Articles | Volume 42, issue 2
https://doi.org/10.5194/jm-42-95-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-42-95-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleoenvironmental changes related to the variations of the sea-ice cover during the Late Holocene in an Antarctic fjord (Edisto Inlet, Ross Sea) inferred by foraminiferal association
Dipartimento di Scienze Ambientali, Informatica e statistica, Università Ca' Foscari Venezia, Via Torino 155,
30172, Venice, Italy
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa
Maria, 53, 56126, Pisa, Italy
Caterina Morigi
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa
Maria, 53, 56126, Pisa, Italy
Romana Melis
Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E.
Weiss 2, 34127, Trieste, Italy
Alessio Di Roberto
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Pisa,
Via della C, Battisti 53, 56125, Pisa, Italy
Tommaso Tesi
Istituto di Scienze Polari – Consiglio Nazionale delle Ricerche ISP-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Fiorenza Torricella
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS),
Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
Leonardo Langone
Istituto di Scienze Polari – Consiglio Nazionale delle Ricerche ISP-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Patrizia Giordano
Istituto di Scienze Polari – Consiglio Nazionale delle Ricerche ISP-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Ester Colizza
Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E.
Weiss 2, 34127, Trieste, Italy
Lucilla Capotondi
Istituto di Scienze Marine – Consiglio Nazionale delle Ricerche ISMAR-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Andrea Gallerani
Istituto di Scienze Marine – Consiglio Nazionale delle Ricerche ISMAR-CNR,
Via P. Gobetti 101, 40129, Bologna, Italy
Karen Gariboldi
Dipartimento di Scienze Ambientali, Informatica e statistica, Università Ca' Foscari Venezia, Via Torino 155,
30172, Venice, Italy
Related authors
No articles found.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-60, https://doi.org/10.5194/cp-2024-60, 2024
Preprint under review for CP
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter re-mobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in wide-spread erosion and transport of permafrost materials to the ocean, but erosion is mitigated by regional dense sea ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Francesco Paladini de Mendoza, Katrin Schroeder, Leonardo Langone, Jacopo Chiggiato, Mireno Borghini, Patrizia Giordano, Giulio Verazzo, and Stefano Miserocchi
Earth Syst. Sci. Data, 14, 5617–5635, https://doi.org/10.5194/essd-14-5617-2022, https://doi.org/10.5194/essd-14-5617-2022, 2022
Short summary
Short summary
This work presents the dataset of continuous monitoring in the southern Adriatic Margin, providing a unique observatory of deep-water dynamics. The study area is influenced by episodic dense-water cascading, which is a fundamental process for water renewal and deep-water dynamics. Information about the frequency and intensity variations of these events is observed along a time series. The monitoring activities are still ongoing and the moorings are part of the EMSO-ERIC network.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Alessandra D'Angelo, Federico Giglio, Stefano Miserocchi, Anna Sanchez-Vidal, Stefano Aliani, Tommaso Tesi, Angelo Viola, Mauro Mazzola, and Leonardo Langone
Biogeosciences, 15, 5343–5363, https://doi.org/10.5194/bg-15-5343-2018, https://doi.org/10.5194/bg-15-5343-2018, 2018
Short summary
Short summary
A 6-year time series of physical parameters and particle fluxes collected by a mooring in Kongsfjorden (Svalbard) suggests that the subglacial and watershed run-off driven by air temperature are the main processes affecting the lithogenic supply. As the Arctic temperature rises, glacier material will increase accordingly. The winter inflow of warm Atlantic waters is progressively increasing, hampering the nutrient supply from the bottom waters and severely reducing the biological production.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Short summary
In this study we investigate land-to-ocean transfer and the fate of permafrost carbon in the East Siberian Sea from the early Holocene until the present day. Our results suggest that there was a high input of terrestrial organic carbon to the East Siberian Sea during the last glacial–interglacial period caused by permafrost destabilisation. This material was mainly characterised as relict Pleistocene permafrost deposited via coastal erosion as a result of the sea level rise.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Joan A. Salvadó, Tommaso Tesi, Marcus Sundbom, Emma Karlsson, Martin Kruså, Igor P. Semiletov, Elena Panova, and Örjan Gustafsson
Biogeosciences, 13, 6121–6138, https://doi.org/10.5194/bg-13-6121-2016, https://doi.org/10.5194/bg-13-6121-2016, 2016
Short summary
Short summary
Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. We assessed its fate and composition in different marine pools with a suite of biomarkers. The dissolved organic carbon is transporting off-shelf “young” and fresh vascular plant material, while sedimentary and near-bottom particulate organic carbon preferentially carries old organic carbon released from thawing permafrost.
