Articles | Volume 44, issue 2
https://doi.org/10.5194/jm-44-555-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-44-555-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Paleoproductivity and coccolith carbonate export in the northern Bay of Bengal during the late Pleistocene
Institute of Geology and Palaeontology, Faculty of Sciences, Charles University, Prague, Czech Republic
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Luc Beaufort
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Franck Bassinot
Laboratoire des Sciences du Climat et de l'Environnement – LSCE, Gif sur Yvette CEDEX, France
Katarína Holcová
Institute of Geology and Palaeontology, Faculty of Sciences, Charles University, Prague, Czech Republic
Related authors
No articles found.
Heather M. Stoll, Clara Bolton, Madalina Jaggi, Alfredo Martinez-Garcia, and Stefano M. Bernasconi
Clim. Past, 21, 2189–2203, https://doi.org/10.5194/cp-21-2189-2025, https://doi.org/10.5194/cp-21-2189-2025, 2025
Short summary
Short summary
In periods of high atmospheric CO2 many proxies suggest more extreme past polar warming than is simulated by current coupled climate models. Providing new data on high latitude temperatures in the South Atlantic over the last 15 million years using clumped isotope thermometry, we show that absolute temperatures may not have been as warm as indicated by some biomarker based proxy climate records.
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Deborah N. Tangunan, Ian R. Hall, Luc Beaufort, Melissa A. Berke, Alexandra Nederbragt, and Paul R. Bown
EGUsphere, https://doi.org/10.5194/egusphere-2025-3557, https://doi.org/10.5194/egusphere-2025-3557, 2025
Short summary
Short summary
We examined ocean sediments from the tropical Indian Ocean to study water column structure and carbon cycling during the mid-Piacenzian Warm Period, about 3 million years ago, when atmospheric carbon dioxide levels were similar to today. Our findings reveal persistent upper ocean stratification and niche separation among plankton groups, which limited nutrient mixing and carbon export to the deep ocean. These results highlight how ocean layering can influence climate feedback in a warmer world.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Luc Beaufort and Anta-Clarisse Sarr
Clim. Past, 20, 1283–1301, https://doi.org/10.5194/cp-20-1283-2024, https://doi.org/10.5194/cp-20-1283-2024, 2024
Short summary
Short summary
At present, under low eccentricity, the tropical ocean experiences a limited seasonality. Based on eight climate simulations of sea surface temperature and primary production, we show that, during high-eccentricity times, significant seasons existed in the tropics due to annual changes in the Earth–Sun distance. Those tropical seasons are slowly shifting in the calendar year to be distinct from classical seasons. Their past dynamics should have influenced phenomena like ENSO and monsoons.
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
Biogeosciences, 21, 1601–1611, https://doi.org/10.5194/bg-21-1601-2024, https://doi.org/10.5194/bg-21-1601-2024, 2024
Short summary
Short summary
Coccolithophores contribute to the global carbon cycle and their calcite structures (coccoliths) are used as a palaeoproxy to understand past oceanographic conditions. Here, we compared three frequently used methods to estimate coccolith mass from the model species Emiliania huxleyi and the results allow for a high level of comparability between the methods, facilitating future comparisons and consolidation of mass changes observed from ecophysiological and biogeochemical studies.
Ruifang Ma, Sophie Sépulcre, Laetitia Licari, Frédéric Haurine, Franck Bassinot, Zhaojie Yu, and Christophe Colin
Clim. Past, 18, 1757–1774, https://doi.org/10.5194/cp-18-1757-2022, https://doi.org/10.5194/cp-18-1757-2022, 2022
Short summary
Short summary
We provide high-resolution Cd / Ca records of benthic foraminifera on two cores from the northern Indian Ocean since the last deglaciation. We reconstructed intermediate Cdw records based on Cd / Ca. Combined with benthic foraminiferal assemblages, we show that intermediate Cdw during the last deglaciation was mainly influenced by the ventilation of intermediate–bottom water masses. Thereafter during the Holocene surface productivity is the main forcing factor related to monsoon precipitation.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
Martin Tetard, Laetitia Licari, Ekaterina Ovsepyan, Kazuyo Tachikawa, and Luc Beaufort
Biogeosciences, 18, 2827–2841, https://doi.org/10.5194/bg-18-2827-2021, https://doi.org/10.5194/bg-18-2827-2021, 2021
Short summary
Short summary
Oxygen minimum zones are oceanic regions almost devoid of dissolved oxygen and are currently expanding due to global warming. Investigation of their past behaviour will allow better understanding of these areas and better prediction of their future evolution. A new method to estimate past [O2] was developed based on morphometric measurements of benthic foraminifera. This method and two other approaches based on foraminifera assemblages and porosity were calibrated using 45 core tops worldwide.
