Articles | Volume 42, issue 2
https://doi.org/10.5194/jm-42-95-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-42-95-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association
Dipartimento di Scienze Ambientali, Informatica e statistica, Università Ca' Foscari Venezia, Via Torino 155,
30172, Venice, Italy
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa
Maria, 53, 56126, Pisa, Italy
Caterina Morigi
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa
Maria, 53, 56126, Pisa, Italy
Romana Melis
Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E.
Weiss 2, 34127, Trieste, Italy
Alessio Di Roberto
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Pisa,
Via della C, Battisti 53, 56125, Pisa, Italy
Tommaso Tesi
Istituto di Scienze Polari – Consiglio Nazionale delle Ricerche ISP-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Fiorenza Torricella
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS),
Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
Leonardo Langone
Istituto di Scienze Polari – Consiglio Nazionale delle Ricerche ISP-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Patrizia Giordano
Istituto di Scienze Polari – Consiglio Nazionale delle Ricerche ISP-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Ester Colizza
Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E.
Weiss 2, 34127, Trieste, Italy
Lucilla Capotondi
Istituto di Scienze Marine – Consiglio Nazionale delle Ricerche ISMAR-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Andrea Gallerani
Istituto di Scienze Marine – Consiglio Nazionale delle Ricerche ISMAR-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Karen Gariboldi
Dipartimento di Scienze Ambientali, Informatica e statistica, Università Ca' Foscari Venezia, Via Torino 155,
30172, Venice, Italy
Related authors
No articles found.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
EGUsphere, https://doi.org/10.5194/egusphere-2023-1792, https://doi.org/10.5194/egusphere-2023-1792, 2023
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool generates greenhouse gases that vent into the atmosphere enhancing climate warming. We show that Arctic river carbon and water chemistry is very different between the spring ice break-up and summer. However, primary production is initiated in small Arctic rivers right after ice break-up, in contrast to large rivers. This may have implications on fluvial carbon dynamics and venting of greenhouse gases.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Francesco Paladini de Mendoza, Katrin Schroeder, Leonardo Langone, Jacopo Chiggiato, Mireno Borghini, Patrizia Giordano, Giulio Verazzo, and Stefano Miserocchi
Earth Syst. Sci. Data, 14, 5617–5635, https://doi.org/10.5194/essd-14-5617-2022, https://doi.org/10.5194/essd-14-5617-2022, 2022
Short summary
Short summary
This work presents the dataset of continuous monitoring in the southern Adriatic Margin, providing a unique observatory of deep-water dynamics. The study area is influenced by episodic dense-water cascading, which is a fundamental process for water renewal and deep-water dynamics. Information about the frequency and intensity variations of these events is observed along a time series. The monitoring activities are still ongoing and the moorings are part of the EMSO-ERIC network.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Related subject area
Palaeoceanography and palaeoenvironment
Late Holocene pteropod distribution across the base of the south-eastern Mediterranean margin: the importance of the > 63 µm fraction
Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Giulia Barbieri and Stefano Claudio Vaiani
J. Micropalaeontol., 37, 203–230, https://doi.org/10.5194/jm-37-203-2018, https://doi.org/10.5194/jm-37-203-2018, 2018
Short summary
Short summary
The challenge between benthic foraminifera and ostracoda is open: which is the most reliable microfossil group for precise palaeoenvironmental reconstructions? Results from a lagoonal succession of the Romagna coast (Italy) reveal that the winner is ostracoda, due to their higher abundance, higher differentiation, and precise relationships between species and ecological parameters. Nevertheless, palaeoenvironmental stress and additional details are provided by benthic foraminifera.
Cited articles
Abdi, H. and Williams, L. J.: Principal component analysis, Wires Comput. Mol. Sci., 2, 433–459,
https://doi.org/10.1002/wics.101, 2010.
Ainley, D. G. and Jacobs, S. S.: Sea-bird affinities for ocean and ice
boundaries in the Antarctic, Deep-Sea Res. Pt. A, 28, 1173–1185,
https://doi.org/10.1016/0198-0149(81)90054-6, 1981.
Anderson, J. B.: Ecology and Distribution of Foraminifera in the Weddel Sea
of Antarctica, Micropaleontology, 21, 69–96, https://doi.org/10.2307/1485156, 1975.
