleozoic radiolarian biostratigraphy, in: Catalogue of Paleozoic Radiolarian Genera, edited by: Danelian, T., Caridroit, M., Noble, P., and Aitchison, J. C., Geodiversitas, Vol. 39, 503–531, Scientific Publications of the Muséum National d'Histoire Naturelle, Paris, https://doi.org/10.5252/g2017n3a5, 2017. 
Beaufort, L. and Dollfus, D.: Automatic recognition of coccoliths by dynamical neural networks, Mar. Micropaleontol., 51, 57–73, https://doi.org/10.1016/j.marmicro.2003.09.003, 2004. 
Beaufort, L., de Garidel Thoron, T., Mix, A. C., and Pisias, N. G.: ENSO-like forcing on Oceanic Primary Production during the late Pleistocene, Science, 293, 2440–2444, https://doi.org/10.1126/science.293.5539.2440, 2001. 
Brocher, J.: biovoxxel/BioVoxxel-Toolbox: BioVoxxel Toolbox (v2.5.3), Zenodo, https://doi.org/10.5281/zenodo.5986129, 2022. 
Carlsson, V.: Podocyrtis Image Dataset, Recherche Data Gouv [data set], https://doi.org/10.57745/G7CHQL, 2022. 
Download
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.