Articles | Volume 44, issue 2
https://doi.org/10.5194/jm-44-713-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-44-713-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep-sea benthic foraminiferal response to the Late Lutetian Thermal Maximum at Demerara Rise (ODP Site 1260, equatorial western Atlantic)
Irene Peñalver-Clavel
CORRESPONDING AUTHOR
Departamento de Ciencias de la Tierra & IUCA, Universidad de Zaragoza, Zaragoza, 50009, Spain
Thomas Westerhold
MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, 28359, Germany
Laia Alegret
Departamento de Ciencias de la Tierra & IUCA, Universidad de Zaragoza, Zaragoza, 50009, Spain
Related authors
No articles found.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Anna Joy Drury, Diederik Liebrand, Thomas Westerhold, Helen M. Beddow, David A. Hodell, Nina Rohlfs, Roy H. Wilkens, Mitchell Lyle, David B. Bell, Dick Kroon, Heiko Pälike, and Lucas J. Lourens
Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, https://doi.org/10.5194/cp-17-2091-2021, 2021
Short summary
Short summary
We use the first high-resolution southeast Atlantic carbonate record to see how climate dynamics evolved since 30 million years ago (Ma). During ~ 30–13 Ma, eccentricity (orbital circularity) paced carbonate deposition. After the mid-Miocene Climate Transition (~ 14 Ma), precession (Earth's tilt direction) increasingly drove carbonate variability. In the latest Miocene (~ 8 Ma), obliquity (Earth's tilt) pacing appeared, signalling increasing high-latitude influence.
Cited articles
Alegret, L. and Thomas, E.: Upper cretaceous and lower Paleogene benthic foraminifera from northeastern Mexico, Micropaleontology, 47, 269–316, 2001.
Alegret, L. and Thomas, E.: Food supply to the seafloor in the Pacific Ocean after the Cretaceous/Paleogene boundary event, Mar. Micropaleontol., 73, 105–116, https:// doi.org/10.1016/j.marmicro.2009.07.005, 2009.
Alegret, L., Ortiz, S., Orue-Etxebarria, X., Bernaola, G., Baceta, J.I., Monechi, S., Apellaniz, E., and Pujalte, V.: The Paleocene–Eocene thermal maximum: new data from the microfossil turnover at Zumaia section, Palaios, 24, 318–328, https://doi.org/10.2110/palo.2008.p08-057r, 2009.
Alegret, L., Ortiz, S., Arenillas, I., and Molina, E.: What happens when the ocean is overheated? The foraminiferal response across the Paleocene-Eocene Thermal Maximum at the Alamedilla section (Spain), GSA Bull., 122, 1616–1624, 2010.
Alegret, L., Reolid, M., and Vega Pérez, M.: Environmental instability during the latest Paleocene at Zumaia (Basque-Cantabric Basin): the herald of the Paleocene Eocene Thermal Maximum, Palaeogeogr. Palaeoclimatol. Palaeoecol., 497, 186–200, https://doi.org/10.1016/j.palaeo.2018.02.018, 2018.
Alegret, L., Ortiz, S., Arreguín-Rodríguez, G.J., Monechi, S., Millán, I., and Molina, E.: Microfossil turnover across the uppermost Danian at Caravaca, Spain: Paleoenvironmental inferences and identification of the latest Danian event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 463, 45–59, 2016.
Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C. A., and Thomas, E.: Turnover and stability in the deep sea: benthic foraminifera as tracers of Paleogene global change, Glob. Planet. Chang., 196, 103372, https://doi.org/10.1016/j.gloplacha.2020.103372, 2021a.
Alegret, L., Harper, D. T., Agnini, C., Newsham, C., Westerhold, T., Cramwinckel, M. J., Dallanave, E., Dickens, G. R., and Sutherland, R.: Biotic response to early Eocene warming events: integrated record from offshore Zealandia, North Tasman Sea, Paleoceanogr. Paleoclimatol., 36, e2020PA004179, https://doi.org/10.1029/2020PA004179, 2021b.
