Articles | Volume 43, issue 1
https://doi.org/10.5194/jm-43-55-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-55-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nannofossils from the Middle Eocene Sabiñánigo Sandstone Formation in the Jaca Basin (southern Pyrenees): biostratigraphy and paleoenvironmental implications
Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, Salamanca, 37008, Spain
Oriol Oms
Departament de Geología, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
Eduard Remacha
Departament de Geología, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
Alba González-Lanchas
Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
Hug Blanchar-Roca
Departament de Geología, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
José Abel Flores
Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, Salamanca, 37008, Spain
Related authors
No articles found.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Andrés S. Rigual Hernández, Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, Francisco J. Sierro, Diana M. Davies, Anne-Marie Ballegeer, Miguel A. Fuertes, and Lisa C. Northcote
Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, https://doi.org/10.5194/bg-17-245-2020, 2020
Short summary
Short summary
Coccolithophores account for a major fraction of the carbonate produced in the world's oceans. However, their contribution in the subantarctic Southern Ocean remains undocumented. We quantitatively partition calcium carbonate fluxes amongst coccolithophore species in the Australian–New Zealand sector of the Southern Ocean. We provide new insights into the importance of species other than Emiliania huxleyi in the carbon cycle and assess their possible response to projected environmental change.
Mariem Saavedra-Pellitero, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy
Biogeosciences, 16, 3679–3702, https://doi.org/10.5194/bg-16-3679-2019, https://doi.org/10.5194/bg-16-3679-2019, 2019
Short summary
Short summary
Open ocean phytoplankton include coccolithophore algae, a key element in carbon cycle regulation with important feedbacks to the climate system. We document latitudinal variability in both coccolithophore assemblage and the mass variation in one particular species, Emiliania huxleyi, for a transect across the Drake Passage (in the Southern Ocean). Coccolithophore abundance, diversity and maximum depth habitat decrease southwards, coinciding with changes in the predominant E. huxleyi morphotypes.
Gloria M. Martin-Garcia, Francisco J. Sierro, José A. Flores, and Fátima Abrantes
Clim. Past, 14, 1639–1651, https://doi.org/10.5194/cp-14-1639-2018, https://doi.org/10.5194/cp-14-1639-2018, 2018
Short summary
Short summary
This work documents major oceanographic changes that occurred in the N. Atlantic from 812 to 530 ka and were related to the mid-Pleistocene transition. Since ~ 650 ka, glacials were more prolonged and intense than before. Larger ice sheets may have worked as a positive feedback mechanism to prolong the duration of glacials. We explore the connection between the change in the N. Atlantic oceanography and the enhanced ice-sheet growth, which contributed to the change of cyclicity in climate.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Andrés S. Rigual Hernández, José A. Flores, Francisco J. Sierro, Miguel A. Fuertes, Lluïsa Cros, and Thomas W. Trull
Biogeosciences, 15, 1843–1862, https://doi.org/10.5194/bg-15-1843-2018, https://doi.org/10.5194/bg-15-1843-2018, 2018
Short summary
Short summary
Long-term and annual field observations on key organisms are a critical basis for predicting changes in Southern Ocean ecosystems. Coccolithophores are the most abundant calcium-carbonate-producing phytoplankton and play an important role in Southern Ocean biogeochemical cycles. In this study we document the composition, degree of calcification and annual cycle of coccolithophore communities in one of the largest unexplored regions of the world oceans: the Antarctic zone.
Saúl González-Lemos, José Guitián, Miguel-Ángel Fuertes, José-Abel Flores, and Heather M. Stoll
Biogeosciences, 15, 1079–1091, https://doi.org/10.5194/bg-15-1079-2018, https://doi.org/10.5194/bg-15-1079-2018, 2018
Short summary
Short summary
Changes in atmospheric carbon dioxide affect ocean chemistry and the ability of marine organisms to manufacture shells from calcium carbonate. We describe a technique to obtain more reproducible measurements of the thickness of calcium carbonate shells made by microscopic marine algae called coccolithophores, which will allow researchers to compare how the shell thickness responds to variations in ocean chemistry in the past and present.