Related subject area
Palaeoceanography and palaeoenvironment
Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to sea surface temperature
Transient micropaleontological turnover across a late Eocene (Priabonian) carbon and oxygen isotope shift on Blake Nose (NW Atlantic)
Cambrian Furongian–Middle Ordovician conodonts in the northeastern margin of the South China Block (Chuzhou, Anhui province) and their paleogeographic implications
Return to the Ross Ice Shelf Project (RISP), Site J-9 (1977–1979): perspectives of West Antarctic Ice Sheet history from Miocene and Holocene benthic foraminifera
South Georgia marine productivity over the past 15 ka and implications for glacial evolution
Late Holocene pteropod distribution across the base of the south-eastern Mediterranean margin: the importance of the > 63 µm fraction
Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge
Benthic foraminifera or Ostracoda? Comparing the accuracy of palaeoenvironmental indicators from a Pleistocene lagoon of the Romagna coastal plain (Italy)
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Bo Hu, Shuangying Li, Cheng Cheng, Min Li, Wei Xie, and Xing Wei
J. Micropalaeontol., 43, 283–302, https://doi.org/10.5194/jm-43-283-2024, https://doi.org/10.5194/jm-43-283-2024, 2024
Short summary
Short summary
This study conducted systematic fieldwork and sample collection for the Cambrian Furongian–Middle Ordovician strata in the northeastern margin of the South China Block to establish a conodont biostratigraphic sequence and discussed the influence of seawater depth, climate, water temperature, and ocean currents on the biogeographic zonation of conodonts and the paleogeographic implications for some conodont species.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Jack T. R. Wilkin, Sev Kender, Rowan Dejardin, Claire S. Allen, Victoria L. Peck, George E. A. Swann, Erin L. McClymont, James D. Scourse, Kate Littler, and Melanie J. Leng
J. Micropalaeontol., 43, 165–186, https://doi.org/10.5194/jm-43-165-2024, https://doi.org/10.5194/jm-43-165-2024, 2024
Short summary
Short summary
The sub-Antarctic island of South Georgia has a dynamic glacial history and is sensitive to climate change. Using benthic foraminifera and various geochemical proxies, we reconstruct inner–middle shelf productivity and infer glacial evolution since the late deglacial, identifying new mid–late-Holocene glacial readvances. Fursenkoina fusiformis acts as a good proxy for productivity.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Romana Melis, Lucilla Capotondi, Fiorenza Torricella, Patrizia Ferretti, Andrea Geniram, Jong Kuk Hong, Gerhard Kuhn, Boo-Keun Khim, Sookwan Kim, Elisa Malinverno, Kyu Cheul Yoo, and Ester Colizza
J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, https://doi.org/10.5194/jm-40-15-2021, 2021
Short summary
Short summary
Integrated micropaleontological (planktic and benthic foraminifera, diatoms, and silicoflagellates) analysis, together with textural and geochemical results of a deep-sea core from the Hallett Ridge (northwestern Ross Sea), provides new data for late Quaternary (23–2 ka) paleoenvironmental and paleoceanographic reconstructions of this region. Results allow us to identify three time intervals: the glacial–deglacial transition, the deglacial period, and the interglacial period.
Giulia Barbieri and Stefano Claudio Vaiani
J. Micropalaeontol., 37, 203–230, https://doi.org/10.5194/jm-37-203-2018, https://doi.org/10.5194/jm-37-203-2018, 2018
Short summary
Short summary
The challenge between benthic foraminifera and ostracoda is open: which is the most reliable microfossil group for precise palaeoenvironmental reconstructions? Results from a lagoonal succession of the Romagna coast (Italy) reveal that the winner is ostracoda, due to their higher abundance, higher differentiation, and precise relationships between species and ecological parameters. Nevertheless, palaeoenvironmental stress and additional details are provided by benthic foraminifera.
Cited articles
Abdi, H. and Williams, L. J.: Principal component analysis, Wires Comput. Mol. Sci., 2, 433–459,
https://doi.org/10.1002/wics.101, 2010.
Ainley, D. G. and Jacobs, S. S.: Sea-bird affinities for ocean and ice
boundaries in the Antarctic, Deep-Sea Res. Pt. A, 28, 1173–1185,
https://doi.org/10.1016/0198-0149(81)90054-6, 1981.