Luc Beaufort, Yves Gally, Baptiste Suchéras-Marx, Patrick Ferrand, and Julien Duboisset
Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, https://doi.org/10.5194/bg-18-775-2021, 2021
Short summary
Short summary
The coccoliths are major contributors to the particulate inorganic carbon in the ocean. They are extremely difficult to weigh because they are too small to be manipulated. We propose a universal method to measure thickness and weight of fine calcite using polarizing microscopy that does not require fine-tuning of the light or a calibration process. This method named "bidirectional circular polarization" uses two images taken with two directions of a circular polarizer.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Cited articles
Ahagon, N., Tanaka, Y., and Ujiié, H.: Florisphaera profunda, a possible nannoplankton indicator of late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific, Marine Micropaleontology, 22, 255–273, https://doi.org/10.1016/0377-8398(93)90047-2, 1993.
Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model, Dynamics and Statistics of the Climate System, 2, https://doi.org/10.1093/climsys/dzx002, 2017.
Banerjee, B., Raza, W., Ahmad, S. M., Farnaaz, S., Babu, E., Shukla, N., Mascarenhas-Pereira, M. B. L., and Mallick, M.: A 70 kyr Record of Monsoon-induced Marine Productivity Changes, Terrigenous Flux and Weathering Variations in the Southern Bay of Bengal, Jour. Geol. Soc. India, 100, 47–55, https://doi.org/10.17491/jgsi/2024/172982, 2024.
Bassinot, F., Bolton, C., Srivastava, M., Beaufort, L., and Holcová, K.: Globigerinoides ruber oxygen isotope data for the northern Bay of Bengal core MD12-3412, SEANOE [data set], https://doi.org/10.17882/109119, 2025.
Baumann, K.-H., Andruleit, H., Böckel, B., Geisen, M., and Kinkel, H.: The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and palaeoproductivity: a review, Paläontol. Z., 79, 93–112, https://doi.org/10.1007/BF03021756, 2005.
Beaufort, L. and Dollfus, D.: Automatic recognition of coccoliths by dynamical neural networks, Marine Micropaleontology, 51, 57–73, https://doi.org/10.1016/j.marmicro.2003.09.003, 2004.
Beaufort, L., Bassinot, F., and Vincent, E.: Primary Production Response to Orbitally Induced Variations of the Southern Oscillation in the Equatorial Indian Ocean, in: Reconstructing Ocean History, edited by: Abrantes, F. and Mix, A. C., Springer US, Boston, MA, 245–271, https://doi.org/10.1007/978-1-4615-4197-4_15, 1999.
Beaufort, L., Barbarin, N., and Gally, Y.: Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths, Nature protocols, 9, 633–642, 2014.
Beaufort, L., Gally, Y., Suchéras-Marx, B., Ferrand, P., and Duboisset, J.: Technical note: A universal method for measuring the thickness of microscopic calcite crystals, based on bidirectional circular polarization, Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, 2021.
Beaufort, L., Bolton, C. T., Sarr, A.-C., Suchéras-Marx, B., Rosenthal, Y., Donnadieu, Y., Barbarin, N., Bova, S., Cornuault, P., Gally, Y., Gray, E., Mazur, J.-C., and Tetard, M.: Cyclic evolution of phytoplankton forced by changes in tropical seasonality, Nature, 601, 79–84, https://doi.org/10.1038/s41586-021-04195-7, 2022.
