Articles | Volume 44, issue 2
https://doi.org/10.5194/jm-44-193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-44-193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Change in biodiversity and abundance of benthic foraminifera with distance from the Rainbow hydrothermal vent field, Mid-Atlantic Ridge
Hannah Krüger
CORRESPONDING AUTHOR
Department of Earth System Sciences, Institute for Geology, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Leibniz-Institute for Baltic Sea Research, Seestraße 15, 18119 Rostock, Germany
Gerhard Schmiedl
Department of Earth System Sciences, Institute for Geology, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Center for Earth System Research and Sustainability (CEN), University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Zvi Steiner
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1–3, 24148 Kiel, Germany
Zhouling Zhang
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1–3, 24148 Kiel, Germany
Eric P. Achterberg
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1–3, 24148 Kiel, Germany
Nicolaas Glock
Department of Earth System Sciences, Institute for Geology, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Related authors
No articles found.
Ivia Closset, J. Jotautas Baronas, Fiorenza Torricella, Félix de Tombeur, Bianca T. P. Liguori, Alessandra Petrucciani, Natasha Bryan, María López-Acosta, Yelena Churakova, Antonia U. Thielecke, Zhouling Zhang, Natalia Llopis Monferrer, Rebecca A. Pickering, Mathis Guyomard, and Dongdong Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3784, https://doi.org/10.5194/egusphere-2025-3784, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This review explores how various marine life, from diatoms to sponges, transform and control silicon to form silica-based structures, and how this shapes the silicon biogeochemical cycle. It highlights the overlooked role of dynamic ocean boundary zones, where land, seafloor and ice meet seawater. By integrating biology and geochemistry, the review outlines new directions to improve paleoceanographic proxies, biogeochemical models, and predictions of climate-driven changes in ocean productivity.
Yuye Han, Zvi Steiner, Zhimian Cao, Di Fan, Junhui Chen, Jimin Yu, and Minhan Dai
Biogeosciences, 22, 3681–3697, https://doi.org/10.5194/bg-22-3681-2025, https://doi.org/10.5194/bg-22-3681-2025, 2025
Short summary
Short summary
Our results suggest coccolithophore calcite accounts for a major fraction of PIC (particulate inorganic carbon) standing stocks in the western North Pacific, with a markedly higher contribution in the oligotrophic subtropical gyre than in the Kuroshio–Oyashio transition region, which highlights the importance of coccolithophores for PIC production in the pelagic ocean, particularly in oligotrophic ocean waters.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, and Gerhard Schmiedl
Clim. Past, 21, 1025–1041, https://doi.org/10.5194/cp-21-1025-2025, https://doi.org/10.5194/cp-21-1025-2025, 2025
Short summary
Short summary
We report palaeoclimate and sediment provenance records for the last 220 kyr from a sediment core from the northern Red Sea. They comprise high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. The data sets document a strong temporal variability in dust influx on glacial–interglacial timescales and several shorter-term strong fluvial episodes. A key finding is that the Nile delta became a major dust source during glacioeustatic sea-level lowstands.
Frank Förster, Sebastian Flöter, Lucie Sauzéat, Stéphanie Reynaud, Eric Achterberg, Alexandra Tsay, Christine Ferrier-Pagès, and Tom E. Sheldrake
EGUsphere, https://doi.org/10.5194/egusphere-2025-1713, https://doi.org/10.5194/egusphere-2025-1713, 2025
Short summary
Short summary
Explosive volcanic eruptions produce ash that, upon ocean deposition, alters seawater chemistry by leaching or adsorbing metals. Corals like Stylophora pistillata incorporate these metals in its various compartments (tissue, symbionts and skeleton), with most metal changes appearing in the coral skeleton. We present a novel dataset of ash-seawater leaching results, trace metal analysis in the different coral compartments from cultured corals maintained under a control and ash exposed condition.