Anderson, J. B.: Ecology and Distribution of Foraminifera in the Weddel Sea
of Antarctica, Micropaleontology, 21, 69–96, https://doi.org/10.2307/1485156, 1975.
Asioli, A. and Langone, L.: Relationship between recent planktic foramnifera
and water masses properties in the western Ross Sea (Antarctica), Comitato
glaciologico italiano, Bollettino, Ser. 3, Geogr. Fis. Din.
Quat., 20, 193–198, 1997.
Baroni, C. and Orombelli, G.: Holocene glacier variations in the Terra Nova
Bay area (Victoria Land, Antarctica), Antarct. Sci., 6, 497–505,
https://doi.org/10.1017/S0954102094000751, 1994.
Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C.
S., Gal, J. K., Shin, K. H., Lee, J. I., and Taylor, K. W.: Source
identification and distribution reveals the potential of the geochemical
Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 12655, https://doi.org/10.1038/ncomms12655,
2016.
Bergami, C., Capotondi, L., Langone, L., Giglio, F., and Ravaioli, M.:
Distribution of living planktonic foraminifera in the Ross Sea and the
Pacific sector of the Southern Ocean (Antarctica), Mar. Micropaleontol.,
73, 37–48, https://doi.org/10.1016/j.marmicro.2009.06.007, 2009.
Bernhard, J. M.: Experimental and field evidence of Antarctic foraminiferal
tolerance to anoxia and hydrogen sulfide, Mar. Micropaleontol., 20,
203–213, https://doi.org/10.1016/0377-8398(93)90033-T, 1993.
Bertler, N. A. N., Conway, H., Dahl-Jensen, D., Emanuelsson, D. B.,
Winstrup, M., Vallelonga, P. T., Lee, J. E., Brook, E. J., Severinghaus, J.
P., Fudge, T. J., Keller, E. D., Baisden, W. T., Hindmarsh, R. C. A., Neff,
P. D., Blunier, T., Edwards, R., Mayewski, P. A., Kipfstuhl, S., Buizert,
C., Canessa, S., Dadic, R., Kjær, H. A., Kurbatov, A., Zhang, D.,
Waddington, E. D., Baccolo, G., Beers, T., Brightley, H. J., Carter, L.,
Clemens-Sewall, D., Ciobanu, V. G., Delmonte, B., Eling, L., Ellis, A.,
Ganesh, S., Golledge, N. R., Haines, S., Handley, M., Hawley, R. L., Hogan,
C. M., Johnson, K. M., Korotkikh, E., Lowry, D. P., Mandeno, D., McKay, R.
M., Menking, J. A., Naish, T. R., Noerling, C., Ollive, A., Orsi, A.,
Proemse, B. C., Pyne, A. R., Pyne, R. L., Renwick, J., Scherer, R. P.,
Semper, S., Simonsen, M., Sneed, S. B., Steig, E. J., Tuohy, A., Venugopal,
A. U., Valero-Delgado, F., Venkatesh, J., Wang, F., Wang, S., Winski, D. A.,
Winton, V. H. L., Whiteford, A., Xiao, C., Yang, J., and Zhang, X.: The Ross
Sea Dipole – temperature, snow accumulation and sea ice variability in the
Ross Sea region, Antarctica, over the past 2700 years, Clim. Past,
14, 193–214, https://doi.org/10.5194/cp-14-193-2018, 2018.
Brambati, A., Fanzutti, G. P., Finocchiaro, F., Melis, R., Pugliese, N.,
Salvi, G., and Faranda, C.: Some Palaeoecological Remarks on the Ross Sea
Shelf, Antarctica, in: Ross Sea Ecology, edited by: Faranda, F. M., Guglielmo, L., and Ianora, A., Springer, Berlin, Heidelberg, 51–61, https://doi.org/10.1007/978-3-642-59607-0_5, 2000.
Capotondi, L., Bonomo, S., Budillon, G., Giordano, P., and Langone, L.:
Living and dead benthic foraminiferal distribution in two areas of the Ross
Sea (Antarctica), Rendiconti Lincei, Scienze Fisiche e Naturali, 31,
1037–1053, https://doi.org/10.1007/s12210-020-00949-z, 2020.
Carvalho, F., Kohut, J., Oliver, M. J., Sherrell, R. M., and Schofield, O.:
Mixing and phytoplankton dynamics in a submarine canyon in the West
Antarctic Peninsula, J. Geophys. Res.-Ocean., 121,
5069–5083, https://doi.org/10.1002/2016jc011650, 2016.
