Articles | Volume 41, issue 2
https://doi.org/10.5194/jm-41-165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-41-165-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Artificial intelligence applied to the classification of eight middle Eocene species of the genus Podocyrtis (polycystine radiolaria)
Veronica Carlsson
CORRESPONDING AUTHOR
Univ. Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, 59000 Lille,
France
Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL – Centre de
Recherche en Informatique Signal et Automatique de Lille, 59000 Lille,
France
Taniel Danelian
Univ. Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, 59000 Lille,
France
Pierre Boulet
Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL – Centre de
Recherche en Informatique Signal et Automatique de Lille, 59000 Lille,
France
Philippe Devienne
Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL – Centre de
Recherche en Informatique Signal et Automatique de Lille, 59000 Lille,
France
Aurelien Laforge
Univ. Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, 59000 Lille,
France
Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL – Centre de
Recherche en Informatique Signal et Automatique de Lille, 59000 Lille,
France
Johan Renaudie
Museum für Naturkunde, Leibniz-Institut für Evolutions- und
Biodiversitätsforschung, 10115 Berlin, Germany
Related authors
No articles found.
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Mathias Meunier and Taniel Danelian
J. Micropalaeontol., 41, 1–27, https://doi.org/10.5194/jm-41-1-2022, https://doi.org/10.5194/jm-41-1-2022, 2022
Short summary
Short summary
This study presents the biostratigraphic analysis of radiolaria (siliceous zooplankton) from a section of middle Eocene age located in the equatorial Atlantic. Our study allows the refinement of the age of 71 radiolarian bioevents. Based on a comparison with previously reported ages in the equatorial Pacific and northwestern Atlantic, we establish the synchronicity of several bioevents between the two oceans. Some of these synchronous bioevents were used to define seven new subzones.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Tom Fer, Taniel Danelian, and Haydon W. Bailey
J. Micropalaeontol., 35, 133–142, https://doi.org/10.1144/jmpaleo2014-033, https://doi.org/10.1144/jmpaleo2014-033, 2016
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 35, 26–53, https://doi.org/10.1144/jmpaleo2014-026, https://doi.org/10.1144/jmpaleo2014-026, 2016
Lei Zhang, Taniel Danelian, Qinglai Feng, Thomas Servais, Nicolas Tribovillard, and Martial Caridroit
J. Micropalaeontol., 32, 207–217, https://doi.org/10.1144/jmpaleo2013-003, https://doi.org/10.1144/jmpaleo2013-003, 2013
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 32, 59–86, https://doi.org/10.1144/jmpaleo2011-025, https://doi.org/10.1144/jmpaleo2011-025, 2013
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 31, 29–52, https://doi.org/10.1144/0262-821X10-026, https://doi.org/10.1144/0262-821X10-026, 2012
Related subject area
Siliceous microfossils
Direct link between iceberg melt and diatom productivity demonstrated in Mid-Pliocene Amundsen Sea interglacial sediments
Two new clavate Fragilariopsis and one new Rouxia diatom species with biostratigraphic and paleoenvironmental applications for the Pliocene-Pleistocene, East Antarctica
Diatom and radiolarian biostratigraphy in the Pliocene sequence of ODP Site 697 (Jane Basin, Atlantic sector of the Southern Ocean)
Progress in the taxonomy of Late Cretaceous high-latitude radiolarians: insights from the Horton River area, Northwest Territories, Canada
Radiolarian assemblages related to the ocean–ice interaction around the East Antarctic coast
An assessment of diatom assemblages in the Sea of Okhotsk as a proxy for sea-ice cover
Skeletal architecture of middle Cambrian spicular radiolarians revealed using micro-CT
Species of the diatom taxa Aulacodiscus and Trinacria with biostratigraphic utility in Palaeogene and Neogene North Sea sediments
Heather Furlong and Reed Paul Scherer
J. Micropalaeontol., 43, 269–282, https://doi.org/10.5194/jm-43-269-2024, https://doi.org/10.5194/jm-43-269-2024, 2024
Short summary
Short summary
Diatom assemblages are vital components of the Antarctic ecosystem and nutrient supply chain, and they are often utilized as paleoclimate proxies to better understand past climatic changes. We demonstrate enhanced diatom production and accumulation in the outer Amundsen Sea during a Mid-Pliocene interglacial that coincides with pulses of ice-rafted terrestrial debris, providing compelling evidence that iceberg calving seeds diatom productivity in the Southern Ocean.