Anjaly Govindankutty Menon, Aaron L. Bieler, Hanna Firrincieli, Rachel Alcorn, Niko Lahajnar, Catherine V. Davis, Ralf Schiebel, Dirk Nürnberg, Gerhard Schmiedl, and Nicolaas Glock
EGUsphere, https://doi.org/10.5194/egusphere-2025-1182, https://doi.org/10.5194/egusphere-2025-1182, 2025
Short summary
Short summary
The pore density (number of pores per unit area) of unicellular eukaryotes is used to reconstruct past bottom-water nitrate at the Sea of Okhotsk, the Gulf of California, the Mexican Margin and the Gulf of Guayaquil. The reconstructed bottom-water nitrate at the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil are influenced by the intermediate water masses, while the nitrate at the Mexican Margin is related to the deglacial NO3− variability in the Pacific Deep Water.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
Clim. Past, 21, 279–297, https://doi.org/10.5194/cp-21-279-2025, https://doi.org/10.5194/cp-21-279-2025, 2025
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 kyr in the Gulf of Oman. We find SST variations of up to 7 °C with lower SSTs during Heinrich events (HEs), especially HE4, and higher SSTs during Dansgaard–Oeschger events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SST variations are influenced by the southwest (northeast) monsoon during warmer (colder) periods.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Nicolaas Glock
Biogeosciences, 20, 3423–3447, https://doi.org/10.5194/bg-20-3423-2023, https://doi.org/10.5194/bg-20-3423-2023, 2023
Short summary
Short summary
Ocean deoxygenation due to climate warming is an evolving threat for organisms that are not well adapted to O2 depletion, such as many pelagic fish species. Other better-adapted organisms, such as some benthic foraminifera species, might benefit from ocean deoxygenation. Benthic foraminifera are a group of marine protists and can have specific adaptations to O2 depletion such as the ability to respire nitrate instead of O2. This paper reviews the current state of knowledge about these organisms.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Ashford, O. S., Davies, A. J., and Jones, D. O. B.: Deep-sea benthic megafaunal habitat suitability modelling: A global-scale maximum entropy model for xenophyophores, Deep-Sea Res. Pt. 1, 94, 31–44, https://doi.org/10.1016/j.dsr.2014.07.012, 2014.
Ayala-López, A. and Molina-Cruz, A.: Micropalaeontology of the hydrothermal region in the Guaymas Basin, Mexico, J. Micropalaeontol., 13, 133–146, https://doi.org/10.1144/jm.13.2.133, 1994.
Bernhard, J. M.: Postmortem vital staining in benthic foraminifera: duration and importance in population and distributional studies, J. Foramin. Res., 18, 143–146, 1988.
Bernhard, J. M.: Distinguishing live from dead foraminifera: methods review and proper applications, Micropaleontology, 46, 38–46, 2000.
Bernhard, J. M., Nomaki, H, Shiratori, T., Elmendorf, A., Yabuki, A., Kimoto, K., Tsuchiya, M., and Shimanaga, M.: Hydrothermal vent chimney-base sediments as unique habitat for meiobenthos and nanobenthos: Observations on millimeter-scale distributions, Front. Mar. Sci., 9, 1033381, https://doi/10.3389/fmars.2022.1033381, 2023.
Berthold, W.-U.: Biomineralisation bei milioliden Foraminiferen und die Matritzen-Hypothese, Naturwissenschaften, 63, 196–197, https://doi.org/10.1007/BF00624226, 1976.
Boltovskoy, E. and Giussani de Kahn, G.: Cinco nuevos taxones en Orden Foraminiferida. Comunicaciones des Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigacion de las Ciencias Naturales, Hydrobiologia, 2, 43–51, 1981.
Brady, H. B.: Notes on some of the reticularian Rhizopoda of the “Challenger” Expedition; Part I. On new or little known arenaceous types, Q. J. Microsc. Sci., 19, 20–67, 1879.
Brewer, P. and Peltzer, E.: Limits to Marine Life, Science, 324, 347–348, https://doi.org/10.1126/science.1170756, 2009.
Brönnimann, P., Van Dover, C. L., and Whittaker, J. E.: Abyssotherma pacifica, n. gen., n. sp., a recent remaneicid (Foraminiferida, remaneicacea) from the East Pacific Rise, Micropaleontology, 35, 142–149, https://doi.org/10.2307/1485465, 1989
Burkett, A. M., Rathburn, A. E., Pérez, M. E., Levin, L. A., Cha, H., and Rouse, G. W.: Phylogenetic placement of Cibicidoides wuellerstorfi (Schwager, 1866) from methane seeps and non-seep habitats on the Pacific margin, Geobiology, 13, 44–52, https://doi.org/10.1111/gbi.12118, 2015.