Arreguín-Rodríguez, G. J. and Alegret, L.: Deep-sea benthic foraminiferal turnover across early Eocene hyperthermal events at Northeast Atlantic DSDP site 550, Palaeogeogr. Palaeoclimatol. Palaeoecol., 451, 62–72, 2016.
Arreguín-Rodríguez, G. J., Alegret, L., and Thomas, E.: Late Paleocene-middle Eocene benthic foraminifera on a Pacific seamount (Allison Guyot, ODP Site 865): Greenhouse climate and superimposed hyperthermal events, Paleoceanography, 31, 346–364, https://doi.org/10.1002/2015PA002837, 2016.
Arreguín-Rodríguez, G. J., Thomas, E., D'haenens, S., Speijer, R. P., and Alegret, L.: Early Eocene deep-sea benthic foraminiferal faunas: recovery from the Paleocene Eocene thermal maximum extinction in a greenhouse world, PLoS ONE 13, e0193167, https://doi.org/10.1371/journal.pone.0193167, 2018.
Arreguín-Rodríguez, G. J., Barnet, J., Leng, M., Littler, K., Kroon, D., Thomas, E., and Alegret, L.: Benthic foraminiferal turnover across the Dan-C2 event in the eastern South Atlantic Ocean (ODP Site 1262), Palaeogeogr. Palaeoclimatol. Palaeoecol., 572, 110410, https://doi.org/10.1016/j.palaeo.2021.110410, 2021.
Arreguín-Rodríguez, G. J., Thomas, E., and Alegret, L.: Some like it cool: Benthic foraminiferal response to Paleogene warming events, Palaeogeogr. Palaeoclimatol. Palaeoecol., 593, 110925, https://doi.org/10.1016/j.palaeo.2022.110925, 2022.
Bignot, G.: Middle Eocene benthic foraminifers from Holes 960A and 960C, central Atlantic Ocean, edited by: Mascle, J., Lohmann, G.P., and Moullade, M., Proc. ODP, Sci. Results, 159: College Station, TX (Ocean Drilling Program), 433–444, https://doi.org/10.2973/odp.proc.sr.159.017.1998, 1998.
Bijl, P. K., Houben, A. J. P., Schouten, S., Bohaty, S. M., Sluijs, A., Reichart, G.-J., Damste, J. S. S., and Brinkhuis, H.: Transient middle Eocene atmospheric CO2 and temperature variations, Science, 330, 819–821, 2010.
Bohaty, S. M. and Zachos, J. C.: Significant Southern Ocean warming event in the late middle Eocene, Geology, 31, 1017–1020, 2003.
Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L.: Coupled greenhouse warming and deep-sea acidification in the middle Eocene, Paleoceanography, 24, PA2207, https://doi.org/10.1029/2008PA001676, 2009.
Boltovskoy, E. and Totah, V. I.: Preservation index and preservation potential of some foraminiferal species, Journal of Foraminiferal Research, 22, 267–273, 1992.
Buzas, M. A., Culver, S. J., and Jorissen, F. J.: A statistical evaluation of the microhabitats of living (stained) infaunal benthic foraminifera, Mar. Micropaleontol., 20, 311–320, https://doi.org/10.1016/0377-8398(93)90040-5, 1993.
Corliss, B. H.: Morphology and microhabitat preferences of benthic foraminifera from the Northwest Atlantic Ocean, Mar. Micropaleontol., 17, 195–236, 1991.
Corliss, B. H. and Chen, C.: Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications, Geology, 16, 716–719, 1988.
D'haenens, S., Bornemann, A., Stassen, P., and Speijer, R. P.: Multiple early Eocene benthic foraminiferal assemblage and δ13C fluctuations at DSDP Site 401 (Bay of Biscay – NE Atlantic), Mar. Micropaleontol., 88–89, 15–35, 2012.
Edgar, K. M., Wilson, P. A., Sexton, P. F., and Suganuma, Y.: No extreme bipolar glaciation during the main Eocene calcite compensation shift, Nature, 448, 908–911, https://doi.org/10.1038/nature06053, 2007.