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
O. Rama-Corredor, B. Martrat, J. O. Grimalt, G. E. López-Otalvaro, J. A. Flores, and F. Sierro
Clim. Past, 11, 1297–1311, https://doi.org/10.5194/cp-11-1297-2015, https://doi.org/10.5194/cp-11-1297-2015, 2015
Short summary
Short summary
The alkenone sea surface temperatures in the Guiana Basin show a rapid transmission of the climate variability from arctic to tropical latitudes during the last two interglacials (MIS1 and MIS5e) and warm long interstadials (MIS5d-a). In contrast, the abrupt variability of the glacial interval does follow the North Atlantic climate but is also shaped by precessional changes. This arctic to tropical decoupling occurs when the Atlantic meridional overturning circulation is substantially reduced.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
Related subject area
Calcareous nannofossils
Revisiting Early Jurassic Biscutaceae: Similiscutum giganteum sp. nov.
Lower Jurassic calcareous nannofossil taxonomy revisited according to the Neuquén Basin (Argentina) record
Revised taxonomy and early evolution of fasciculiths at the Danian–Selandian transition
Calcareous nannofossil assemblages of the Late Cretaceous Fiqa Formation, north Oman
Samuel Mailliot, Emanuela Mattioli, Micaela Chaumeil Rodríguez, and Bernard Pittet
J. Micropalaeontol., 42, 1–12, https://doi.org/10.5194/jm-42-1-2023, https://doi.org/10.5194/jm-42-1-2023, 2023
Short summary
Short summary
Using biometric analysis, a new species, Similiscutum giganteum, has been described. Given its distinctive morphology and its stratigraphic range restricted to upper Pliensbachian and Toarcian, the potential stratigraphic use of this new species has to be explored. A method for biometry is also described in detail. This paper proves the value of biometric analysis in taxonomic description.
Micaela Chaumeil Rodríguez, Emanuela Mattioli, and Juan Pablo Pérez Panera
J. Micropalaeontol., 41, 75–105, https://doi.org/10.5194/jm-41-75-2022, https://doi.org/10.5194/jm-41-75-2022, 2022
Short summary
Short summary
We present a deep systematic and taxonomic revision of the Early Jurassic calcareous nannofossils from the Neuquén Basin. The study focuses on characterizing the assemblages and identifying bioevents. The Pliensbachian associations from the Los Molles Formation are ilustrated for the first time, along with new biostratigraphic data from the area. Similarities found with locaties from the proto-Atlantic region suggest a connection between the Pacific and Tethys oceans during the Early Jurassic.
Francesco Miniati, Carlotta Cappelli, and Simonetta Monechi
J. Micropalaeontol., 40, 101–144, https://doi.org/10.5194/jm-40-101-2021, https://doi.org/10.5194/jm-40-101-2021, 2021
Short summary
Short summary
This study presents a taxonomic revision of calcareous nannoplankton, known as fasciculiths (family Fasciculithaceae). The investigation approach is based on a direct light microscope and SEM comparison of the same individual specimen, providing a key to clarify a correct classification of several taxa. The new findings document the early evolutionary history of fasciculiths, demonstrating the biostratigraphic relevance of this group in the early Paleocene (Danian–Selandian transition).
Zainab Al Rawahi and Tom Dunkley Jones
J. Micropalaeontol., 38, 25–54, https://doi.org/10.5194/jm-38-25-2019, https://doi.org/10.5194/jm-38-25-2019, 2019
Short summary
Short summary
This research studies nannofossils (microscopic fossil remains of unicellular marine planktonic algae) recovered from the Late Cretaceous, pelagic shale Fiqa Formation of Oman. The study emphasises taxonomy and assemblage change application to understand changes in the past climate and environment during the time of deposition. This has been achieved by analysing rock samples under the microscope. The analysis of these fossils could be applied in future work for age determination.