Castagno, P., Falco, P., Dinniman, M. S., Spezie, G., and Budillon, G.:
Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea
continental shelf, J. Mar. Syst., 166, 37–49, https://doi.org/10.1016/j.jmarsys.2016.05.006, 2017.
Di Roberto, A., Colizza, E., Del Carlo, P., Petrelli, M., Finocchiaro, F.,
and Kuhn, G.: First marine cryptotephra in Antarctica found in sediments of
the western Ross Sea correlates with englacial tephras and climate records,
Sci. Rep., 9, 10628, https://doi.org/10.1038/s41598-019-47188-3, 2019.
Di Roberto, A., Re, G., Scateni, B., Petrelli, M., Tesi, T., Capotondi, L.,
Morigi, C., Galli, G., Colizza, E., Melis, R., Torricella, F., Giordano, P.,
Giglio, F., Gallerani, A., and Gariboldi, K.: Cryptotephras in the marine
sediment record of the Edisto Inlet, Ross Sea: Implications for the
volcanology and tephrochronology of northern Victoria Land, Antarctica,
Quaternary Sci. Adv., 10, 100079, https://doi.org/10.1016/j.qsa.2023.100079, 2023.
Diaz, H. F., Trigo, R., Malcolm, H. K., Mann, M. E., Xoplaki, E., and
Barriopedro, D.: Spatial and temporal characteristics of climate in medieval
times revisited, Bull. Am. Meteorol. Soc., 92,
1487–1500, 2011.
Dotto, T. S., Naveira Garabato, A., Bacon, S., Tsamados, M., Holland, P. R., Hooley, J., et al.: Variability of the Ross Gyre, Southern Ocean: Drivers and responses revealed by satellite altimetry, Geophys. Res. Lett., 45, 6195–6204, https://doi.org/10.1029/2018GL078607, 2018.
Duffield, C. J., Hess, S., Norling, K., and Alve, E.:
The response of Nonionella iridea and other benthic foraminifera to “fresh” organic matter enrichment and physical disturbance,
Mar. Micropaleontol.,
120, 20–30,
https://doi.org/10.1016/j.marmicro.2015.08.002, 2015.
Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li, X.:
Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context
of Longer-Term Variability, Rev. Geophys., 57, 1037–1064, https://doi.org/10.1029/2018rg000631, 2019.
Emslie, S. D.: Ancient Adélie penguin colony revealed by snowmelt at
Cape Irizar, Ross Sea, Antarctica, Geology, 49, 145–149, https://doi.org/10.1130/g48230.1,
2020.
Finocchiaro, F., Langone, L., Colizza, E., Fontolan, G., Giglio, F., and
Tuzzi, E.: Record of the early Holocene warming in a laminated sediment core
from Cape Hallett Bay (Northern Victoria Land, Antarctica), Glob.
Planet. Change, 45, 193–206, https://doi.org/10.1016/j.gloplacha.2004.09.003, 2005.
Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K., and
Lieser, J. L.: East Antarctic Landfast Sea Ice Distribution and Variability,
2000–08, J. Clim., 25, 1137–1156, https://doi.org/10.1175/jcli-d-10-05032.1,
2012.
Gales, J. A., McKay, R. M., De Santis, L., Rebesco, M., Laberg, J. S.,
Shevenell, A. E., Harwood, D., Leckie, R. M., Kulhanek, D. K., King, M.,
Patterson, M., Lucchi, R. G., Kim, S., Kim, S., Dodd, J., Seidenstein, J.,
Prunella, C., Ferrante, G. M., and Scientists, I. E.: Climate-controlled
submarine landslides on the Antarctic continental margin, Nat. Commun., 14,
2714, https://doi.org/10.1038/s41467-023-38240-y, 2023.
Giralt, S., Hernández, A., Pla-Rabes, S., Antoniades, D., Toro, M.,
Granados, I., and Oliva, M.: Holocene environmental changes inferred from
Antarctic lake sediments, Chap. 3, edited by: Oliva, M. and Ruiz-Fernández, J., Past Antarctica, Academic Press, 51–66, https://doi.org/10.1016/b978-0-12-817925-3.00003-3, 2020.
Gooday, A. J.: Deep-sea benthic foraminiferal species which exploit
phytodetritus: Characteristic features and controls on distribution, Mar.
Micropaleontol., 22, 187–205, https://doi.org/10.1016/0377-8398(93)90043-W, 1993.