Grace Duke, Josie Frazer, Briar Taylor-Silva, and Christina Riesselman
J. Micropalaeontol., 43, 139–163, https://doi.org/10.5194/jm-43-139-2024, https://doi.org/10.5194/jm-43-139-2024, 2024
Short summary
Short summary
Diatoms are dust-sized algae commonly found in the upper 100 m of the Southern Ocean. In this paper, we describe three new species found in sediments west of the Ross Sea, East Antarctica, aged about 3--2 Ma: Fragilariopsis clava, Fragilariopsis armandae, and Rouxia raggattensis. These species may be useful for determining the age of sediments and past environmental conditions at other locations around the Southern Ocean.
Yuji Kato, Iván Hernández-Almeida, and Lara F. Pérez
J. Micropalaeontol., 43, 93–119, https://doi.org/10.5194/jm-43-93-2024, https://doi.org/10.5194/jm-43-93-2024, 2024
Short summary
Short summary
In this study, we propose an age framework for an interval of 4.8–3.1 million years ago, using fossil records of marine plankton such as diatoms and radiolarians derived from a sediment core collected in the Southern Ocean. Specifically, a total of 19 bioevents (i.e., extinction/appearance events of selected age marker species) were detected, and their precise ages were calculated. The updated biostratigraphy will contribute to future paleoceanographic work in the Southern Ocean.
Juan F. Diaz, Noritoshi Suzuki, Jennifer M. Galloway, and Manuel Bringué
J. Micropalaeontol., 43, 69–80, https://doi.org/10.5194/jm-43-69-2024, https://doi.org/10.5194/jm-43-69-2024, 2024
Short summary
Short summary
In this study, we describe one new genus and three new species of radiolarians from Upper Cretaceous strata of the northern mainland coast of Arctic Canada. This is one of the few Cretaceous radiolarian assemblages recovered from the interior of North America and high northern latitudes and serves as a foundation for future Cretaceous radiolarian research in Arctic regions. Taxonomic descriptions were based on external and internal features observed using a scanning electron microscope.
Mutsumi Iizuka, Takuya Itaki, Osamu Seki, Ryosuke Makabe, Motoha Ojima, and Shigeru Aoki
J. Micropalaeontol., 43, 37–53, https://doi.org/10.5194/jm-43-37-2024, https://doi.org/10.5194/jm-43-37-2024, 2024
Short summary
Short summary
Radiolarian fossils are valuable tools for understanding water mass distribution. However, they have not been used in the high-latitude Southern Ocean due to unclear radiolarian assemblages. Our study identifies four assemblages related to water masses and ice edge environments in the high-latitude Southern Ocean, offering insights for water mass reconstruction in this region.
Hiroki Nakamura, Yusuke Okazaki, Susumu Konno, and Takeshi Nakatsuka
J. Micropalaeontol., 39, 77–92, https://doi.org/10.5194/jm-39-77-2020, https://doi.org/10.5194/jm-39-77-2020, 2020
Short summary
Short summary
Diatom assemblages in seasonally sea-ice-covered areas of the Sea of Okhotsk, a marginal sea of the western North Pacific, were investigated. We have selected diatom taxa relating to sea-ice coverage by comparing diatom assemblages in sea-ice, sinking-particle, and surface-sediment samples. The results of the study provide fundamental information for the reconstruction of past sea-ice cover based on ice-algal diatoms in sediments in the Sea of Okhotsk and the North Pacific.
Jiani Sheng, Sarah Kachovich, and Jonathan C. Aitchison
J. Micropalaeontol., 39, 61–76, https://doi.org/10.5194/jm-39-61-2020, https://doi.org/10.5194/jm-39-61-2020, 2020
Short summary
Short summary
To better understand radiolarian evolution and taxonomy, two middle Cambrian specimens recovered from Australia were studied using micro-CT. Analyses of their 3-D models revealed for the first time their skeletal architecture constructed of spicules. Insertion of an artificial sphere into their shells indicates that they may have secreted their spicules one by one during cell enlargement. The timing of skeletal genesis may be an important factor influencing the morphology of early radiolarians.