Erbacher, J., Mosher, D. C., Malone, M. J., et al.: Proc. ODP, Init. Repts., 207: College Station, TX (Ocean Drilling Program), https://doi.org/10.2973/odp.proc.ir.207.2004, 2004.
Fontanier, C., Jorissen, F. J., Licari, L., Alexandre, A., Anschutz, P., and Carbonel, P.: Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition and microhabitats, Deep-Sea Res. I, 49, 751–785, https://doi.org/10.1016/s0967-0637(01)00078-4, 2002.
Foster, L. C., Schmidt, D. N., Thomas, E., Arndt, S., and Ridgwell, A.: Surviving rapid climate change in the deep sea during the Paleogene hyperthermals, Proc. Natl. Acad. Sci. 110, 9273–9276, https://doi.org/10.1073/pnas.1300579110, 2013.
Foster, G. L., Hull, P., Lunt, D. J., and Zachos, J. C.: Placing our current “hyperthermal” in the context of rapid climate change in our geological past, Phil. Trans. R. Soc. A, 376, 20170086, https://doi.org/10.1098/rsta.2017.0086, 2018.
Genin, A.: Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies, J. Mar. Syst., 50, 3–20, 2004.
Gooday, A. J.: Benthic foraminifera (protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–90, 2003.
Grant, K. M. and Dickens, G. R.: Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene–early Pliocene biogenic bloom, Palaeogeogr. Palaeoclimatol. Palaeoecol., 187, 61–82, https://doi.org/10.1016/s0031-0182(02)00508-4, 2002.
Grira, C., Karoui-Yaakoub, N., Negra, M. H., Rivero-Cuesta, L., and Molina, E.: Paleoenvironmental and ecological changes during the Eocene-Oligocene transition based on foraminifera from the Cap Bon Peninsula in North East Tunisia, J. Afr. Earth Sci., 143, 145–161, https://doi.org/10.1016/j.jafrearsci.2018.02.013, 2018.
Hammer, Ø. and Harper, D.: Paleontological Data Analysis, Blackwell Publishing, Oxford, 351 pp., ISBN 1 4051 1544 0, 2005.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological statistics software package for education and data analysis, Paleontol. Electron., 4, 1–9, 2001.
Hayward, B. W., Carter, R., Grenfell, H. R., and Hayward, J. J.: Depth distribution of recent deep-sea benthic foraminifera east of New Zealand, and their potential for improving paleobathymetric assessments of Neogene microfaunas, N. Z. J. Geol. Geophys., 44, 555–587, 2001.
Hayward, B. W., Grenfell, H. R., Carter, R., and Hayward, J. J.: Benthic foraminiferal proxy evidence for the Neogene palaeoceanographic history of the Southwest Pacific, east of New Zealand, Mar. Geol., 205, 147–184, 2004.
Hayward, B. W., Grenfell, H. R., Sabaa, A. T., Neil, H., and Buzas, M. A.: Recent New Zealand deepwater benthic foraminifera: taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment, GNS Sci. Monogr., 26, 363, 2010.
Hayward, B. W., Kawagata, S., Sabaa, A. T., Grenfell, H. R., van Kerckhoven, L., Johnson, K., and Thomas, E.: The Last Global Extinction (Mid-Pleistocene) of Deep-Sea Benthic Foraminifera (Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), Their Late Cretaceous-Cenozoic History and Taxonomy, Vol. 43, Cushman Foundation for Foraminiferal Research Special Publication, p. 408, ISSN 0070-2242, 2012.
Herguera, J. C.: Last glacial paleoproductivity patterns in the eastern equatorial Pacific: benthic foraminifera records, Mar. Micropaleontol., 40, 259–274, 2000.
Herguera, J. C. and Berger, W. H.: Paleoproductivity from benthic foraminifera abundance: glacial to postglacial change in the West-Equatorial Pacific, Geology, 19, 1173–1176, 1991.
Holbourn, A., Henderson, A. S., and MacLeod, N.: Atlas of Benthic Foraminifera, Natural History Museum, London, Wiley-Blackwell, 642 pp., 2013.