Burkett, A. M., Rathburn, A. E., Pérez, M. E., Levin, L. A, and Martin, J. B.: Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments, Deep-Sea Res. Pt. I, 117, 39–50, https://doi.org/10.1016/j.dsr.2016.08.011, 2016.
Buzas, M. A. and Gibson, T. G.: Species diversity: Benthonic foraminifera in western North Atlantic, Science, 163, 72–75, https://doi.org/10.1126/science.163.3862.72, 1969.
Carbotte, S. M., Arko, R., Chayes, D. N., Haxby, W., Lehnert, K., O'Hara, S., Ryan, W. B. F., Weissel, R. A., Shipley, T., Gahagan, L., Johnson, K., and Shank, T.: New Integrated Data Management System for Ridge2000 and MARGINS Research, EOS T. Am. Ggeophys. Un., 85, 553–560, https://doi.org/10.1029/2004EO510002, 2004.
Cave, R. R., German, C. R., Thomson, J., and Nesbitt, R.W.: Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′ N on the Mid-Atlantic Ridge, Geochim. Cosmochim. Ac., 66, 1905–1923, https://doi.org/10.1016/S0016-7037(02)00823-2, 2002.
Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N.: Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′ N, MAR), Chem. Geol., 191, 345–359, https://doi.org/10.1016/S0009-2541(02)00134-1, 2002.
Chung, S.-N., Lee, K., Feely, R. A., Sabine, C. L., Millero, F. J., Wanninkhof, R., Bullister, J. L., Key, R. M., and Peng, T.-H.: Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry, Global Biogeochem. Cy., 17, 1093, https://doi.org/10.1029/2002GB002001, 2003.
Corliss, B. H., Brown, C. W., Sun, X., and Showers, W. J.: Deep-sea benthic diversity linked to seasonality of pelagic productivity, Deep-Sea Res. Pt. I, 56, 835–841, https://doi.org/10.1016/j.dsr.2008.12.009, 2009.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote calcification by elevating their intracellular pH, P. Natl. Acad. Sci., 106, 15374–15378, https://doi.org/10.1073/pnas.0904306106, 2009.
d'Orbigny, A. D.: Tableau méthodique de la classe des Céphalopodes, Annales des Sciences Naturelles, 7, 245–314, 1826.
Douglas, R. G.: Paleoecology of Continental Margin Basins: A modern case history from the borderland of Southern California, Depositional System of Active Continental Margin Basins-Short Course Notes, edited by: Douglas, R. G., Colburn, I. P., and Gorsline, D. S., 121–156, Pacific Section SEPM Short Course Notes, https://archives.datapages.com/data/pac_sepm/031/031001/pdfs/121.htm (last access: 26 July 2025), 1981.
Douville, E., Charlou, J. L., Oelkers, E. H., Bienvenu, P., Jove Colon, C. F., Donval, J. P., Fouquet, Y., Prieur, D., and Appriou, P.: The rainbow vent fluids (36°14′ N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids, Chem. Geol., 184, 37–48, https://doi.org/10.1016/S0009-2541(01)00351-5, 2002.
Duros, P., Fontanier, C., de Stigter, H. C., Cesbron, F., Metzger, E., and Jorissen, F. J.: Live and dead benthic foraminiferal faunas from Whittard Canyon (NE Atlantic): Focus on taphonomic processes and paleo-environmental applications, Mar. Micropaleontol., 94–95, 25–44, https://doi.org/10.1016/j.marmicro.2012.05.004, 2012.
Earland, A.: Foraminifera, Part III, The Falklands sector of the Antarctic (excluding South Georgia), Discovery Reports, University Press, Cambridge, 208 pp., 1934.
Eason, D. E., Dunn, R. A., Canales, J. P., and Sohn, R. A.: Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35°45′–36°35′ N), Geochem. Geophy, Geosy., 17, 3560–3579, https://doi.org/10.1002/2016GC006433, 2016.
Edmonds, H. N. and German, C. R.: Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge, Geochim. Cosmochim. Ac., 68, 759–772, https://doi.org/10.1016/S0016-7037(03)00498-8, 2004.