Cited articles
Agnini, C., Muttoni, G., Kent, D. V., and Rio, D.: Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability, Earth Planet. Sc. Lett., 241, 815–830, https://doi.org/10.1016/j.epsl.2005.11.005, 2006.
Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J., and Giusberti, L.: Responses of calcareous nannofossil assemblages, mineralogy, and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps, Mar. Micropaleontol., 63, 19–38, https://doi.org/10.1016/j.marmicro.2006.10.002, 2007.
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 47, 131–181, https://doi.org/10.1127/0078-0421/2014/0042, 2014.
Aubry, M. P.: Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration, in: Eocene–Oligocene climatic and biotic evolution, edited by: Prothero, D. R. and Berggren, W. A., Eocene–Oligocene Climatic and Biotic Evolution, Princeton, Princeton University Press, 135, 272–309, https://doi.org/10.1515/9781400862924, 1992.
Aubry, M. P.: Early Paleogene Calcareous nannoplankton evolution: a tale of climatic amelioration, in: Late Paleocene–early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records, edited by: Aubry, M.-P., Lucas, S., and Berggren, W. A., Columbia University Press, 158–201, ISBN 9780231102384, 1998.
Bauer, F. U.: The Sabiñánigo Sandstone Succession, Jaca basin, Southern Pyrenees, NE-Spain, A Depositional model, PhD thesis, University of Heidelberg, 184 pp., https://doi.org/10.11588/heidok.00007977, 2007.
Bohaty, S., Zachos, J. C., Florindo, F., and Delaney, M. L.: Coupled greenhouse warming and deep-sea acidification in the Middle Eocene, Paleoceanogr. Paleocl., 24, PA2207, https://doi.org/10.1029/2008PA001676, 2009.
Boscolo Galazzo, F., Giusberti, V., Luciani, E., and Thomas, E.: Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: The benthic foraminiferal record from the Alano section (NE Italy), Palaeogeogr. Palaeoecl., 378, 22–35, https://doi.org/10.1016/j.palaeo.2013.03.018, 2013.
Boscolo Galazzo, F., Thomas, E., Pagani, M., Warren, C., Luciani, V., and Giusberti, L.: The middle Eocene climatic optimum (MECO): A multiproxy record of paleoceanographic changes in the southeast Atlantic (ODP Site 1263, Walvis Ridge), Palaeogeogr. Palaeoecl., 29, 1143–1161, https://doi.org/10.1002/2014PA002670, 2014.
Bown, P. R.: Calcareous Nannofossil Biostratigraphy, British micropaleontological society publication series, Chapman, and Hall, Kluwer Academic and Lipincott-Raven Publishers, London, Springer, 16–28, ISBN 109401060568, 1998.
Bown, P. R. and Dunkley Jones, T.: Calcareous nannofossils from the Paleogene equatorial Pacific (IODP Expedition 320 Sites U1331-1334), J. Nannoplank. Res., 32, 3–51, ISSN 1210-8049, 2012.
Boya, S.: El sistema deltaico de la Arenisca de Sabiñánigo y la continentalización de la cuenca de Jaca, Tesis de la Universitat Autònoma de Barcelona, 207 pp., http://hdl.handle.net/10803/665452 (last access: 15 January 2024), 2018.
Bukry, D.: Cenozoic calcareous nannofossils from the Pacific Ocean, Transactions of San Diego Society of Natural History, 16, 303–327, https://doi.org/10.5962/bhl.part.15464, 1971.
Bukry, D.: Low latitude coccolith biostratigraphic zonation, in: Proceedings of the Deep-Sea Drilling Project, edited by: Edgar, N. T. and Saunders, J. B., Initial Reports, 15, Washington, DC, US Government Printing Office, 685–703, 1973.
Canudo, J. I. and Molina, E.: Biocronología con foraminíferos planctónicos de la secuencia deposicional de Jaca (Pirineo aragonés): Eoceno medio y superior, Congreso Geológico de España, Comunicaciones, 1, 273–276, 1988.