Hall, B. L., Denton, G. H., Overturf, B., and Hendy, C. H.: Glacial Lake Victoria, a high-level Antarctic Lake inferred from lacustrine deposits in Victoria Valley, J. Quaternary Sci., 17, 697–706, https://doi.org/10.1002/jqs.691, 2002.
Hammer, O., Harper, D. T. A., and Ryan, P. D.: PAST: Paleontological
Statistic Software package for education and data analyses, Palaeontol.
Electron., 4, 9 pp., http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 11 August 2023), 2001.
Harloff, J. and Mackensen, A.: Recent benthic foraminiferal associations and
ecology of the Scotia Sea and Argentin Basin, Mar. Micropaleontol., 31,
1–29, https://doi.org/10.1016/S0377-8398(96)00059-X, 1997.
Herguera, J. C. and Berger, W. H.: Paleoproductivity from benthic
foraminifera abundance: Glacial to postglacial change in the west-equatorial
Pacific, Geology, 19, 1173–1176, 1991.
Hernando, M., Schloss, I. R., Malanga, G., Almandoz, G. O., Ferreyra, G. A.,
Aguiar, M. B., and Puntarulo, S.: Effects of salinity changes on coastal
Antarctic phytoplankton physiology and assemblage composition, J.
Exp. Mar. Biol. Ecol., 466, 110–119, https://doi.org/10.1016/j.jembe.2015.02.012, 2015.
Hilbrecht, H.: Morphologic gradation and ecology of Neogloboquadrina pachyderma and N. dutertrei (planktic
foraminifera) from top core sediments, Mar. Micropaleontol., 31, 31–43, https://doi.org/10.1016/S0377-8398(96)00054-0, 1997.
Howe, J. A., Austin, W. E. N., Forwick, M., Paetzel, M., Harland, R., and
Cage, A. G.: Fjord systems and archives: a review, Geol. Soc.
Lond. Spec. Publ., 344, 5–15, https://doi.org/10.1144/sp344.2, 2010.
Igarashi, A., Numanami, H., Tsuchiya, Y., and Fukuchi, M.: Bathymetric
distribution of fossil foraminifera within marine sediment cores from the
eastern part of Lutzow-Holtz Bay, East Antarctica, and its paleoceanographic
implications, Mar. Micropaleontol., 42, 125–162, https://doi.org/10.1016/S0377-8398(01)00004-4, 2001.
Ishman, S. E. and Sperling, M. R.: Benthic foraminiferal record of Holocene
deep-water evolution in the Palmer Deep, western Antarctica Peninsula,
Geology, 30, 435–438, https://doi.org/10.1130/0091-7613(2002)030<0435:BFROHD>2.0.CO;2, 2002.
Ishman, S. E. and Szymcek, P.: Foraminiferal Distributions in the Former
Larsen-A Ice Shelf and Prince Gustav Channel Region, Eastern Antarctic
Peninsula Margin: A Baseline for Holocene Paleoenvironmental Change, in:
Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental
Perspectives, Antarct. Res. Ser., 239–260, https://doi.org/10.1029/AR079p0239, 2013.
Jin, J., Chen, X., Xu, L., Nie, Y., Wang, X., Huang, H., Emslie, S. D., and
Liu, X.: Chronology and paleoclimatic implications of lacustrine sediments
at Inexpressible Island, Ross Sea, Antarctica, Palaeogeogr.
Palaeocl., 576, 110497, https://doi.org/10.1016/j.palaeo.2021.110497, 2021.
Knudsen, K. L., Stabell, B., Seidenkrantz, M.-S., EirÍKsson, J., and
Blake, W.: Deglacial and Holocene conditions in northernmost Baffin Bay:
sediments, foraminifera, diatoms and stable isotopes, Boreas, 37, 346–376, https://doi.org/10.1111/j.1502-3885.2008.00035.x, 2008.
Kyrmanidou, A., Vadman, K. J., Ishman, S. E., Leventer, A., Brachfeld, S.,
Domack, E. W., and Wellner, J. S.: Late Holocene oceanographic and climatic
variability recorded by the Perseverance Drift, northwestern Weddell Sea,
based on benthic foraminifera and diatoms, Mar. Micropaleontol., 141,
10–22, https://doi.org/10.1016/j.marmicro.2018.03.001, 2018.
Levanter, A.: The fate of antarctic “sea-ice diatoms” and their use as
paleoenvironmental indicator, edited by: Lizotte, M. P. and Arrigo, K. R., Antarctic Sea Ice: Biological Processes, Interactions and Variability,
Antarctic Research Series, 73,
121–137, https://doi.org/10.1029/AR073p0121, 1998.