Bhaumik, A. K., Chaudhuri, S., Kumar, S., Mohanty, S., Roy, L., Ghosh, A. K., Chowdhury, S., and Behara, T.: Biostratigraphy and sedimentation rate estimation of Quaternary sediments of the Krishna-Godavari Basin, Bay of Bengal: Evidence from NGHP-01 Holes 10D, 5C and 3B, Micropaleontology, 70, 239, https://doi.org/10.47894/mpal.70.3.03, 2024.
Bolton, C. T. and Stoll, H. M.: Coccoliths as Recorders of Paleoceanography and Paleoclimate over the Past 66 Million Years, Annual Review of Earth and Planetary Sciences, 53, 169–194, https://doi.org/10.1146/annurev-earth-040623-103211, 2025.
Bolton, C. T., Chang, L., Clemens, S. C., Kodama, K., Ikehara, M., Medina-Elizalde, M., Paterson, G. A., Roberts, A. P., Rohling, E. J., Yamamoto, Y., and Zhao, X.: A 500,000 year record of Indian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column structure, Quaternary Science Reviews, 77, 167–180, https://doi.org/10.1016/j.quascirev.2013.07.031, 2013.
Bolton, C. T., Thant, P. W., Philips, S. C., Beaufort, L., and Thirumalai, K.: Last glacial to Holocene sedimentation patterns and coccolithophore dynamics in the northwestern Bay of Bengal in response to South Asian monsoon strengthening, J. Nannoplankton Res., 42, 27–27, https://doi.org/10.58998/3210, 2024.
Caley, T., Malaizé, B., Zaragosi, S., Rossignol, L., Bourget, J., Eynaud, F., Martinez, P., Giraudeau, J., Charlier, K., and Ellouz-Zimmermann, N.: New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon, Earth and Planetary Science Letters, 308, 433–444, https://doi.org/10.1016/j.epsl.2011.06.019, 2011.
Chakraborty, A., Ghosh, A. K., and Saxena, S.: Neogene calcareous nannofossil biostratigraphy of the northern Indian Ocean: Implications for palaeoceanography and palaeoecology, Palaeogeography, Palaeoclimatology, Palaeoecology, 579, 110583, https://doi.org/10.1016/j.palaeo.2021.110583, 2021.
Cheng, H., Li, H., Sha, L., Sinha, A., Shi, Z., Yin, Q., Lu, Z., Zhao, D., Cai, Y., Hu, Y., Hao, Q., Tian, J., Kathayat, G., Dong, X., Zhao, J., and Zhang, H.: Milankovitch theory and monsoon, The Innovation, 3, 100338, https://doi.org/10.1016/j.xinn.2022.100338, 2022.
Clemens, S. C., Kuhnt, W., LeVay, L. J., and the Expedition 353 Scientists: Indian Monsoon Rainfall, Proceedings of the International Ocean Discovery Program, 353: College Station, TX (International Ocean Discovery Program), 2016.
Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N., Nilsson-Kerr, K., Rosenthal, Y., Anand, P., and McGrath, S. M.: Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: A test for future predictions, Sci. Adv., 7, eabg3848, https://doi.org/10.1126/sciadv.abg3848, 2021.
Curray, J. R., Emmel, F. J., and Moore, D. G.: The Bengal Fan: morphology, geometry, stratigraphy, history and processes, Marine and Petroleum Geology, 19, 1191–1223, https://doi.org/10.1016/S0264-8172(03)00035-7, 2002.
Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D. M., Aumont, O., Naqvi, S. W. A., and Maury, O.: Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean, Biogeosciences, 10, 6677–6698, https://doi.org/10.5194/bg-10-6677-2013, 2013.
Da Silva, R., Mazumdar, A., Mapder, T., Peketi, A., Joshi, R. K., Shaji, A., Mahalakshmi, P., Sawant, B., Naik, B. G., Carvalho, M. A., and Molletti, S. K.: Salinity stratification controlled productivity variation over 300 ky in the Bay of Bengal, Sci. Rep., 7, 14439, https://doi.org/10.1038/s41598-017-14781-3, 2017.
Dollfus, D. and Beaufort, L.: Fat neural network for recognition of position-normalised objects, Neural Networks, 12, 553–560, https://doi.org/10.1016/S0893-6080(99)00011-8, 1999.