Edwards, R. and Wright, A.: Chapter 13 – Foraminifera, in: Handbook of sea-level research, edited by: Shennan, I., Long, A. J., and Horton, B. P., John Wiley & Sons, Ltd., Chichester, 191–217, https://doi.org/10.1002/9781118452547, 2015.
Feely, R. A., Trefry, J. H., Massoth, G. J., and Metz, S.: A comparison of the scavenging of phosphorus and arsenic from seawater by hydrothermal iron oxyhydroxides in the Atlantic and Pacific Oceans, Deep-Sea Res., 38, 617–623, https://doi.org/10.1016/0198-0149(91)90001-V, 1991.
Flint, J. M.: Recent Foraminifera: a descriptive catalogue of specimens dredged by the U.S. Fish Commission steamer Albatross, Report of the United States National Museum, 249–349, 1899.
Fontanier, C., Jorissen, F. J., Chaillou, G., David, C., Anschutz, P., and Lafon, V.: Seasonal and interannual variability of benthic foraminiferal faunas at 550 m depth in the Bay of Biscay, Deep-Sea Res. Pt. I, 50, 457–494, https://doi.org/10.1016/S0967-0637(02)00167-X, 2003.
German, C. R. and Von Damm, K. L.: Hydrothermal Processes, Treatise on Geochemistry, 6, 181–222, https://doi.org/10.1016/B0-08-043751-6/06109-0, 2003.
German, C. R., Klinkhammer, G. P., and Rudnicki, M. D.: The Rainbow hydrothermal plume, 36°15′ N, MAR, Geophys. Res. Lett., 23, 2979–2982, https://doi.org/10.1029/96GL02883, 1996.
Goldstein, S. T.: Foraminifera: A biological overview, in: Modern Foraminifera, edited by: Sen Gupta, B., Kluwer Academic Publishers, 37–55, https://doi.org/10.1007/0-306-48104-9, 1999.
Gollner, S., Zekely, J., Govenar, B., Le Bris, N., Nemeschkal, H. L., Fisher, C. R., and Bright, M.: Tubeworm-associated permanent meiobenthic communities from two chemically different hydrothermal vent sites on the East Pacific Rise, Mar. Ecol.-Prog. Ser., 337, 39–49, https://doi.org/10.3354/meps337039, 2007.
Gollner, S., Riemer, B., Martínez Arbizu, P., Le Bris, N., and Bright, M.: Diversity of meiofauna from the 9°50′ N East Pacific Rise across a gradient of hydrothermal fluid emissions, PloS One, 5, E12321, https://doi.org/10.1371/journal.pone.0012321, 2010.
Gooday, A. J.: A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea, Nature, 332, 70–73, https://doi.org/10.1038/332070a0, 1988.
Gooday, A. J.: Biodiversity of foraminifera and other protists in the deep sea: scales and patterns, Belg. J. Zool., 129, 61–80, 1999.
Gooday, A. J.: Benthic Foraminifera (Protista) as Tools in Deep-water Palaeoceanography: Environmental Influences on Faunal Characteristics, Adv. Mar. Biol., 46, 1–90, https://doi.org/10.1016/S0065-2881(03)46002-1, 2003.
Gooday, A. J. and Rathburn, A. E.: Temporal variability in living deep-sea benthic foraminifera: a review, Earth-Sci. Rev., 46, 187–212, https://doi.org/10.1016/S0012-8252(99)00010-0, 1999.
Gooday, A. J., Bett, B. J., and Pratt, D. N.: Direct observation of episodic growth in an abyssal xenophyophore (Protista), Deep-Sea Res. Pt. I, 40, 2131–2143, https://doi.org/10.1016/0967-0637(93)90094-J, 1993.
Gooday, A. J., Bett, B. J., Shires, R., and Lambshead, P. J. D.: Deep-sea benthic foraminiferal species diversity in the NE Atlantic and NW Arabian sea: a synthesis, Deep-Sea Res. Pt. II, 45, 165–201, https://doi.org/10.1016/S0967-0645(97)00041-6, 1998.