Cámara, P. and Klimowitz, J.: Interpretación geodinámica de la vertiente centro-occidental surpirenaica (cuencas de Jaca-Tremp), Estud. Geol.-Madrid, 41, 391–404, https://doi.org/10.3989/egeol.85415-6720, 1985.
Cámara, P. and Flinch J. F.: The Southern Pyrenees: a salt-based fold and thrust belt, in: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, edited by: En Soto, J. I., Flinch, J. F., and Tari, G., Tectonics and Hidrocarbon potencial, Cap, 18, 395–413, https://doi.org/10.1016/B978-0-12-809417-4.00019-7, 2017.
Carlson, H. and Caballero, R.: Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene, Clim. Past, 13, 1037–1048, https://doi.org/10.5194/cp-13-1037-2017, 2017.
Dedert, M., Stoll, H. M., Kroon, D., Shimizu, N., Kanamaru, K., and Ziveri, P.: Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2), Clim. Past, 8, 977–993, https://doi.org/10.5194/cp-8-977-2012, 2012.
Flores, J. A. and Sierro, F. J.: Revised technique for calculation of calcareous nannofossil accumulation rates, Micropaleontology, 43, 321–324, https://doi.org/10.2307/1485832, 1997.
Flores, J. A., Sierro, F. J., and Raffi, I.: Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic changes in the eastern equatorial Pacific Ocean from 4 to 2 Ma, Leg 138, sites 849 and 852, in: Proceedings of the Ocean Drilling Program, edited by: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., and van Andel, T. H., Scientific Results 138, College Station, Texas, 163–176, 1995.
Foreman, B. Z., Heller, P. L., and Clementz, M. T.: Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary, Nature, 491, 92–95, https://doi.org/10.1038/nature11513, 2012.
Fornaciari, E., Agnini, C., Catanzariti, R., Rio, D., Bolla, E. M., and Valvasoni, E.: Mid-latitude calcareous nannofossil biostratigraphy and biochronology across the middle to late Eocene transition, Stratigraphy, 7, 229–264, 2010.
Gil-Peña, I., Montes-Santiago M. J., and Malagón, J.: Mapa geológico de la Hoja no 177, 29-09 (Sabiñánigo), Mapa Geológico de España E, 1:50 000, Segunda Serie (MAGNA), Primera edición, IGME, 1990.
Giorgioni, M., Jovane, L., Rego, E. S., Rodelli, D., Frontalini, F., Coccioni, R., Catanzariti, R., and Özcan, E.: Carbon cycle instability and orbital forcing during the Middle Eocene Climatic Optimum, Sci. Rep., 9, 9357, https://doi.org/10.1038/s41598-019-45763-2, 2019.
González-Lanchas, A., Remacha, E., Oms, O., Sierro, F. J., and Flores, J. A.: Middle Eocene calcareous nannofossils in the Jaca transect (South-central Pyrenees Eocene Basin, Aragón River valley, Huesca), Span. J. Palaeontol., 34, 229–240, https://doi 10.7203/sjp.34.2.16096, 2019.
Hallock, P.: Why are larger foraminifera large?, Paleobiology, 11, 195–208, https://www.jstor.org/stable/2400527 (last access: 1 April 2024), 1985.
Haq, B. U. and Lohman, G. P.: Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean, Mar Micropaleontol., 1, 119–194, https://doi.org/10.1016/0377-8398(76)90008-6, 1976.
Hehuwat, F.: The Transition from marine to continental sedimentation in the Eoceno of Guarda synclinorium, Huesca province, Spain, Thesis Utrecht, 1970.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Henehan, M. J., Edgar, K. M., Foster, G. L., Penman, D. E., Hull, P. M., Greenop, R., and Pearson, P. N.: Revisiting the Middle Eocene Climatic Optimum “Carbon Cycle Conundrum” with new estimates of atmospheric pCO2 from boron isotopes, Paleoceanogr. Paleocl., 35, e2019PA003713, https://doi.org/10.1029/2019PA003713, 2020.