Fauquembergue, K., Fournier, L., Zaragosi, S., Bassinot, F., Kissel, C., Malaizé, B., Caley, T., Moreno, E., and Bachelery, P.: Factors controlling frequency of turbidites in the Bengal fan during the last 248 kyr cal BP: Clues from a presently inactive channel, Marine Geology, 415, 105965, https://doi.org/10.1016/j.margeo.2019.105965, 2019.
Flores, J. A., Sierro, F. J., and Raffi, I. (Eds.): Proceedings of the Ocean Drilling Program, 138 Scientific Results, Ocean Drilling Program, https://doi.org/10.2973/odp.proc.sr.138.1995, 1995.
Flores, J. A., Johnson, J. E., Mejía-Molina, A. E., Álvarez, M. C., Sierro, F. J., Singh, S. D., Mahanti, S., and Giosan, L.: Sedimentation rates from calcareous nannofossil and planktonic foraminifera biostratigraphy in the Andaman Sea, northern Bay of Bengal, and eastern Arabian Sea, Marine and Petroleum Geology, 58, 425–437, https://doi.org/10.1016/j.marpetgeo.2014.08.011, 2014.
Gauns, M., Madhupratap, M., Ramaiah, N., Jyothibabu, R., Fernandes, V., Paul, J. T., and Prasanna Kumar, S.: Comparative accounts of biological productivity characteristics and estimates of carbon fluxes in the Arabian Sea and the Bay of Bengal, Deep Sea Research Part II: Topical Studies in Oceanography, 52, 2003–2017, https://doi.org/10.1016/j.dsr2.2005.05.009, 2005.
Giraudeau, J. and Beaufort, L.: Chapter ten coccolithophores: from extant populations to fossil assemblages, Developments in Marine Geology, 1, 409–439, 2007.
Gomes, H. R., Goes, J. I., and Saino, T.: Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal, Continental Shelf Research, 20, 313–330, https://doi.org/10.1016/S0278-4343(99)00072-2, 2000.
Hagino, K. and Okada, H.: Floral Response of Coccolithophores to Progressive Oligotrophication in the South Equatorial Current, Pacific Ocean, 2004.
Haridas, N. V., Banerji, U. S., Maya, K., and Padmalal, D.: Paleoclimatic and paleoceanographic records from the Bay of Bengal sediments during the last 30 ka, Journal of Asian Earth Sciences, 229, 105169, https://doi.org/10.1016/j.jseaes.2022.105169, 2022.
Hernández-Almeida, I., Ausín, B., Saavedra-Pellitero, M., Baumann, K.-H., and Stoll, H. M.: Quantitative reconstruction of primary productivity in low latitudes during the last glacial maximum and the mid-to-late Holocene from a global Florisphaera profunda calibration dataset, Quaternary Science Reviews, 205, 166–181, https://doi.org/10.1016/j.quascirev.2018.12.016, 2019.
Joussain, R., Colin, C., Liu, Z., Meynadier, L., Fournier, L., Fauquembergue, K., Zaragosi, S., Schmidt, F., Rojas, V., and Bassinot, F.: Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial-interglacial cycle, Quaternary Science Reviews, 148, 1–16, https://doi.org/10.1016/j.quascirev.2016.06.016, 2016.
Koné, V., Aumont, O., Lévy, M., and Resplandy, L.: Physical and biogeochemical controls of the phytoplankton seasonal cycle in the Indian Ocean: A modeling study, in: Geophysical Monograph Series, vol. 185, edited by: Wiggert, J. D., Hood, R. R., Naqvi, S. W. A., Brink, K. H., and Smith, S. L., American Geophysical Union, Washington, D. C., 147–166, https://doi.org/10.1029/2008GM000700, 2009.
Kuttippurath, J., Sunanda, N., Martin, M. V., and Chakraborty, K.: Tropical storms trigger phytoplankton blooms in the deserts of north Indian Ocean, npj Clim. Atmos. Sci., 4, 11, https://doi.org/10.1038/s41612-021-00166-x, 2021.
Lee, J., Kim, S., and Khim, B.-K.: A paleoproductivity shift in the northwestern Bay of Bengal (IODP Site U1445) across the Mid-Pleistocene transition in response to weakening of the Indian summer monsoon, Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110018, https://doi.org/10.1016/j.palaeo.2020.110018, 2020.