Li, B., Yoon, H., and Park, B.: Foraminiferal assemblages and CaCO3
dissolution since the last deglaciation in the Maxwell Bay, King George
Island, Antarctica, Mar. Geol., 169, 239–257, https://doi.org/10.1016/S0025-3227(00)00059-1, 2000.
Lüning, S., Gałka, M., and Vahrenholt, F.: The Medieval Climate
Anomaly in Antarctica, Palaeogeogr. Palaeocl.,
532, 109251, https://doi.org/10.1016/j.palaeo.2019.109251, 2019.
Mackensen, A., Grobe, H., Kuhn, G., and Futterer, D. K.: Benthic
foraminiferal assemblages from the eastern Weddell Sea between 68 and
73∘ S: distribution, ecology and fossilization potential, Mar.
Micropaleontol., 16, 241–283, https://doi.org/10.1016/0377-8398(90)90006-8, 1990.
Majewski, W.: Benthic foraminifera from West Antarctic fiord environments:
An overview, Polish Pol. Res., 31, 61–82, https://doi.org/10.4202/ppres.2010.05, 2010.
Majewski, W. and Anderson, J. B.: Holocene foraminiferal assemblages from
Firth of Tay, Antarctic Peninsula: Paleoclimate implications, Mar.
Micropaleontol., 73, 135–147, https://doi.org/10.1016/j.marmicro.2009.08.003, 2009.
Majewski, W. and Pawlowski, J.: Morphologic and molecular diversity of the
foraminiferal genus Globocassidulina in Admiralty Bay, King George Island,
Antarct. Sci., 22, 271–281, https://doi.org/10.1017/s0954102010000106, 2010.
Majewski, W., Wellner, J. S., and Anderson, J. B.: Environmental
connotations of benthic foraminiferal assemblages from coastal West
Antarctica, Mar. Micropaleontol., 124, 1–15, https://doi.org/10.1016/j.marmicro.2016.01.002, 2016.
Majewski, W., Bart, P. J., and McGlannan, A. J.: Foraminiferal assemblages
from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea,
Antarctica, Palaeogeogr. Palaeocl., 493, 64–81, https://doi.org/10.1016/j.palaeo.2017.12.041, 2018.
Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J., and
Anderson, J. B.: Foraminiferal Patterns in Deglacial Sediment in the Western
Ross Sea, Antarctica: Life Near Grounding Lines, Paleoceanogr.
Paleocl., 35, e2019PA003716, https://doi.org/10.1029/2019pa003716, 2020.
Maksym, T.: Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities,
and Causes, Ann. Rev. Mar. Sci., 11, 187–213, https://doi.org/10.1146/annurev-marine-010816-060610, 2019.
Malmgren, B. U. and Haq, B. A.: Assessment of quantitative techniques in
paleobiogeography, Mar. Micropaleontol., 7, 213–236, https://doi.org/10.1016/0377-8398(82)90003-2, 1982.
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H.,
Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan,
F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, T., Van de Putte, A., van
den Broeke, M., von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge,
B., Tronstad, S., and Melvær, Y.: Quantarctica, an integrated mapping
environment for Antarctica, the Southern Ocean, and sub-Antarctic islands,
Environ. Model. Softw., 140, 105015, https://doi.org/10.1016/j.envsoft.2021.105015,
2021.
Matthews, J. A. and Briffa, K. R.: The “little ice age”: Re-evaluation of an
evolving concept, Geogr. Ann. A, 87, 17–36, https://doi.org/10.1175/BAMS-D-10-05003.1, 2005.
Meehl, G. A., Teng, H., and Arblaster, J. M.: Climate model simulations of
the observed early-2000s hiatus of global warming, Nat. Clim. Change, 4,
898–902, https://doi.org/10.1038/nclimate2357, 2014.
Melis, R. and Salvi, G.: Late Quaternary foraminiferal assemblages from
western Ross Sea (Antarctica) in relation to the main glacial and marine
lithofacies, Mar. Micropaleontol., 70, 39–53, https://doi.org/10.1016/j.marmicro.2008.10.003, 2009.
Melis, R. and Salvi, G.: Foraminifer and Ostracod Occurrence in a Cool-Water
Carbonate Factory of the Cape Adare (Ross Sea, Antarctica): A Key Lecture
for the Climatic and Oceanographic Variations in the Last 30,000 Years,
Geosciences, 10, 413, https://doi.org/10.3390/geosciences10100413, 2020.