Alexander G. Mitlehner
J. Micropalaeontol., 38, 67–81, https://doi.org/10.5194/jm-38-67-2019, https://doi.org/10.5194/jm-38-67-2019, 2019
Short summary
Short summary
Species of two important diatoms (algae with silica skeletons and important primary producers) are described formally and incorporated into existing biozonation schemes allowing correlation of Paleocene to Miocene strata in the North Sea, important for hydrocarbon exploration as well as for environmental interpretation. Their abundances are linked to environmentally stressed conditions, including increased global warming and periods of nutrient influx from rapidly eroding land masses nearby.
Cited articles
Aitchison, J. C., Suzuki, N., Caridroit, M., Danelian, T., and Noble, P.:
Paleozoic radiolarian biostratigraphy, in: Catalogue of Paleozoic Radiolarian Genera, edited by: Danelian, T., Caridroit, M., Noble,
P., and Aitchison, J. C., Geodiversitas, Vol. 39, 503–531, Scientific
Publications of the Muséum National d'Histoire Naturelle, Paris, https://doi.org/10.5252/g2017n3a5, 2017.
Beaufort, L. and Dollfus, D.: Automatic recognition of coccoliths by
dynamical neural networks, Mar. Micropaleontol., 51, 57–73, https://doi.org/10.1016/j.marmicro.2003.09.003, 2004.
Beaufort, L., de Garidel Thoron, T., Mix, A. C., and Pisias, N. G.: ENSO-like
forcing on Oceanic Primary Production during the late Pleistocene, Science,
293, 2440–2444, https://doi.org/10.1126/science.293.5539.2440, 2001.
Brocher, J.: biovoxxel/BioVoxxel-Toolbox: BioVoxxel Toolbox (v2.5.3),
Zenodo, https://doi.org/10.5281/zenodo.5986129, 2022.
Carlsson, V.: Podocyrtis Image Dataset, Recherche Data Gouv [data set], https://doi.org/10.57745/G7CHQL,
2022.
Carlsson, V. and Laforge, A.: Codes for image preparation and MobileNet CNN,
Recherche Data Gouv [code], https://doi.org/10.57745/J4YL4I, 2022.
Carvalho, L. E., Fauth, G., Baecker Fauth, S., Krahl, G., Moreira, A. C.,
Fernandes, C. P., and von Wangenheim, A.: Automated Microfossil Identification
and Segmentation using a Deep Learning Approach, Mar. Micropaleontol.,
158, 101890, https://doi.org/10.1016/j.marmicro.2020.101890, 2020.
Chollet, F.: Keras, GitHub [code],
https://github.com/fchollet/keras (last access: 21 October 2022), 2015.
Danelian, T. and MacLeod, N.: Morphometric Analysis of Two Eocene Related
Radiolarian Species of the Podocyrtis (Lampterium) Lineage, Paleontol. Res., 23, 314–330,
2019.
Danelian, T., Le Callonec, L., Erbacher, J., Mosher, D., Malone, M.,
Berti, D., Bice, K., Bostock, H., Brumsack, H. -J., Forster, A.,
Heidersdorf, F., Henderiks, J., Janecek, T., Junium, C., Macleod, K.,
Meyers, P., Mutterlose J., Nishi, H., Norris, R., Ogg, J., O'Regan, M., Rea,
B., Sexton, P., Sturt, H., Suganuma, Y., Thurow, J., Wilson, P., Wise, S.,
and Glatz, C.: Preliminary results on Cretaceous-Tertiary tropical Atlantic
pelagic sedimentation (Demerara Rise, ODP Leg 207), C. R. Geosci., 337, 609–616, https://doi.org/10.1016/j.crte.2005.01.011, 2005.
Danelian, T., Saint Martin, S., and Blanc-Valleron, M.-M.: Middle Eocene
radiolarian and diatom accumulation in the equatorial Atlantic (Demerara
Rise, ODP Leg 207): Possible links with climatic and palaeoceanographic
changes, C. R. Palevol., 6, 103–114, https://doi.org/10.1016/j.crpv.2006.08.002, 2007.
Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Fonseca Guerra, G. A.,
Joshi, P., Plank, P., and Risbud, S.: Advancing Neuromorphic Computing with
Loihi: A Survey of Results and Outlook, Proc. IEEE,
109, 911–934, https://doi.org/10.1109/JPROC.2021.3067593, 2021.