Asioli, A. and Langone, L.: Relationship between recent planktic foramnifera
and water masses properties in the western Ross Sea (Antarctica), Comitato
glaciologico italiano, Bollettino, Ser. 3, Geogr. Fis. Din.
Quat., 20, 193–198, 1997.
Baroni, C. and Orombelli, G.: Holocene glacier variations in the Terra Nova
Bay area (Victoria Land, Antarctica), Antarct. Sci., 6, 497–505,
https://doi.org/10.1017/S0954102094000751, 1994.
Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C.
S., Gal, J. K., Shin, K. H., Lee, J. I., and Taylor, K. W.: Source
identification and distribution reveals the potential of the geochemical
Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 12655, https://doi.org/10.1038/ncomms12655,
2016.
Bergami, C., Capotondi, L., Langone, L., Giglio, F., and Ravaioli, M.:
Distribution of living planktonic foraminifera in the Ross Sea and the
Pacific sector of the Southern Ocean (Antarctica), Mar. Micropaleontol.,
73, 37–48, https://doi.org/10.1016/j.marmicro.2009.06.007, 2009.
Bernhard, J. M.: Experimental and field evidence of Antarctic foraminiferal
tolerance to anoxia and hydrogen sulfide, Mar. Micropaleontol., 20,
203–213, https://doi.org/10.1016/0377-8398(93)90033-T, 1993.
Bertler, N. A. N., Conway, H., Dahl-Jensen, D., Emanuelsson, D. B.,
Winstrup, M., Vallelonga, P. T., Lee, J. E., Brook, E. J., Severinghaus, J.
P., Fudge, T. J., Keller, E. D., Baisden, W. T., Hindmarsh, R. C. A., Neff,
P. D., Blunier, T., Edwards, R., Mayewski, P. A., Kipfstuhl, S., Buizert,
C., Canessa, S., Dadic, R., Kjær, H. A., Kurbatov, A., Zhang, D.,
Waddington, E. D., Baccolo, G., Beers, T., Brightley, H. J., Carter, L.,
Clemens-Sewall, D., Ciobanu, V. G., Delmonte, B., Eling, L., Ellis, A.,
Ganesh, S., Golledge, N. R., Haines, S., Handley, M., Hawley, R. L., Hogan,
C. M., Johnson, K. M., Korotkikh, E., Lowry, D. P., Mandeno, D., McKay, R.
M., Menking, J. A., Naish, T. R., Noerling, C., Ollive, A., Orsi, A.,
Proemse, B. C., Pyne, A. R., Pyne, R. L., Renwick, J., Scherer, R. P.,
Semper, S., Simonsen, M., Sneed, S. B., Steig, E. J., Tuohy, A., Venugopal,
A. U., Valero-Delgado, F., Venkatesh, J., Wang, F., Wang, S., Winski, D. A.,
Winton, V. H. L., Whiteford, A., Xiao, C., Yang, J., and Zhang, X.: The Ross
Sea Dipole – temperature, snow accumulation and sea ice variability in the
Ross Sea region, Antarctica, over the past 2700 years, Clim. Past,
14, 193–214, https://doi.org/10.5194/cp-14-193-2018, 2018.
Brambati, A., Fanzutti, G. P., Finocchiaro, F., Melis, R., Pugliese, N.,
Salvi, G., and Faranda, C.: Some Palaeoecological Remarks on the Ross Sea
Shelf, Antarctica, in: Ross Sea Ecology, edited by: Faranda, F. M., Guglielmo, L., and Ianora, A., Springer, Berlin, Heidelberg, 51–61, https://doi.org/10.1007/978-3-642-59607-0_5, 2000.
Capotondi, L., Bonomo, S., Budillon, G., Giordano, P., and Langone, L.:
Living and dead benthic foraminiferal distribution in two areas of the Ross
Sea (Antarctica), Rendiconti Lincei, Scienze Fisiche e Naturali, 31,
1037–1053, https://doi.org/10.1007/s12210-020-00949-z, 2020.
Carvalho, F., Kohut, J., Oliver, M. J., Sherrell, R. M., and Schofield, O.:
Mixing and phytoplankton dynamics in a submarine canyon in the West
Antarctic Peninsula, J. Geophys. Res.-Ocean., 121,
5069–5083, https://doi.org/10.1002/2016jc011650, 2016.
Castagno, P., Falco, P., Dinniman, M. S., Spezie, G., and Budillon, G.:
Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea
continental shelf, J. Mar. Syst., 166, 37–49, https://doi.org/10.1016/j.jmarsys.2016.05.006, 2017.