Lévy, M., Shankar, D., André, J. -M., Shenoi, S. S. C., Durand, F., and De Boyer Montégut, C.: Basin-wide seasonal evolution of the Indian Ocean's phytoplankton blooms, J. Geophys. Res., 112, 2007JC004090, https://doi.org/10.1029/2007JC004090, 2007.
Li, M., Hinnov, L., and Kump, L.: Acycle: Time-series analysis software for paleoclimate research and education, Computers & Geosciences, 127, 12–22, https://doi.org/10.1016/j.cageo.2019.02.011, 2019.
Li, S., Zhu, J., Jin, X., Feng, Y., Jiao, N., and Zhang, W.: Multifaceted contribution of coccolithophores to ocean carbon export, Ocean-Land-Atmos Res, olar.0049, https://doi.org/10.34133/olar.0049, 2024.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, 2004PA001071, https://doi.org/10.1029/2004PA001071, 2005.
Liu, H., Yun, M., Zhang, X., Zhang, G., Thangaraj, S., Huang, K., and Sun, J.: Biological Calcification Rate and Species-Specific Contributions of Coccolithophores to Total Calcite Inventory in the Eastern Indian Ocean, J. Geophys. Res.-Biogeosciences, 125, e2019JG005547, https://doi.org/10.1029/2019JG005547, 2020.
Longhurst, A. R.: Ecological Geography of the Sea, https://doi.org/10.1016/B978-0-12-455521-1.X5000-1, 2007.
Mark, D. F., Renne, P. R., Dymock, R. C., Smith, V. C., Simon, J. I., Morgan, L. E., Staff, R. A., Ellis, B. S., and Pearce, N. J. G.: High-precision 40Ar/39Ar dating of pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary, Quaternary Geochronology, 39, 1–23, https://doi.org/10.1016/j.quageo.2017.01.002, 2017.
Mergulhao, L. P., Guptha, M. V. S., Unger, D., and Murty, V. S. N.: Seasonality and variability of coccolithophore fluxes in response to diverse oceanographic regimes in the Bay of Bengal: Sediment trap results, Palaeogeography, Palaeoclimatology, Palaeoecology, 371, 119–135, https://doi.org/10.1016/j.palaeo.2012.12.024, 2013.
Mignot, J., De Boyer Montégut, C., Lazar, A., and Cravatte, S.: Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas, J. Geophys. Res., 112, 2006JC003954, https://doi.org/10.1029/2006JC003954, 2007.
Molfino, B. and McIntyre, A.: Precessional Forcing of Nutricline Dynamics in the Equatorial Atlantic, Science, 249, 766–769, https://doi.org/10.1126/science.249.4970.766, 1990.
Moreno, E., Caroir, F., Fournier, L., Fauquembergue, K., Zaragosi, S., Joussain, R., Colin, C., Blanc-Valleron, M.-M., Baudin, F., De Garidel-Thoron, T., Valet, J. P., and Bassinot, F.: Magnetic fabric of Bengal fan sediments: Holocene record of sedimentary processes and turbidite activity from the Ganges-Brahmaputra river system, Marine Geology, 430, 106347, https://doi.org/10.1016/j.margeo.2020.106347, 2020.
Okada, H. and Wells, P.: Late Quaternary nannofossil indicators of climate change in two deep-sea cores associated with the Leeuwin Current off Western Australia, Palaeogeography, Palaeoclimatology, Palaeoecology, 131, 413–432, https://doi.org/10.1016/S0031-0182(97)00014-X, 1997.
Palanisamy, A., Veeran, Y., Alagudurai, S., and Balasubramaniyan, M.: Increase in Paleoproductivity Driven by Strengthening of Indian Summer Monsoon During Past ∼ 14 kyrs: Evidenced by Biogenic Silica Accumulation Rates at Southeastern Arabian Sea, JCC, 10, 77–86, https://doi.org/10.3233/JCC240025, 2024.