Hogan P. J. and Burbank D.: Evolution of the Jaca piggyback basin and emergence of the External Sierra, southern Pyrenees, in: Tertiary Basins of Spain: the Stratigraphic Record of Crustal Kinematics, edited by: Friend, P. F. and Dabrio, J. C., Cambridge University Press, Cambridge, 153–160, https://doi.org/10.1017/CBO9780511524851.023, 1996.
Honegger, L., Adatte, T., Spangenberg, J. E., Rugenstein, J. K. C., Poyatos-Moré, M., Puigdefàbregas, C., Chanvry, E., Clark, J., Fildani, A., Verrechia, E., Kouzmanov, K., Harlaux, M., and Castelltort, S.: Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain, Clim. Past, 16, 227–243, https://doi.org/10.5194/cp-16-227-2020, 2020.
Intxauspe-Zubiaurre, B.: Análisis de la Dinámica Oceánica Superficial en la Cuenca Vascocantábrica durante Tres Eventos Hipertermales del Eoceno a través de nanofósiles calcáreos, Tesis doctora l, UPV/EHU, 238 pp., http://hdl.handle.net/10810/32107 (last access: 15 January 2024), 2018.
Intxauspe-Zubiaurre, B., Flores, J., and Payros, A.: Variations to calcareous nannofossil CaCO3 content during the middle Eocene C21r-H6 hyperthermal event (∼47.4 Ma) in the Gorrondatxe section (Bay of Biscay, Western Pyrenees), Palaeogeogr. Palaeocl., 487, 296–306, https://doi.org/10.1016/j.palaeo.2017.09.015, 2017.
Labaume, P. and Teixell, A.: 3D structure of subsurface thrusts in the eastern Jaca Basin, southern Pyrenees, Geolog. Ac., 16, 477–498, https://doi.org/10.1344/GeologicaActa2018.16.4.9, 2018.
Labaume, P., Séguret, M., and Seyve, C.: Evolution of a turbiditic foreland basin and analogy with an accretionary prism: Example of the Eocene South-Pyrenean basin, Tectonics, 4, 661–685, https://doi.org/10.1029/TC004i007p00661, 1985.
Lafont, F.: Influences relatives de la subsidence et de l'eustatisme sur la localisation et la géométrie des réservoirs d'un systéme deltaïque, Example de l'Eocene du Bassin de Jaca (Pyrenees Espagnoles), PhD thesis, Université de Rennes I, 288 pp., https://theses.hal.science/tel-00653783 (last access: 1 April 2024), 1994.
Marino, M. and Flores, J. A.: Middle Eocene to Early Oligocene calcareous nannofossil stratigraphy at Leg 177 Site 1090, Mar. Micropaleontol., 45, 383–398, https://doi.org/10.1016/S0377-8398(02)00036-1, 2002.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Proceedings 2nd International Conference Planktonic Microfossils Roma, edited by: Farinacci, A., Tecnoscienza, Rome, 2, 739–785, 1971.
McIntyre, A. and Bé, A.: Modern Coccolithophores of the Atlantic Ocean. I. Placolith and Cyrtholiths, Deep-Sea Res., 14, 561–597, https://doi.org/10.1016/0011-7471(67)90065-4, 1967.
McGonigal, K. L. and Wise Jr., S. W.: Eocene calcareous nannofossil biostratigraphy and sediment accumulation of turbidite sequences on the Iberia Abyssal Plain, ODP Sites 1067–1069, in: Proceedings ODP, edited by: Beslier, M. O., Whitmarsh, R. B., Wallace, P. J., and Girardeau, J., Scientific Results, 173, 1–35, 2001.
Moebius, I., Friedrich, O., and Scher, H.: Changes in Southern Ocean bottom water environments associated with the Middle Eocene Climatic Optimum (MECO), Palaeogeogr. Palaeocl., 405, 16–27, https://doi.org/10.1016/j.palaeo.2014.04, 2014.