Di Roberto, A., Colizza, E., Del Carlo, P., Petrelli, M., Finocchiaro, F.,
and Kuhn, G.: First marine cryptotephra in Antarctica found in sediments of
the western Ross Sea correlates with englacial tephras and climate records,
Sci. Rep., 9, 10628, https://doi.org/10.1038/s41598-019-47188-3, 2019.
Di Roberto, A., Re, G., Scateni, B., Petrelli, M., Tesi, T., Capotondi, L.,
Morigi, C., Galli, G., Colizza, E., Melis, R., Torricella, F., Giordano, P.,
Giglio, F., Gallerani, A., and Gariboldi, K.: Cryptotephras in the marine
sediment record of the Edisto Inlet, Ross Sea: Implications for the
volcanology and tephrochronology of northern Victoria Land, Antarctica,
Quaternary Sci. Adv., 10, 100079, https://doi.org/10.1016/j.qsa.2023.100079, 2023.
Diaz, H. F., Trigo, R., Malcolm, H. K., Mann, M. E., Xoplaki, E., and
Barriopedro, D.: Spatial and temporal characteristics of climate in medieval
times revisited, Bull. Am. Meteorol. Soc., 92,
1487–1500, 2011.
Dotto, T. S., Naveira Garabato, A., Bacon, S., Tsamados, M., Holland, P. R., Hooley, J., et al.: Variability of the Ross Gyre, Southern Ocean: Drivers and responses revealed by satellite altimetry, Geophys. Res. Lett., 45, 6195–6204, https://doi.org/10.1029/2018GL078607, 2018.
Duffield, C. J., Hess, S., Norling, K., and Alve, E.:
The response of Nonionella iridea and other benthic foraminifera to “fresh” organic matter enrichment and physical disturbance,
Mar. Micropaleontol.,
120, 20–30,
https://doi.org/10.1016/j.marmicro.2015.08.002, 2015.
Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li, X.:
Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context
of Longer-Term Variability, Rev. Geophys., 57, 1037–1064, https://doi.org/10.1029/2018rg000631, 2019.
Emslie, S. D.: Ancient Adélie penguin colony revealed by snowmelt at
Cape Irizar, Ross Sea, Antarctica, Geology, 49, 145–149, https://doi.org/10.1130/g48230.1,
2020.
Finocchiaro, F., Langone, L., Colizza, E., Fontolan, G., Giglio, F., and
Tuzzi, E.: Record of the early Holocene warming in a laminated sediment core
from Cape Hallett Bay (Northern Victoria Land, Antarctica), Glob.
Planet. Change, 45, 193–206, https://doi.org/10.1016/j.gloplacha.2004.09.003, 2005.
Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K., and
Lieser, J. L.: East Antarctic Landfast Sea Ice Distribution and Variability,
2000–08, J. Clim., 25, 1137–1156, https://doi.org/10.1175/jcli-d-10-05032.1,
2012.
Gales, J. A., McKay, R. M., De Santis, L., Rebesco, M., Laberg, J. S.,
Shevenell, A. E., Harwood, D., Leckie, R. M., Kulhanek, D. K., King, M.,
Patterson, M., Lucchi, R. G., Kim, S., Kim, S., Dodd, J., Seidenstein, J.,
Prunella, C., Ferrante, G. M., and Scientists, I. E.: Climate-controlled
submarine landslides on the Antarctic continental margin, Nat. Commun., 14,
2714, https://doi.org/10.1038/s41467-023-38240-y, 2023.
Giralt, S., Hernández, A., Pla-Rabes, S., Antoniades, D., Toro, M.,
Granados, I., and Oliva, M.: Holocene environmental changes inferred from
Antarctic lake sediments, Chap. 3, edited by: Oliva, M. and Ruiz-Fernández, J., Past Antarctica, Academic Press, 51–66, https://doi.org/10.1016/b978-0-12-817925-3.00003-3, 2020.
Gooday, A. J.: Deep-sea benthic foraminiferal species which exploit
phytodetritus: Characteristic features and controls on distribution, Mar.
Micropaleontol., 22, 187–205, https://doi.org/10.1016/0377-8398(93)90043-W, 1993.