De Lima, R. P., Welch, K. F., Barrick, J. E., Marfurt, K. J., Burkhalter,
R., Cassel, M., and Soreghan, G. S.: Convolutional Neural Networks As An Aid
To Biostratigraphy And Micropaleontology: A Test On Late Paleozoic
Microfossils, Palaios, 35, 391–402, https://doi.org/10.2110/palo.2019.102, 2020.
Dollfus, D. and Beaufort, L.: Fat neural network for recognition of
position-normalised objects, Neural Networks, 12, 553–560, https://doi.org/10.1016/S0893-6080(99)00011-8, 1999.
Ehrenberg, C. G.: Uber eine halibiolithische, von Herrn R. Schomburgk
entdeckte, vorherrschend aus mikroskopischen Polycystinen gebildete,
Gebirgsmasse von Barbados, Bericht uber die zu Bekanntmachung geeigneten
Verhandlungen der Koniglichen Preussische Akademie der Wissenschaften zu
Berlin, Jahre 1846, 382–385, 1846.
Ehrenberg, C. G.: Über die mikroskopischen kieselschaligen Polycystinen
als mächtige Gebirgsmasse von Barbados und über das Verhältniss
deraus mehr als 300 neuen Arten bestehenden ganz eigenthümlichen
Formengruppe jener Felsmasse zu den jetzt lebenden Thieren und zur
Kreidebildung, Eine neue Anregung zur Erforschung des Erdlebens, K. Preuss.
Akad. Wiss., Berlin, Jahre 1847, 40–60, 1847.
Ehrenberg, C. G.: Mikrogeologie: das Erden und Felsen schaffende Wirken des unsichtbar kleinen selbstständigen Lebens auf der Erde, Leopold Voss, Leipzig, Germany, 374 pp.,
https://doi.org/10.5962/bhl.title.118752, 1854.
Ehrenberg, C. G.: Grössere Felsproben des Polycystinen-Mergels von
Barbados mit weiteren Erläuterungen, K. Preuss. Akad. Wiss., Berlin,
Monatsberichte, Jahre 1873, 213–263, 1874.
Gonçalves, A. B., Souza, J. S., Silva, G. G., Cereda, M. P., Pott, A.,
Naka, M. H., and Pistori, H.: Feature Extraction and Machine Learning for the
Classification of Brazilian Savannah Pollen Grains, PLoS One, 11, e0157044, https://doi.org/10.1371/journal.pone.0157044, 2016.
Haeckel, E.: Report on the Radiolaria collected by H.M.S. Challenger during
the years 1873–1876, Report on the Scientific Results of the Voyage of the
H.M.S. Challenger, Zoology, 18, https://doi.org/10.5962/bhl.title.6513, 1887.
Hijazi, S., Kumar, R., and Rowen, C.: Using Convolutional Neural Networks for
Image Recognition, Cadence, Cadence Design Systems Inc., San Jose, 1–12, 2015.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., and Adam, H.: Mobilenets: Efficient convolutional neural
networks for mobile vision applications, arXiv preprint arXiv:1704.04861, https://doi.org/10.48550/arXiv.1704.04861,
2017.
Hsiang, A. Y., Brombacher, A., Rillo, M.C., Mleneck-Vautravers, M. J., Conn,
S.,Lordsmith, S., Jentzen, A., J. Henehan, M., Metcalfe, B., Fenton, I. S.,
Wade, B. S., Fox, L., Meilland, J., Davis, C. V., Baranowski, U.,
Groeneveld, J., Edgar, K. M., Movellan, A., Aze, T., Dowsett, H. J., Giles
Miller, C., Rios, N., and Hull, P. M.: Endless Forams: >34 000
modern planktonic foraminiferal images for taxonomic training and automated
species recognition using convolutional neural networks, Paleoceanogr.
Paleocl., 34, 1157–1177, https://doi.org/10.1029/2019PA003612, 2019.
Itaki, T., Taira, Y., Kuwamori, N., Saito, H., Ikehara, M., and Hoshino, T.:
Innovative microfossil (radiolarian) analysis using a system for automated
image collection and AI-based classification of species, Sci Rep., 10,
21136, https://doi.org/10.1038/s41598-020-77812-6, 2020.
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with
Deep Convolutional Neural Networks, Commun. ACM, 60, 84–90,
https://doi.org/10.1145/3065386, 2012.