Panmei, C., Naidu, P. D., and Naik, S. S.: Variability of terrigenous input to the Bay of Bengal for the last ∼ 80 kyr: Implications on the Indian monsoon variability, Geo.-Mar. Lett., 38, 341–350, https://doi.org/10.1007/s00367-018-0538-6, 2018.
Phillips, S. C., Johnson, J. E., Giosan, L., and Rose, K.: Monsoon-influenced variation in productivity and lithogenic sediment flux since 110 ka in the offshore Mahanadi Basin, northern Bay of Bengal, Marine and Petroleum Geology, 58, 502–525, https://doi.org/10.1016/j.marpetgeo.2014.05.007, 2014.
Poulton, A. J., Adey, T. R., Balch, W. M., and Holligan, P. M.: Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export, Deep Sea Research Part II: Topical Studies in Oceanography, 54, 538–557, https://doi.org/10.1016/j.dsr2.2006.12.003, 2007.
Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., De Souza, S. N., Sardesai, S., and Madhupratap, M.: Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?, Geophysical Research Letters, 29, https://doi.org/10.1029/2002GL016013, 2002.
Quinn, P. S., Cortés, M. Y., and Bollmann, J.: Morphological variation in the deep ocean-dwelling coccolithophore Florisphaera profunda (Haptophyta), European Journal of Phycology, 40, 123–133, https://doi.org/10.1080/09670260400024667, 2005.
Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F.: A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years?, Quaternary Science Reviews, 25, 3113–3137, https://doi.org/10.1016/j.quascirev.2006.07.007, 2006.
Ramaswamy, V. and Gaye, B.: Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 53, 271–293, https://doi.org/10.1016/j.dsr.2005.11.003, 2006.
Rickaby, R. E. M., Bard, E., Sonzogni, C., Rostek, F., Beaufort, L., Barker, S., Rees, G., and Schrag, D. P.: Coccolith chemistry reveals secular variations in the global ocean carbon cycle?, Earth and Planetary Science Letters, 253, 83–95, https://doi.org/10.1016/j.epsl.2006.10.016, 2007.
Rixen, T., Gaye, B., and Emeis, K.-C.: The monsoon, carbon fluxes, and the organic carbon pump in the northern Indian Ocean, Progress in Oceanography, 175, 24–39, https://doi.org/10.1016/j.pocean.2019.03.001, 2019.
Robinson, M. M., Bartol, M., Bolton, C. T., Ding, X., Gariboldi, K., and Romero, O. E.: Biostratigraphy summary, Proceedings of the International Ocean Discovery Program Expedition reports, 353, https://doi.org/10.14379/iodp.proc.353.109.2016, 2016.
Saavedra-Pellitero, M., Hernández-Almeida, I., Cabarcos, E., Baumann, K.-H., Dunkley Jones, T., Sierro, F. J., and Flores, J.-A.: Coupled Coccolith-Based Temperature and Productivity High-Resolution Reconstructions in the Eastern Equatorial Pacific During the Last Deglaciation and the Holocene, Front. Mar. Sci., 9, https://doi.org/10.3389/fmars.2022.865846, 2022.
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian Ocean, Progress in Oceanography, 51, 1–123, https://doi.org/10.1016/S0079-6611(01)00083-0, 2001.
Sett, S., Bach, L. T., Schulz, K. G., Koch-Klavsen, S., Lebrato, M., and Riebesell, U.: Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2, PLoS ONE, 9, e88308, https://doi.org/10.1371/journal.pone.0088308, 2014.
Sijinkumar, A. V., Nath, B. N., Clemens, S., Gayathri, N. M., and Miriyala, P.: Late Quaternary record of Indian summer monsoon-induced stratification and productivity collapse in the Andaman Sea, J. Quaternary Science, 36, 298–310, https://doi.org/10.1002/jqs.3278, 2021.
Singh, A. D., Jung, S. J. A., Darling, K., Ganeshram, R., Ivanochko, T., and Kroon, D.: Productivity collapses in the Arabian Sea during glacial cold phases, Paleoceanography, 26, 2009PA001923, https://doi.org/10.1029/2009PA001923, 2011.