Hall, B. L., Denton, G. H., Overturf, B., and Hendy, C. H.: Glacial Lake Victoria, a high-level Antarctic Lake inferred from lacustrine deposits in Victoria Valley, J. Quaternary Sci., 17, 697–706, https://doi.org/10.1002/jqs.691, 2002.
Hammer, O., Harper, D. T. A., and Ryan, P. D.: PAST: Paleontological
Statistic Software package for education and data analyses, Palaeontol.
Electron., 4, 9 pp., http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 11 August 2023), 2001.
Harloff, J. and Mackensen, A.: Recent benthic foraminiferal associations and
ecology of the Scotia Sea and Argentin Basin, Mar. Micropaleontol., 31,
1–29, https://doi.org/10.1016/S0377-8398(96)00059-X, 1997.
Herguera, J. C. and Berger, W. H.: Paleoproductivity from benthic
foraminifera abundance: Glacial to postglacial change in the west-equatorial
Pacific, Geology, 19, 1173–1176, 1991.
Hernando, M., Schloss, I. R., Malanga, G., Almandoz, G. O., Ferreyra, G. A.,
Aguiar, M. B., and Puntarulo, S.: Effects of salinity changes on coastal
Antarctic phytoplankton physiology and assemblage composition, J.
Exp. Mar. Biol. Ecol., 466, 110–119, https://doi.org/10.1016/j.jembe.2015.02.012, 2015.
Hilbrecht, H.: Morphologic gradation and ecology of Neogloboquadrina pachyderma and N. dutertrei (planktic
foraminifera) from top core sediments, Mar. Micropaleontol., 31, 31–43, https://doi.org/10.1016/S0377-8398(96)00054-0, 1997.
Howe, J. A., Austin, W. E. N., Forwick, M., Paetzel, M., Harland, R., and
Cage, A. G.: Fjord systems and archives: a review, Geol. Soc.
Lond. Spec. Publ., 344, 5–15, https://doi.org/10.1144/sp344.2, 2010.
Igarashi, A., Numanami, H., Tsuchiya, Y., and Fukuchi, M.: Bathymetric
distribution of fossil foraminifera within marine sediment cores from the
eastern part of Lutzow-Holtz Bay, East Antarctica, and its paleoceanographic
implications, Mar. Micropaleontol., 42, 125–162, https://doi.org/10.1016/S0377-8398(01)00004-4, 2001.
Ishman, S. E. and Sperling, M. R.: Benthic foraminiferal record of Holocene
deep-water evolution in the Palmer Deep, western Antarctica Peninsula,
Geology, 30, 435–438, https://doi.org/10.1130/0091-7613(2002)030<0435:BFROHD>2.0.CO;2, 2002.
Ishman, S. E. and Szymcek, P.: Foraminiferal Distributions in the Former
Larsen-A Ice Shelf and Prince Gustav Channel Region, Eastern Antarctic
Peninsula Margin: A Baseline for Holocene Paleoenvironmental Change, in:
Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental
Perspectives, Antarct. Res. Ser., 239–260, https://doi.org/10.1029/AR079p0239, 2013.
Jin, J., Chen, X., Xu, L., Nie, Y., Wang, X., Huang, H., Emslie, S. D., and
Liu, X.: Chronology and paleoclimatic implications of lacustrine sediments
at Inexpressible Island, Ross Sea, Antarctica, Palaeogeogr.
Palaeocl., 576, 110497, https://doi.org/10.1016/j.palaeo.2021.110497, 2021.
Knudsen, K. L., Stabell, B., Seidenkrantz, M.-S., EirÍKsson, J., and
Blake, W.: Deglacial and Holocene conditions in northernmost Baffin Bay:
sediments, foraminifera, diatoms and stable isotopes, Boreas, 37, 346–376, https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Kyrmanidou, A., Vadman, K. J., Ishman, S. E., Leventer, A., Brachfeld, S.,
Domack, E. W., and Wellner, J. S.: Late Holocene oceanographic and climatic
variability recorded by the Perseverance Drift, northwestern Weddell Sea,
based on benthic foraminifera and diatoms, Mar. Micropaleontol., 141,
10–22, https://doi.org/10.1016/j.marmicro.2018.03.001, 2018.
Levanter, A.: The fate of antarctic “sea-ice diatoms” and their use as
paleoenvironmental indicator, edited by: Lizotte, M. P. and Arrigo, K. R., Antarctic Sea Ice: Biological Processes, Interactions and Variability,
Antarctic Research Series, 73,
121–137, https://doi.org/10.1029/AR073p0121, 1998.