Marchant, R., Tetard, M., Pratiwi, A., Adebayo, M., and de Garidel-Thoron,
T.: Automated analysis of foraminifera fossil records by image
classification using a convolutional neural network, J. Micropalaeontol.,
39, 183–202, https://doi.org/10.5194/jm-39-183-2020, 2020.
Meunier, M. and Danelian, T.: Astronomical calibration of late middle Eocene radiolarian bioevents from ODP Site 1260 (equatorial Atlantic, Leg 207) and refinement of the global tropical radiolarian biozonation, J. Micropalaeontol., 41, 1–27, https://doi.org/10.5194/jm-41-1-2022, 2022.
Obut, O. T. and Iwata, K.: Lower Cambrian Radiolaria from the Gorny Altai
(southern West Siberia), Novosti Paleontologii i Stratigrafii, 2/3, 33–37,
2000.
O'Dogherty, L., Caulet, J., Dumitrica, P., and Suzuki, N.: Catalogue of
Cenozoic radiolarian genera (Class Polycystinea), Geodiversitas, 43,
709–1185, https://doi.org/10.5252/geodiversitas2021v43a21, 2021.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011.
Pouille, L., Obut, O., Danelian, T., and Sennikov, N.: Lower Cambrian
(Botomian) policystine Radiolaria from the Altai Mountains (southern
Siberia, Russia), C. R. Palevol, 10, 627–633, 2011.
Renaudie, J., Danelian, T., Saint-Martin, S., Le Callonec, L., and
Tribovillard, N.: Siliceous phytoplankton response to a Middle Eocene
warming event recorded in the tropical Atlantic (Demerara Rise, ODP Site
1260A), Palaeogeogr. Palaeocl., 286, 121–134, https://doi.org/10.1016/j.palaeo.2009.12.004, 2010.
Renaudie, J., Gray, R., and Lazarus, D.: Accuracy of a neural net
classification of closely-related species of microfossils from a sparse
dataset of unedited images, PeerJ Preprints, 6, e27328v1, https://doi.org/10.7287/peerj.preprints.27328v1, 2018.
Riedel, W. R. and Sanfilippo, A.: Radiolaria, Leg 4, Deep Sea Drilling Project, in: Initial Reports of the
Deep Sea Drilling Project, edited by: Bader,
R. G., Gerard, R. D., Hay, W. W., Benson, W. E., Bolli, H. M., Rothwell Jr,
W. T., Ruef, M. H., Riedel, W. R., and Sayles, F. L., Volume IV, Washington, D.C., U.S. Govt. Printing
Office, 503–575, https://doi.org/10.2973/dsdp.proc.4.124.1970, 1970.
Rueckauer, B., Bybee, C., Goettsche, R., Singh, Y., Mishra, J., and Wild, A.:
NxTF: An API and Compiler for Deep Spiking Neural Networks on Intel Loihi, arXiv [preprint], arXiv:2101.04261,
https://doi.org/10.48550/arXiv.2101.04261, 2021.
Sanfilippo, A. and Riedel, W. R.: Moprhometric Analysis of Evolving Eocene Podocyrtis (Radiolaria) Morphotypes Using Shape Coordinates, in: Proceedings of the Michigan Morphometrics Workshop, edited by: Rolph, F. J and Bookstein, F. L., 345–362, University of Michigan Museum of Zoology, Special Publication 2, Ann Arbor, Michigan, 1990.
Sanfilippo, A. and Riedel, W. R.: Cenozoic Radiolaria (exclusive of theoperids, artostrobiids and amphipyndacids) from the Gulf of Mexico, DSDP Leg 10, in: Initial Reports of the Deep Sea Drilling Project, 10, edited by: Worzel, J. L., Bryant, W., Beall Jr., A. O., Capo, R., Dickinson, K., Foreman, H. P., Laury, R., McNeely, B. W., and Smith, L. A., U.S. Govt. Print. Office, Washington, DC, USA, 475–611,
https://doi.org/10.2973/dsdp.proc.10.119.1973, 1973.
Sanfilippo, A. and Riedel, W. R.: The origin and evolution of
Pterocorythidae (Radiolaria): A Cenozoic phylogenetic study,
Micropaleontology, 38, 1–36, 1992.