Gooday, A. J., Aranda da Silva, A., and Pawlowski, J.: Xenophyophores (Rhizaria, Foraminifera) from the Nazaré Canyon (Portuguese margin, NE Atlantic), Deep-Sea Res. Pt. II, 58, 2401–2419, https://doi.org/10.1016/j.dsr2.2011.04.005, 2011.
Gooday, A. J., Rothe, N, and Pearce, R. B.: New and poorly known benthic foraminifera (Protista, Rhizaria) inhabiting the shells of planktonic foraminifera on the bathyal Mid-Atlantic Ridge, Mar. Biol. Res., 9, 447–461, https://doi.org/10.1080/17451000.2012.750365, 2013.
Gooday, A. J., Durden, J. M., Holzmann, M., Pawlowski, J., and Smith, C. R.: Xenophyophores (Rhizaria, Foraminifera), including four new species and two new genera, from the western Clarion-Clipperton Zone (abyssal equatorial Pacific), Eur. J. Protistol., 75, 125715, https://doi.org/10.1016/j.ejop.2020.125715, 2020.
Haalboom, S., Price, D. M., Mienis, F., van Bleijswijk, J. D. L., de Stigter, H. C., Witte, H. J., Reichart, G.-J., and Duineveld, G. C. A.: Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge, Biogeosciences, 17, 2499–2519, https://doi.org/10.5194/bg-17-2499-2020, 2020.
Hammer, O., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 4, 1–9, 2001.
Haq, B. U. and Boersma, A. (Eds.): Introduction to Mar. Micropaleontol., Elsevier, New York, 376 pp., ISBN 9780444826725, 1978.
Hashimoto, J., Ohta, S., Gamo, T., Chiba, H., Yamaguchi, T., Tsuchida, S., Okudaira, T., Watabe, H., Yamanaka, T., and Kitazawa, M.: First Hydrothermal Vent Communities from the Indian Ocean Discovered, Zool. Sci., 18, 717–721, https://doi.org/10.2108/zsj.18.717, 2001.
Heinz, P. and Hemleben, Ch.: Regional and seasonal variations of recent benthic deep-sea foraminifera in the Arabian Sea, Deep-Sea Res., 50, 435–447, https://doi.org/10.1016/S0967-0637(03)00014-1, 2003.
Hermelin, J. O. R. and Scott, D. B.: Recent Benthic Foraminifera from the Central North Atlantic, Micropaleontology, 31, 199–220, 1985.
Holbourn, A. E. and Henderson, A. S.: Re-illustration and Revised Taxonomy for Selected Deep-sea Benthic Foraminifers, Palaeontol. Electron., 4, 34 pp., https://palaeo-electronica.org/2001_2/foram/issue2_01.htm (last access: 26 July 2025), 2002.
Jannasch, H. W. and Mottl, M. J.: Geomicrobiology of Deep-Sea Hydrothermal Vents, Science, 229, 717–725, https://doi.org/10.1126/science.229.4715.717, 1985.
Jonasson, K. E. and Schroeder-Adams, C. J.: Encrusting agglutinated foraminifera on indurated sediment at a hydrothermal venting area on the Juan de Fuca Ridge, northeast Pacific Ocean, J. Foramin. Res., 26, 137–149, https://doi.org/10.2113/gsjfr.26.2.137, 1996.
Jonasson, K. E., Schröder-Adams, C. J., and Patterson, R. T.: Benthic foraminiferal distribution at Middle Valley, Juan de Fuca Ridge, a northeast Pacific hydrothermal venting site, Mar. Micropaleontol., 25, 151–167, 1995.
Jones, R. W. (Ed.): The Challenger Foraminifera, Oxford University Press, 149 pp., ISBN 9780198540960, 1994.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, Developments in Marine Geology, 1, 263–325, https://doi.org/10.1016/S1572-5480(07)01012-3, 2007.
Kurbjeweit, F., Schmiedl, G., Schiebel, R., Hemleben, C., Pfannkuche, O., Wallmann, K., and Schäfer, P.: Distribution, biomass and diversity of benthic foraminifera in relation to sediment geochemistry in the Arabian Sea, Deep-Sea Res. Pt. II, 47, 2913–2955, https://doi.org/10.1016/S0967-0645(00)00053-9, 2000.