Montes, M. J.: Estratigrafia del Eoceno-Oligoceno de la Cuenca de Jaca (Sinclinorio del Guarga), Tesis Universitat de Barcelona, 365 pp., https://dialnet.unirioja.es/servlet/tesis?codigo=235289 (last access: 1 April 2024), 2002.
Mutterlose, J., Linnert, C., and Norris, R.: Calcareous nannofossils from the Paleocene-Eocene Thermal Maximum of the equatorial Atlantic (ODP Site 1260B): Evidence for tropical warming, Mar. Micropaleontol., 65, 13–31, https://doi.org/10.1016/j.marmicro.2007.05.004, 2007.
Okada, H. and Honjo, S.: Distribution of coccolithophorids in marginal seas along the western Pacific Ocean and in the Red Sea, Mar. Biol., 31, 271–285, https://doi.org/10.1007/BF00387154, 1975.
Oms, O., Dinarès-Turell, J., and Remacha, E.: Magnetic stratigraphy from deep clastic turbidites: an example from the Eocene Hecho Group (southern Pyrenees), Stud. Geophys. Geod., 47, 275–288, https://doi.org/10.1023/A:1023719607521, 2003.
Parente, A., Cachao, M., Baumann, K.-H., de Abreu, L., and Ferreira, J.: Morphometry of Coccolithus pelagicus s.l. (Coccolithophore, Haptophyta) from offshore Portugal during the last 200 kyr, Micropaleontology, 50, 107–120, https://www.jstor.org/stable/4097106 (last access: 1 April 2024), 2004.
Perch-Nielsen, K.: Cenozoic calcareous nannofossils, edited by: Saunders, J. B. and Perch-Nielsen, K., Plankton stratigraphy, Cambridge University Press, UK, 427–554, 1985.
Peris Cabré, S., Valero, L., Spangenberg, J. E., Vinyoles, A., Verité, J., Adatte, T., Tremblin, M., Watkins, S., Sharma, N., Garcés, M., Puigdefàbregas, C., and Castelltort, S.: Fluvio-deltaic record of increased sediment transport during the Middle Eocene Climatic Optimum (MECO), Southern Pyrenees, Spain, Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, 2023.
Puigdefábregas, C.: La sedimentación molásica en la cuenca de Jaca. Monografías del Instituto de Estudiós Pirenaicos, num. 104, CESIC, Jaca, http://hdl.handle.net/10261/82989 (last access: 1 April 2024), 1975.
Remacha, E. and Picart, J.: El complejo turbidítico de Jaca y el delta de la arenisca de Sabiñánigo, Excursion Guidebook 8, 1er. Congresso del Grupo Español del Terciario, Vic Universitat de Barcelona, https://books.google.es/books/about/El_complejo_turbiditico_de_Jaca_y_el_del.html?id=uJpG0AEACAAJ&redir_esc=y (last access date: 1 April 2024), 1991.
Remacha, E., Arbués, P., and Carreras, M.: Precisiones sobre los límites de la secuencia deposicional de Jaca. Evolucioń de las facies desde la base de la secuencia hasta el techo de la Arenisca de Sabiñánigo, Boletín Geológico y Minero, 98, 40–48, ISSN 0366-0176, 1987.
Remacha, E., Oms, O., and Coello, J.: The Rapitán turbidite channel and its related eastern levee-over bank deposits, in: Eocene Hecho group, South-central Pyrenees, Spain, edited by: Pickering, K. T., Hiscott, R. N., Kenyon, N. H., Ricci Lucchi, F., and Smith, R. D. A., Atlas of Deep Water Environments, Springer, Dordrecht, https://doi.org/10.1007/978-94-011-1234-5_22, 1995.
Remacha, E., Gual, G., Bolaño, F., Arcuri, M., Oms, O., Climent, F., Crumeyrolle, P., Fernandez, L. P., Vicente, J. C., and Suarez, J.: Sand-rich turbidite systems of the Hecho Group from slope to the basin plain, Facies, stacking patterns, controlling factors, and diagnostic features, Barcelona, American Association of Petroleum Geologists (AAPG), International Conference and Exhibition, Field Trip 12 Guidebook, 2003.