Mezgec, K., Stenni, B., Crosta, X., Masson-Delmotte, V., Baroni, C., Braida,
M., Ciardini, V., Colizza, E., Melis, R., Salvatore, M. C., Severi, M.,
Scarchilli, C., Traversi, R., Udisti, R., and Frezzotti, M.: Holocene sea
ice variability driven by wind and polynya efficiency in the Ross Sea, Nat.
Commun., 8, 1334, https://doi.org/10.1038/s41467-017-01455-x, 2017.
Mikis, A., Hendry, K. R., Pike, J., Schmidt, D. N., Edgar, K. M., Peck, V., Peeters, F. J. C., Leng, M. J., Meredith, M. P., Jones, C. L. C., Stammerjohn, S., and Ducklow, H.: Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study, Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019, 2019.
Murray, J. W.: Ecology and palaeoecology of benthic foraminifera,
Routledge, https://doi.org/10.4324/9781315846101, 1991.
Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, Deep-Sea
Res. Pt. II, 56, 778–795, https://doi.org/10.1016/j.dsr2.2008.10.033, 2009.
Pan, B. J., Vernet, M., Manck, L., Forsch, K., Ekern, L., Mascioni, M.,
Barbeau, K. A., Almandoz, G. O., and Orona, A. J.: Environmental drivers of
phytoplankton taxonomic composition in an Antarctic fjord, Prog.
Oceanogr., 183, 102295, https://doi.org/10.1016/j.pocean.2020.102295, 2020.
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and
trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012, 2012.
Pauling, A. G., Smith, I. J., Langhorne, P. J., and Bitz, C. M.:
Time-Dependent Freshwater Input From Ice Shelves: Impacts on Antarctic Sea
Ice and the Southern Ocean in an Earth System Model, Geophys. Res.
Lett., 44, 10454–410461, https://doi.org/10.1002/2017gl075017, 2017.
Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L., and Hodgson, D. A.:
Oceanographic variability on the West Antarctic Peninsula during the
Holocene and the influence of upper circumpolar deep water, Quaternary
Sci. Rev., 119, 54–65, https://doi.org/10.1016/j.quascirev.2015.04.002, 2015.
Rhodes, R. H., Bertler, N. A. N., Baker, J. A., Steen-Larsen, H. C., Sneed,
S. B., Morgenstern, U., and Johnsen, S. J.: Little Ice Age climate and
oceanic conditions of the Ross Sea, Antarctica from a coastal ice core
record, Clim. Past, 8, 1223–1238, https://doi.org/10.5194/cp-8-1223-2012, 2012.
Rodrigues, A. R., Maluf, J. C. C., Braga, E. d. S., and Eichler, B. B.:
Recent benthic foraminiferal distribution and related environmental factors
in Ezcurra Inlet, King George Island, Antarctica, Antarct. Sci., 22,
343–360, https://doi.org/10.1017/s0954102010000179, 2010.
Rosenblum, E. and Eisenman, I.: Sea Ice Trends in Climate Models Only
Accurate in Runs with Biased Global Warming, J. Clim., 30,
6265–6278, https://doi.org/10.1175/jcli-d-16-0455.1, 2017.
Rozema, P. D., Venables, H. J., van de Poll, W. H., Clarke, A., Meredith, M.
P., and Buma, A. G. J.: Interannual variability in phytoplankton biomass and
species composition in northern Marguerite Bay (West Antarctic Peninsula) is
governed by both winter sea ice cover and summer stratification, Limnol.
Oceanogr., 62, 235–252, https://doi.org/10.1002/lno.10391, 2017.
Sabbatini, A., Morigi, C., Ravaioli, M., and Negri, A.: Abyssal benthic
foraminifera in the Polar Front region (Pacific sector): Faunal composition,
standing stock and size structure, Chem. Ecol., 20, 258–271, https://doi.org/10.1080/02757540410001655387, 2004.
Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean, Springer-Verlag GmbH Berlin Heidelberg, Springer-Verlag GmbH, https://doi.org/10.1007/978-3-662-50297-6, 2017.
Schlosser, E., Haumann, F. A., and Raphael, M. N.: Atmospheric influences on
the anomalous 2016 Antarctic sea ice decay, The Cryosphere, 12, 1103–1119, https://doi.org/10.5194/tc-12-1103-2018, 2018.