Levin, L. A. and Thomas, C. L.: The ecology of xenophyophores (Protista) on eastern Pacific seamounts, Deep Sea Res., 35, 2003–2027, https://doi.org/10.1016/0198-0149(88)90122-7, 1988.
Lejzerowicz, F., Esling, P., and Pawlowski, J.: Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing, Deep-Sea Res. Pt. II, 108, 17–26, https://doi.org/10.1016/j.dsr2.2014.07.018, 2014.
Lepš, J. and Šmilauer, P. (Eds.): Multivariate Analysis of Ecological Data using CANOCO, Cambridge: Cambridge University Press, 269 pp., https://doi.org/10.1017/CBO9781139627061, 2003.
Linnaeus, C. (Ed.): Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Editio decima, reformata, 1, 10th edn., Laurentius Salvius, Holmiae, 824 pp., https://doi.org/10.5962/bhl.title.542, 1758.
Lutze, G. F. and Thiel, H.: Epibenthic foraminifera from elevated microhabitats; Cibicidoides wuellerstorfi and Planulina ariminensis, J. Foramin. Res., 19, 153–158, https://doi.org/10.2113/gsjfr.19.2.153, 1989.
Mackensen, A. and Douglas, R. G.: Down-core distribution of live and dead deep-water benthic foraminifera in box cores from the Weddell Sea and the California continental borderland, Deep-Sea Res., 36, 879–900, https://doi.org/10.1016/0198-0149(89)90034-4, 1989.
Mackensen, A., Schmiedl, G., Harloff, J., and Giese, M.: Deep-Sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation, Micropaleontology, 41, 342–358, https://doi.org/10.2307/1485808, 1995.
Martins, M. V. A., Hohenegger, J., Frontalini, F., Miranda, P., Rodrigues, M. A. da C., and Dias, J. M. A.: Comparison between the dead and living benthic foraminiferal assemblages in Aveiro Lagoon (Portugal), Palaeogeogr. Palaeocl., 455, 16–32, https://doi.org/10.1016/j.palaeo.2016.05.003, 2016.
Mojtahid, M., Griveaud, C., Fontanier, C., Anschutz, P., and Jorissen, F. J.: Live benthic foraminiferal faunas along a bathymetrical transect (140–4800 m) in the Bay of Biscay (NE Atlantic), Les foraminifères benthiques vivants le long d'un transect bathymétrique (140–4800 m) dans le Golfe de Gascogne (Atlantique NE), Revue de micropaléontologie, 53, 139–162, https://doi.org/10.1016/j.revmic.2010.01.002, 2010.
Molina-Cruz, A. and Ayala-López, A.: Influence of the Hydrothermal Vents on the Distribution of Benthic Foraminifera from the Guayamas Basin, Mexico, Geo-Mar. Lett., 8, 49–56, https://doi.org/10.1007/BF02238006, 1988.
Montfort, P. (Ed.): Conchyliologie systématique et classification méthodique des coquilles, Paris, Schoell, Vol. 1, lxxxvii + 409 [1808] pp., Vol. 2, 676 + 16 [1810 (before 28 May)] pp., https://doi.org/10.5962/bhl.title.10571, 1808–1810.
Murray, J. W. (Ed.): Ecology and Palaeoecology of Benthic Foraminifera, Routledge, London, 408 pp., https://doi.org/10.4324/9781315846101, 1991.
Murray, J. W. (Ed.): Ecology and Applications of Benthic Foraminifera, Cambridge University Press, 426 pp., https://doi.org/10.1017/CBO9780511535529, 2006.
Murray, J. W. and Bowser, S. S.: Mortality, protoplasm decay rate, and reliability of staining techniques to recognize “living” foraminifera: a review, J. Foramin. Res., 30, 66–77, https://doi.org/10.2113/0300066, 2000.
Okada, S., Chen, C., Watsuji, T., Nishizawa, M., Suzuki, Y., Sano, Y., Bissessur, D., Deguchi. S., and Takai, K.: The making of natural iron sulfide nanoparticles in a hot vent snail, P. Natl. Acad. Sci., 116, 20376–20381, https:///doi.org/10.1073/pnas.1908533116, 2019.