Sanfilippo, A., Westberg-Smith, M. J., and Riedel, W. R.: Cenozoic
Radiolaria, in:
Plankton Stratigraphy, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., Cambridge University Press, Cambridge, 631–712, ISBN: 9780521367196,
1985.
Shipboard Scientific Party: Site 612, in: Initial reports of the
Deep Sea Drilling Project covering Leg 95 of the cruises of
the drilling vessel Glomar Challenger, 95, 313–337, edited by: Poag, C. W., Watts, A. B., Cousin,
M., Goldberg, D., Hart, M. B., Miller, K. G., Mountain, G. S., Nakamura, Y.,
Palmer, A. A., Schiffelbein, P. A., Schreiber, B. C., Tarafa, M. E., Thein,
J. E., Valentine, P. C., Wilkens, R. H., and Turner, K. L., St. John's, Newfoundland, to Ft.
Lauderdale, Florida, August–September 1983, Texas A & M University, Ocean
Drilling Program, College Station, TX, United States, https://doi.org/10.2973/dsdp.proc.95.103.1987, 1987.
Shipboard Scientific Party: Site 711, in: Proceedings of the Ocean Drilling
Program, Initial Reports, Vol. 115, edited by: Backman, J., Duncan, R. A., Peterson, R. C., Baker, A. B., Baxter, A. L., Boersma, A., Cullen, A., Droxler, A. W., Fisk., M. R., Greenough, J.D., Hargraves, R. B., Hempel., P., Hobart, M. A., Hurley, M. T., Johnson., D. A., Macdonald, A. H., Mikkelsen, N., Okada, H., Rio, D., Robinson, S. G., Schneider, D., Swart, P. K., Tatsumi, Y., Vandamme, D., Vilks, G., Vincent, E (Participating Scientists), Peterson, L. C. (Shipboard Staff Scientist), and Barbu, E. M., Ocean Drilling Program, https://doi.org/10.2973/odp.proc.ir.115.110.1988,
1988.
Shipboard Scientific Party: Site 1051, in: Proceedings of the
Ocean Drilling Program, Initial Reports, 171B, 171–239, edited by: Norris, R. D., Kroon, D., Klaus,
A., Alexander, I. T., Bardot, L. P., Barker, C. E., Bellier, J-P., Blome, C.
D., Clarke, L. J., Erbacher, J., Faul, K. L., Holmes, M. A., Huber, B. T.,
Katz, M. E., MacLeod, K. G., Marca, S., Martinez-Ruiz, F. C., Mita, I.,
Nakai, M., Ogg, J. G., Pak, D. K., Pletsch, T. K., Self-Trail, J. M.,
Shackleton, N. J., Smit, J., Ussler, W., III, Watkins, D. K., Widmark, J.,
Wilson, P. A., Baez, L. A., and Kapitan-White, E., College Station, TX,
https://doi.org/10.2973/odp.proc.ir.171b.105.1998, 1998.
Shipboard Scientific Party: Site 1260, in: Proceedings of the Ocean Drilling
Program, Initial Reports, 207, edited by: Erbacher, J., Mosher, D. C.,
Malone, M. J., Berti, D., Bice, K. L., Bostock, H., Brumsack, H.-J.,
Danelian, T., Forster, A., Glatz, C., Heidersdorf, F., Henderiks, T.,
Janecek, T. R., Junium, C., Le Callonnec, L., MacLeod, K., Meyers, P. A.,
Mutterlose, H. J., Nishi, H., Norris, R. D., Ogg, J. G., O'Regan, A. M.,
Rea, B., Sexton, P., Sturt, H., Suganuma, Y., Thurow, J. W., Wilson, P. A.,
and Wise Jr., S. W., Ocean Drill. Program, College Station, TX, USA, 1–113,
https://doi.org/10.2973/odp.proc.ir.207.107.2004, 2004.
Tetard, M., Marchant, R., Cortese, G., Gally, Y., de Garidel-Thoron, T., and Beaufort, L.: Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow, Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, 2020.
Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E., Yu, T., and the scikit-image
contributors: scikit-image: Image processing in Python, PeerJ, 2, 453, https://doi.org/10.7717/peerj.453, 2014.
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, Scotts Valley,
CA, CreateSpace, ISBN: 978-1-4414-1269-0, 2009.
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
This study evaluates the use of automatic classification using AI on eight closely related...