Srivastava, M., Bolton, C., Beaufort, L., Bassinot, F., and Holcová, K.: Coccolith abundance, MAR and morphology data from the core MD12-3412 in the Bay of Bengal, SEANOE [data set], https://doi.org/10.17882/106967, 2025.
Stoll, H. M., Arevalos, A., Burke, A., Ziveri, P., Mortyn, G., Shimizu, N., and Unger, D.: Seasonal cycles in biogenic production and export in Northern Bay of Bengal sediment traps, Deep Sea Research Part II: Topical Studies in Oceanography, 54, 558–580, https://doi.org/10.1016/j.dsr2.2007.01.002, 2007.
Su, X., Rong, X., Zhang, L., Luo, C., Liu, J., Wan, S., Li, Z., and Nilufar, Y. L.: Marine primary productivity evolution on the 90° E sea ridge of the northeastern Indian Ocean since the last glaciation: Insight from coccolith records, Journal of Tropical Oceanography, 1, https://www.jto.ac.cn/EN/10.11978/2024244 (last access: 12 June 2025), 2025.
Thadathil, P., Muraleedharan, P. M., Rao, R. R., Somayajulu, Y. K., Reddy, G. V., and Revichandran, C.: Observed seasonal variability of barrier layer in the Bay of Bengal, J. Geophys. Res., 112, 2006JC003651, https://doi.org/10.1029/2006JC003651, 2007.
Thirumalai, K., Clemens, S. C., Rosenthal, Y., Conde, S., Bu, K., Desprat, S., Erb, M., Vetter, L., Franks, M., Cheng, J., Li, L., Liu, Z., Zhou, L. P., Giosan, L., Singh, A., and Mishra, V.: Extreme Indian summer monsoon states stifled Bay of Bengal productivity across the last deglaciation, Nat. Geosci., 18, 443–449, https://doi.org/10.1038/s41561-025-01684-6, 2025.
Uddandam, P., Rai, J., Prasad, V., Joshi, H., and Nigam, R.: Holocene calcareous nannoplanktons from the western continental shelf of Bay of Bengal, Geophytology, 45, 00-00, ISSN 0376-5561, 2015
Vinayachandran, P. N., McCreary, J. P., Hood, R. R., and Kohler, K. E.: A numerical investigation of the phytoplankton bloom in the Bay of Bengal during Northeast Monsoon, J. Geophys. Res., 110, 2005JC002966, https://doi.org/10.1029/2005JC002966, 2005.
Wells, P. and Okada, H.: Holocene and Pleistocene glacial palaeoceanography off southeastern Australia, based on foraminifers and nannofossils in Vema cored hole V18–222*, Australian Journal of Earth Sciences, 43, 509–523, https://doi.org/10.1080/08120099608728273, 1996.
Young, J. R.: Neogene, in: Calcareous Nannofossil Biostratigraphy, edited by: Bown, P. R., Springer Netherlands, Dordrecht, 225–265, https://doi.org/10.1007/978-94-011-4902-0_8, 1998.
Zhisheng, A., Clemens, S. C., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W. L., Luo, J., Wang, S., Xu, H., Cai, Y., Zhou, W., Liu, X., Liu, W., Shi, Z., Yan, L., Xiao, X., Chang, H., Wu, F., Ai, L., and Lu, F.: Glacial-Interglacial Indian Summer Monsoon Dynamics, Science, 333, 719–723, https://doi.org/10.1126/science.1203752, 2011.
Zhou, X., Duchamp-Alphonse, S., Kageyama, M., Bassinot, F., Beaufort, L., and Colin, C.: Dynamics of primary productivity in the northeastern Bay of Bengal over the last 26 000 years, Clim. Past, 16, 1969–1986, https://doi.org/10.5194/cp-16-1969-2020, 2020.
Short summary
The Bay of Bengal is a unique region influenced by the Asian monsoon. We present a record of past ocean productivity and carbonate flux based on the fossil remains of calcifying algae over the last 279 000 years from a core in the northern Bay of Bengal. We used AI microscopy to count and measure plankton fossils and identify species. Results show that coccolith export, including of the species Florisphaera profunda, is highest when the monsoon is weak and the water column is more mixed.
The Bay of Bengal is a unique region influenced by the Asian monsoon. We present a record of...