Li, B., Yoon, H., and Park, B.: Foraminiferal assemblages and CaCO3
dissolution since the last deglaciation in the Maxwell Bay, King George
Island, Antarctica, Mar. Geol., 169, 239–257, https://doi.org/10.1016/S0025-3227(00)00059-1, 2000.
Lüning, S., Gałka, M., and Vahrenholt, F.: The Medieval Climate
Anomaly in Antarctica, Palaeogeogr. Palaeocl.,
532, 109251, https://doi.org/10.1016/j.palaeo.2019.109251, 2019.
Mackensen, A., Grobe, H., Kuhn, G., and Futterer, D. K.: Benthic
foraminiferal assemblages from the eastern Weddell Sea between 68 and
73∘ S: distribution, ecology and fossilization potential, Mar.
Micropaleontol., 16, 241–283, https://doi.org/10.1016/0377-8398(90)90006-8, 1990.
Majewski, W.: Benthic foraminifera from West Antarctic fiord environments:
An overview, Polish Pol. Res., 31, 61–82, https://doi.org/10.4202/ppres.2010.05, 2010.
Majewski, W. and Anderson, J. B.: Holocene foraminiferal assemblages from
Firth of Tay, Antarctic Peninsula: Paleoclimate implications, Mar.
Micropaleontol., 73, 135–147, https://doi.org/10.1016/j.marmicro.2009.08.003, 2009.
Majewski, W. and Pawlowski, J.: Morphologic and molecular diversity of the
foraminiferal genus Globocassidulina in Admiralty Bay, King George Island,
Antarct. Sci., 22, 271–281, https://doi.org/10.1017/s0954102010000106, 2010.
Majewski, W., Wellner, J. S., and Anderson, J. B.: Environmental
connotations of benthic foraminiferal assemblages from coastal West
Antarctica, Mar. Micropaleontol., 124, 1–15, https://doi.org/10.1016/j.marmicro.2016.01.002, 2016.
Majewski, W., Bart, P. J., and McGlannan, A. J.: Foraminiferal assemblages
from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea,
Antarctica, Palaeogeogr. Palaeocl., 493, 64–81, https://doi.org/10.1016/j.palaeo.2017.12.041, 2018.
Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J., and
Anderson, J. B.: Foraminiferal Patterns in Deglacial Sediment in the Western
Ross Sea, Antarctica: Life Near Grounding Lines, Paleoceanogr.
Paleocl., 35, e2019PA003716, https://doi.org/10.1029/2019pa003716, 2020.
Maksym, T.: Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities,
and Causes, Ann. Rev. Mar. Sci., 11, 187–213, https://doi.org/10.1146/annurev-marine-010816-060610, 2019.
Malmgren, B. U. and Haq, B. A.: Assessment of quantitative techniques in
paleobiogeography, Mar. Micropaleontol., 7, 213–236, https://doi.org/10.1016/0377-8398(82)90003-2, 1982.
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H.,
Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan,
F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, T., Van de Putte, A., van
den Broeke, M., von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge,
B., Tronstad, S., and Melvær, Y.: Quantarctica, an integrated mapping
environment for Antarctica, the Southern Ocean, and sub-Antarctic islands,
Environ. Model. Softw., 140, 105015, https://doi.org/10.1016/j.envsoft.2021.105015,
2021.
Matthews, J. A. and Briffa, K. R.: The “little ice age”: Re-evaluation of an
evolving concept, Geogr. Ann. A, 87, 17–36, https://doi.org/10.1175/BAMS-D-10-05003.1, 2005.
Meehl, G. A., Teng, H., and Arblaster, J. M.: Climate model simulations of
the observed early-2000s hiatus of global warming, Nat. Clim. Change, 4,
898–902, https://doi.org/10.1038/nclimate2357, 2014.
Melis, R. and Salvi, G.: Late Quaternary foraminiferal assemblages from
western Ross Sea (Antarctica) in relation to the main glacial and marine
lithofacies, Mar. Micropaleontol., 70, 39–53, https://doi.org/10.1016/j.marmicro.2008.10.003, 2009.
Melis, R. and Salvi, G.: Foraminifer and Ostracod Occurrence in a Cool-Water
Carbonate Factory of the Cape Adare (Ross Sea, Antarctica): A Key Lecture
for the Climatic and Oceanographic Variations in the Last 30,000 Years,
Geosciences, 10, 413, https://doi.org/10.3390/geosciences10100413, 2020.
Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida,
M., Ciardini, V., Colizza, E., Melis, R., Salvatore, M. C., Severi, M.,
Scarchilli, C., Traversi, R., Udisti, R., and Frezzotti, M.: Holocene sea
ice variability driven by wind and polynya efficiency in the Ross Sea, Nat.
Commun., 8, 1334, https://doi.org/10.1038/s41467-017-01455-x, 2017.
Mikis, A., Hendry, K. R., Pike, J., Schmidt, D. N., Edgar, K. M., Peck, V., Peeters, F. J. C., Leng, M. J., Meredith, M. P., Jones, C. L. C., Stammerjohn, S., and Ducklow, H.: Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study, Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, 2019.
Murray, J. W.: Ecology and palaeoecology of benthic foraminifera,
Routledge, https://doi.org/10.4324/9781315846101, 1991.
Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, Deep-Sea
Res. Pt. II, 56, 778–795, https://doi.org/10.1016/j.dsr2.2008.10.033, 2009.
Pan, B. J., Vernet, M., Manck, L., Forsch, K., Ekern, L., Mascioni, M.,
Barbeau, K. A., Almandoz, G. O., and Orona, A. J.: Environmental drivers of
phytoplankton taxonomic composition in an Antarctic fjord, Prog.
Oceanogr., 183, 102295, https://doi.org/10.1016/j.pocean.2020.102295, 2020.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and
trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Pauling, A. G., Smith, I. J., Langhorne, P. J., and Bitz, C. M.:
Time-Dependent Freshwater Input From Ice Shelves: Impacts on Antarctic Sea
Ice and the Southern Ocean in an Earth System Model, Geophys. Res.
Lett., 44, 10454–410461, https://doi.org/10.1002/2017gl075017, 2017.
Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L., and Hodgson, D. A.:
Oceanographic variability on the West Antarctic Peninsula during the
Holocene and the influence of upper circumpolar deep water, Quaternary
Sci. Rev., 119, 54–65, https://doi.org/10.1016/j.quascirev.2015.04.002, 2015.
Rhodes, R. H., Bertler, N. A. N., Baker, J. A., Steen-Larsen, H. C., Sneed,
S. B., Morgenstern, U., and Johnsen, S. J.: Little Ice Age climate and
oceanic conditions of the Ross Sea, Antarctica from a coastal ice core
record, Clim. Past, 8, 1223–1238, https://doi.org/10.5194/cp-8-1223-2012, 2012.
Rodrigues, A. R., Maluf, J. C. C., Braga, E. d. S., and Eichler, B. B.:
Recent benthic foraminiferal distribution and related environmental factors
in Ezcurra Inlet, King George Island, Antarctica, Antarct. Sci., 22,
343–360, https://doi.org/10.1017/s0954102010000179, 2010.
Rosenblum, E. and Eisenman, I.: Sea Ice Trends in Climate Models Only
Accurate in Runs with Biased Global Warming, J. Clim., 30,
6265–6278, https://doi.org/10.1175/jcli-d-16-0455.1, 2017.
Rozema, P. D., Venables, H. J., van de Poll, W. H., Clarke, A., Meredith, M.
P., and Buma, A. G. J.: Interannual variability in phytoplankton biomass and
species composition in northern Marguerite Bay (West Antarctic Peninsula) is
governed by both winter sea ice cover and summer stratification, Limnol.
Oceanogr., 62, 235–252, https://doi.org/10.1002/lno.10391, 2017.
Sabbatini, A., Morigi, C., Ravaioli, M., and Negri, A.: Abyssal benthic
foraminifera in the Polar Front region (Pacific sector): Faunal composition,
standing stock and size structure, Chem. Ecol., 20, 258–271, https://doi.org/10.1080/02757540410001655387, 2004.
Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean, Springer-Verlag GmbH Berlin Heidelberg, Springer-Verlag GmbH, https://doi.org/10.1007/978-3-662-50297-6, 2017.
Schlosser, E., Haumann, F. A., and Raphael, M. N.: Atmospheric influences on
the anomalous 2016 Antarctic sea ice decay, The Cryosphere, 12, 1103–1119, https://doi.org/10.5194/tc-12-1103-2018, 2018.