Panieri, G.: The effect of shallow marine hydrothermal vent activity on benthic foraminifera (Aeolian Arc, Tyrrhenian Sea), J. Foramin. Res., 36, 3–14, https://doi.org/10.2113/36.1.3, 2006.
Pawlowski, J., Lee, J. J., and Gooday, A.: Microforaminifera – Perspective on a Neglected Group of Foraminifera, Arch. für Protistenkd., 143, 271–284, https://doi.org/10.1016/S0003-9365(11)80324-6, 1993.
Phleger, F. B.: Foraminiferal ecology and marine geology, Mar. Geol., 1, 16–43, https://doi.org/10.1016/0025-3227(64)90004-0, 1964.
Phleger, F. B.: Benthic foraminiferids as indicators of organic production in marginal marine areas, Maritime Sediments Special Publication, 1, 107–117, 1976.
Phleger, F. B., Parker, F. L., and Peirson, J. F.: North Atlantic Foraminifera, Reports of the Swedish Deep-Sea Expedition, 7, 122 pp., 1953.
Rau, W. W.: Foraminifera from the Porter Shale (Lincoln Formation), Grays Harbor County, Washington, J. Paleontol., 22, 152–174, https://www.jstor.org/stable/1299389 (last access: 26 July 2025), 1948.
Resing, J. A., Sedwick, P. N.; German, C. R., Jenkins, W. J., Moffett, J. W., Sohst, B. M., and Tagliabue, A.: Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean, Nature, 523, 200–203, https://doi.org/10.1038/nature14577, 2015.
Rhumbler, L.: Die Foraminiferen (Talamophoren) der Plankton-Expedition, Zugleich Entwurf eines natürlichen Systems der Foraminiferen auf Grund selektionistischer und mechanisch-physiologischer Faktoren, Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, 3, 331 pp., https://www.biodiversitylibrary.org/page/2132592 (last access: 27 July 2025), 1911.
Ricketts, E. R., Kennett, J. P., Hill, T. M., and Barry, J. P.: Effects of CO2 hydrate on deep-sea foraminiferal assemblages, Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, 3, 839–847, 2005.
Ricketts, E. R., Kennett, J. P., Hill, T. M., and Barry, J. P.: Effects of carbon dioxide sequestration on California margin deep-sea foraminiferal assemblages, Mar. Micropaleontol., 72, 165–175, https://doi.org/10.1016/j.marmicro.2009.04.005, 2009.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 14 December 2022), 2021.
Schmiedl, G., Mackensen, A., and Müller, P. J.: Recent benthic foraminifera from the eastern South Atlantic Ocean: Dependence on food supply and water masses, Mar. Micropaleontol., 32, 249–287, 1997.
Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., and Spezzaferri, S.: The FOBIMO (FOraminiferal BIo-MOnitoring) initiative-Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies, Mar. Micropaleontol., 94, 1–13, https://doi.org/10.1016/j.marmicro.2012.06.001, 2012.
Schröder, C. J. (Ed.): Deep-water arenaceous foraminifera in the northwest Atlantic Ocean, Canadian Technical Report of Hydrography and Ocean Science, 71, 191 pp., Fisheries and Oceans, Canada, http://hdl.handle.net/10222/75109 (last access: 26 July 2025), 1986.
Schwager, C.: Fossile Foraminiferen von Kar Nikobar. Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859 unter den Befehlen des Commodore B. von Wüllerstorf-Urbair, Geologischer Theil (Zweite Abtheilung, Paläontologische Mittheilungen), 2, 187–268, 1866.
Severmann, S., Johnson, C. M., Beard, B. L., German, C. R., Edmonds, H. N., Chiba, H., and Green, D. R. H.: The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′ N, Earth Planet. Sc. Lett., 225, 63–76, https://doi.org/10.1016/j.epsl.2004.06.001, 2004.
Seyfried Jr., W. E., Pester, N. J., Ding, K., and Rough, M.: Vent fluid chemistry of the Rainbow hydrothermal system (36° N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes, Geochim. Cosmochim. Ac., 75, 1574–1593, https://doi.org/10.1016/j.gca.2011.01.001, 2011.
Shannon, C. E. and Weaver, W. W. (Eds.): The mathematical theory of communications, University of Illinois Press, Urbana, 144 pp., ISBN 9780252725487, 1963.