Seidenkrantz, M.-S.: Benthic foraminifera as palaeo sea-ice indicators in
the subarctic realm – examples from the Labrador Sea–Baffin Bay region,
Quaternary Sci. Rev., 79, 135–144, https://doi.org/10.1016/j.quascirev.2013.03.014,
2013.
Seidenstein, J. L., Cronin, T. M., Gemery, L., Keigwin, L. D., Pearce, C.,
Jakobsson, M., Coxall, H. K., Wei, E. A., and Driscoll, N. W.: Late Holocene
paleoceanography in the Chukchi and Beaufort Seas, Arctic Ocean, based on
benthic foraminifera and ostracodes, Arktos, 4, 1–17, https://doi.org/10.1007/s41063-018-0058-7, 2018.
Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V.: High
rates of organic carbon burial in fjord sediments globally, Nat.
Geosci., 8, 450–453, https://doi.org/10.1038/ngeo2421, 2015.
Smith, W., Sedwick, P., Arrigo, K., Ainley, D., and Orsi, A.: The Ross Sea
in a Sea of Change, Oceanography, 25, 90–103, https://doi.org/10.5670/oceanog.2012.80, 2012.
Smith Jr., W. O., Ainley, D. G., Arrigo, K. R., and Dinniman, M. S.: The
oceanography and ecology of the Ross Sea, Ann. Rev. Mar. Sci., 6, 469–487, https://doi.org/10.1146/annurev-marine-010213-135114, 2014.
Stenni, B., Curran, M. A. J., Abram, N. J., Orsi, A., Goursaud, S.,
Masson-Delmotte, V., Neukom, R., Goosse, H., Divine, D., van Ommen, T.,
Steig, E. J., Dixon, D. A., Thomas, E. R., Bertler, N. A. N., Isaksson, E.,
Ekaykin, A., Werner, M., and Frezzotti, M.: Antarctic climate variability on
regional and continental scales over the last 2000 years, Clim.
Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, 2017.
Tesi, T., Belt, S. T., Gariboldi, K., Muschitiello, F., Smik, L.,
Finocchiaro, F., Giglio, F., Colizza, E., Gazzurra, G., Giordano, P.,
Morigi, C., Capotondi, L., Nogarotto, A., Köseoğlu, D., Di Roberto,
A., Gallerani, A., and Langone, L.: Resolving sea ice dynamics in the
north-western Ross Sea during the last 2.6 ka: From seasonal to millennial
timescales, Quaternary Sci. Rev., 237, 106299, https://doi.org/10.1016/j.quascirev.2020.106299, 2020.
Turner, J., Hosking, J. S., Phillips, T., and Marshall, G. J.: Temporal and
spatial evolution of the Antarctic sea ice prior to the September 2012
record maximum extent, Geophys. Res. Lett., 40, 5894–5898, https://doi.org/10.1002/2013gl058371, 2013.
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., and
Phillips, T.: Recent changes in Antarctic Sea Ice, Philos. Trans. A Math. Phys.
Eng. Sci., 373, 20140163, https://doi.org/10.1098/rsta.2014.0163, 2015.
Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O.,
Bracegirdle, T. J., and Deb, P.: Unprecedented springtime retreat of
Antarctic sea ice in 2016, Geophys. Res. Lett., 44, 6868–6875, https://doi.org/10.1002/2017gl073656, 2017.
van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K.,
Meiners, K. M., Rintala, J. M., Selz, V., Thomas, D. N., and Stefels, J.:
Microalgal community structure and primary production in Arctic and
Antarctic sea ice: A synthesis, Elementa Science of the Anthropocene, 6, 4,
https://doi.org/10.1525/elementa.267, 2018.
Violanti, D.: Morphogroup Analysis of Recent Agglutinated Foraminifers off
Terra Nova Bay, Antarctica (Expedition 1987–1988), in: Ross Sea Ecology, edited by: Faranda, F. M., Guglielmo, L., and Ianora, A., Springer, Berlin, Heidelberg,
479–492, https://doi.org/10.1007/978-3-642-59607-0_34, 2000.
Ward, B. L., Barret, P. J., and Vella, P.: Distribution and ecology of
benthic foraminifera in McMurdo Sound, Antarctica, Palaeogeogr.
Palaeocl., 58, 139–153, https://doi.org/10.1016/0031-0182(87)90057-5,
1987.
Whitworth, T. and Orsi, A. H.: Antarctic Bottom Water production and export
by tides in the Ross Sea, Geophys. Res. Lett., 33, L12609, https://doi.org/10.1029/2006gl026357, 2006.
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and...