Seidenkrantz, M.-S.: Benthic foraminifera as palaeo sea-ice indicators in
the subarctic realm – examples from the Labrador Sea–Baffin Bay region,
Quaternary Sci. Rev., 79, 135–144, https://doi.org/10.1016/j.quascirev.2013.03.014,
2013.
Seidenstein, J. L., Cronin, T. M., Gemery, L., Keigwin, L. D., Pearce, C.,
Jakobsson, M., Coxall, H. K., Wei, E. A., and Driscoll, N. W.: Late Holocene
paleoceanography in the Chukchi and Beaufort Seas, Arctic Ocean, based on
benthic foraminifera and ostracodes, Arktos, 4, 1–17, https://doi.org/10.1007/s41063-018-0058-7, 2018.
Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High
rates of organic carbon burial in fjord sediments globally, Nat.
Geosci., 8, 450–453, https://doi.org/10.1038/ngeo2421, 2015.
Smith, W., Sedwick, P., Arrigo, K., Ainley, D., and Orsi, A.: The Ross Sea
in a Sea of Change, Oceanography, 25, 90–103, https://doi.org/10.5670/oceanog.2012.80, 2012.
Smith Jr., W. O., Ainley, D. G., Arrigo, K. R., and Dinniman, M. S.: The
oceanography and ecology of the Ross Sea, Ann. Rev. Mar. Sci., 6, 469–487, https://doi.org/10.1146/annurev-marine-010213-135114, 2014.
Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A., Goursaud, S.,
Masson-Delmotte, V., Neukom, R., Goosse, H., Divine, D., van Ommen, T.,
Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler, N. A. N., Isaksson, E.,
Ekaykin, A., Werner, M., and Frezzotti, M.: Antarctic climate variability on
regional and continental scales over the last 2000 years, Clim.
Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, 2017.
Tesi, T., Belt, S. T., Gariboldi, K., Muschitiello, F., Smik, L.,
Finocchiaro, F., Giglio, F., Colizza, E., Gazzurra, G., Giordano, P.,
Morigi, C., Capotondi, L., Nogarotto, A., Köseoğlu, D., Di Roberto,
A., Gallerani, A., and Langone, L.: Resolving sea ice dynamics in the
north-western Ross Sea during the last 2.6 ka: From seasonal to millennial
timescales, Quaternary Sci. Rev., 237, 106299, https://doi.org/10.1016/j.quascirev.2020.106299, 2020.
Turner, J., Hosking, J. S., Phillips, T., and Marshall, G. J.: Temporal and
spatial evolution of the Antarctic sea ice prior to the September 2012
record maximum extent, Geophys. Res. Lett., 40, 5894–5898, https://doi.org/10.1002/2013gl058371, 2013.
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., and
Phillips, T.: Recent changes in Antarctic Sea Ice, Philos. Trans. A Math. Phys.
Eng. Sci., 373, 20140163, https://doi.org/10.1098/rsta.2014.0163, 2015.
Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O.,
Bracegirdle, T. J., and Deb, P.: Unprecedented springtime retreat of
Antarctic sea ice in 2016, Geophys. Res. Lett., 44, 6868–6875, https://doi.org/10.1002/2017gl073656, 2017.
van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K.,
Meiners, K. M., Rintala, J. M., Selz, V., Thomas, D. N., and Stefels, J.:
Microalgal community structure and primary production in Arctic and
Antarctic sea ice: A synthesis, Elementa Science of the Anthropocene, 6, 4,
https://doi.org/10.1525/elementa.267, 2018.
Violanti, D.: Morphogroup Analysis of Recent Agglutinated Foraminifers off
Terra Nova Bay, Antarctica (Expedition 1987–1988), in: Ross Sea Ecology, edited by: Faranda, F. M., Guglielmo, L., and Ianora, A., Springer, Berlin, Heidelberg,
479–492, https://doi.org/10.1007/978-3-642-59607-0_34, 2000.
Ward, B. L., Barret, P. J., and Vella, P.: Distribution and ecology of
benthic foraminifera in McMurdo Sound, Antarctica, Palaeogeogr.
Palaeocl., 58, 139–153, https://doi.org/10.1016/0031-0182(87)90057-5,
1987.
Whitworth, T. and Orsi, A. H.: Antarctic Bottom Water production and export
by tides in the Ross Sea, Geophys. Res. Lett., 33, L12609, https://doi.org/10.1029/2006gl026357, 2006.
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and...