Roigé, M.: Procedéncia i evolució dels sistemes sedimentaris de la conca de Jaca (conca d'avantpaís Sudpirinenca): Interacció entre diverses árees font en un context tectónic actiu: PhD Thesis, Universitat Autónoma de Barcelona, 314 pp., http://hdl.handle.net/10803/565902 (last access: 1 April 2024), 2018.
Seguret, M.: Etude tectonique des nappes et séries décollées de la partie centrale du versant sud des Pyrénées, Publ. Ustela, série Géol, Struct. No 2, Montpellier, 155 pp., https://www.sudoc.fr/012768294 (last access: 1 April 2024), 1972.
Soler-Sampere, M. and Puigdefábregas, C.: Líneas generales de la Geología del Alto Aragón Occidental, Pirineos, 96, 5–20, http://hdl.handle.net/10261/93785 (last access: 1 April 2024), 1970.
Stokke, E., Jones, M., Tierney, J., Svensen, H., and Whiteside, J.: Temperature changes across the Paleocene-Eocene Thermal Maximum – a new high-resolution TEX86 temperature record from the Eastern North Sea Basin, Earth Planet. Sc. Lett., 544, 116388, https://doi.org/10.1016/j.epsl.2020.116388, 2020.
Soták, J., Elbra, T., Pruner, P., Antolíková, S., Schnabl, P., Biroň, A., Kdýr, Š., and Milovský, R.: End-Cretaceous to middle Eocene events from the Alpine Tethys: Multi-proxy data from a reference section at Kršteňany (Western Carpathians), Palaeogeogr. Palaeocl., 579, 110571, https://doi.org/10.1016/j.palaeo.2021.110571, 2021.
Spofforth, D. J. A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., and Muttoni, G.: Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys, Paleoceanogr. Paleocl., 25, 11, https://doi.org/10.1029/2009PA001738, 2010.
Teixell, A.: The Ansó transect of the southern Pyrenees: basement and cover thrust geometries, J. Geol. Soc. London, 153, 301–310, https://doi.org/10.1144/gsjgs.153.2.030, 1996.
Teixell, A. and García- Sansegundo, J.: Estructura del sector central de la Cuenca de Jaca (Pirineos meridionales), Revista de la Sociedad Geológica Española, 8, 215–228, 1995.
Toffanin, F., Agnini, C., Fornaciari, E., Rio, D., Giusberti, L., Luciani, V., Spofforth, D. J. A., and Pälike, H.: Changes in calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum: Clues from the central-western Tethys (Alano section, NE Italy), Mar. Micropaleontol., 81, 22–31, https://doi.org/10.1016/j.marmicro.2011.07.002, 2011.
Vinyoles, A., López-Blanco, M., Garcés, M., Arbués, P., Valero, L., Beamud, E., and Cabello, P.: 10 Myr evolution of sedimentation rates in a deep marine to non-marine foreland basin system: Tectonic and sedimentary controls (Eocene, Tremp–Jaca Basin, Southern Pyrenees, NE Spain), Basin Res., 33, 447–477, https://doi.org/10.1111/bre.12481, 2021.
Wei, W. and Wise, S. W.: Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean, Palaeogeogr. Palaeocl., 79, 29–61, https://doi.org/10.1016/0031-0182(90)90104-F, 1990.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H.: Transient floral change and rapid global warming at the Paleocene-Eocene Boundary, Science, 310, 993–996, https://doi.org/10.1126/science.1116913, 2005.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–293, https://doi.org/10.1038/nature06588, 2008.
Short summary
We studied sediment samples containing marine plankton under the polarized microscope from the Sabiñánigo sandstone formation, a geological formation located in the Jaca Basin in Spain. The main result of this work was a more precise age for the formation, the Bartonian age, in the Middle Eocene period. In addition, we obtained information on the temperature of the ocean water in which the plankton lived, resulting in the surface ocean waters in this area being warm and poor in nutrients.
We studied sediment samples containing marine plankton under the polarized microscope from the...