Shepherd, A. S., Rathburn, A. E., and Pérez, M. E.: Living foraminiferal assemblages from the Southern California margin: A comparison of the >150, 63–150, and >63 µm fractions, Mar. Micropaleontol., 65, 54–77, https://doi.org/10.1016/j.marmicro.2007.06.001, 2007.
Stankovic, S., Kalaba, P., and Stankovic, A. R.: Biota as toxic metal indicators, Environ. Chem. Lett., 12, 63–84, https://doi.org/10.1007/s10311-013-0430-6, 2014.
Steiner, Z., Lazar, B., Erez, J., and Turchyn, A. V.: Comparing Rhizon samplers and centrifugation for pore-water separation in studies of the marine carbonate system in sediments, Limnol. Oceanogr.-Meth., 16, 828–839, https://doi.org/10.1002/lom3.10286, 2018.
Tendal, O. S. and Gooday, A. J.: Xenophyophoria (Rhizopoda, Protozoa) in bottom photographs from the bathyal and abyssal NE Atlantic, Oceanol. Acta, 4, 415–422, 1981.
ter Braak, C. J. F.: Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis, Ecology, 67, 1167–1179, https://doi.org/10.2307/1938672, 1986.
Thurnherr, A. M. and Richards, K. J.: Hydrography and high-temperature heat flux of the Rainbow hydrothermal site (36°14′ N, Mid-Atlantic Ridge), J. Geophys. Res., 106, 9411–9426, https://doi.org/10.1029/2000JC900164, 2001.
Thurnherr, A. M., Richards, K. J., German, C. R., Lane-Serff, G. F., and Speer, K. G.: Flow and mixing in the rift valley of the Mid-Atlantic Ridge, J. Phys. Oceanogr., 32, 1763–1778, https://doi.org/10.1175/1520-0485(2002)032<1763:FAMITR>2.0.CO;2, 2002.
Todd, R. and Blackmon, P.: Calcite and Aragonite in Foraminifera, J. Paleontol., 30, 217–219, 1956.
Van Dover, C. L., Berg Jr., C. J., and Turner, R. D.: Recruitment of marine invertebrates to hard substrates at deep-sea hydrothermal vents on the East Pacific Rise and Galapagos spreading center, Deep-Sea Res., 35, 1833–1849, https://doi.org/10.1016/0198-0149(88)90052-0, 1988.
Walker, D. A., Linton, A. E., and Schafer, C. T.: Sudan Black B: A superior stain to Rose Bengal for distinguishing living from nonliving foraminifera, J. Foramin. Res., 4, 205–215, 1974.
Walton, W.: Techniques for recognition of living foraminifera, Contribution of Cushman, Foundation Foraminiferal Research, 3, 56–60, 1952.
Wirth, R.: Colonization of Black Smokers by Hyperthermophilic Microorganisms, Trends Microbiol., 25, 92–99, https://doi.org/10.1016/j.tim.2016.11.002, 2016.
Wollenburg, J. E. and Mackensen, A.: Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity, Mar. Micropaleontol., 34, 153–185, https://doi.org/10.1016/S0377-8398(98)00007-3, 1998.
Wollenburg, J. E., Bijma, J., Cremer, C., Bickmeyer, U., and Zittier, Z. M. C.: Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure, Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, 2021.
WoRMS Editorial Board: World Register of Marine Species, VLIZ, https://www.marinespecies.org (last access: 30 November 2022), https://doi.org/10.14284/170, 2022.
Zielinski, F. U., Gennerich, H.-H., Borowski, C., Wenzhöfer, F., and Dubilier, N.: In situ measurements of hydrogen sulfide, oxygen, and temperature in diffuse fluids of an ultramafic-hosted hydrothermal vent field (Logatchev, 14°45′ N, Mid-Atlantic Ridge): Implications for chemosymbiotic bathymodiolin mussels, Geochem. Geophy. Geosy., 12, Q0AE04, https://doi.org/10.1029/2011GC003632, 2011.
Zierenberg, R. A., Adams, M. W. W., and Arp, A. J.: Life in extreme environments: Hydrothermal vents, P. Natl. Acad. Sci., 97, 12961–12962, https://doi.org/10.1073/pnas.210395997, 2000.
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a...