Ilyina, T., and Zeebe, R. E.: Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification, Geophys. Res. Lett., 39, L06606, https://doi.org/10.1029/2012GL051272, 2012.
Intxauspe-Zubiaurre, B., Martinez-Braceras, N., Payros, A., Ortiz, S., Dinares-Turell, J., and Flores, J. A.: The last Eocene hyperthermal (Chron C19r event, ∼ 41.5 Ma): chronological and paleoenvironmental insights from a continental margin (Cape Oyambre, N Spain), Palaeogeogr. Palaeoclimatol. Palaeoecol., 505, 198–216, 2018.
Jennions, S. M., Thomas, E., Schmidt, D. N., Lunt, D., and Ridgwell, A.: Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2, Paleoceanography, https://doi.org/10.1002/2015PA002821, 2015.
Jones, R. W. and Charnock, M. A.: “Morphogroups” of agglutinated foraminifera. Their life positions and feeding habits and potential applicability in (paleo)ecological studies, Rev. Paleobiol., 4, 311–320, 1985.
Jorissen, F. J., Stigter, H. C., and Widmark, J. G. V.: A conceptual model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, 1995.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Chapter seven, Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, Dev. Mar. Geol., 1, 263–325, https://doi.org/10.1016/S1572-5480(07)01012-3, 2007.
Katz, M. E., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K. Shackleton, N. J., and Thomas, E.: Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors, Paleoceanography, 18, 1024, https://doi.org/10.1029/2002PA000798, 2003, 2003.
Kaminski, M. A. and Gradstein, F. M.: Cenozoic cosmopolitan deep-water agglutinated foraminifera, Grzybowski Found. Spec. Publ., 10, 1–547, 2005.
Leon-Rodriguez, L. and Dickens, G. R.: Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 298, 409–420, 2010.
Loeblich Jr., A. R. and Tappan, H.: Foraminiferal Genera and their Classification, Van Nostrand Reinhold Company, New York, 970 pp., https://doi.org/10.1007/978-1-4899-5760-3, 1987.
Lyle, M., Lyle, A. O., Backman, J., and Tripati, A. K.: Biogenic sedimentation in the Eocene equatorial pacific – the stuttering greenhouse and Eocene carbonate compensation depth, edited by: Wilson, P. A., Lyle, M., and Firth, J. V., Proc. Ocean Drilling Prog. Sci. Results 199, 1–35, 2005.
Meunier, M. and Danelian, T.: Astronomical calibration of late middle Eocene radiolarian bioevents from ODP Site 1260 (equatorial Atlantic, Leg 207) and refinement of the global tropical radiolarian biozonation, J. Micropalaeontol., 41, 1–27, https://doi.org/10.5194/jm-41-1-2022, 2022.
Moebius, I., Friedrich, O., and Scher, H. D.: Changes in Southern Ocean bottom water environments associated with the Middle Eocene Climatic Optimum (MECO), Palaeogeogr. Palaeoclimatol. Palaeoecol., 405, 16–27, https://doi.org/10.1016/j.palaeo.2014.04.004, 2014.
Müller-Merz, E. and Oberhänsli, H.: Eocene bathyal and abyssal benthic foraminifera from a South Atlantic transect at 20–30° S, Palaeogeogr. Palaeoclimatol. Palaeoecol., 83, 117–171, https://doi.org/10.1016/0031-0182(91)90078-6, 1991.
Murray, J. W.: Ecology and Paleoecology of Benthic Foraminifera, Longman, Harlow, 397 pp., https://doi.org/10.4324/9781315846101, 1991.
Nguyen, T. M. P., Petrizzo, M. R., and Speijer, R. P.: Experimental dissolution of a fossil foraminiferal assemblage (Paleocene–Eocene Thermal Maximum, Dababiya, Egypt): Implications for paleoenvironmental reconstructions, Mar. Micropaleontol., 73, 241–258, https://doi.org/10.1016/j.marmicro.2009.10.005, 2009.
Palmer, H. M., Hill, T. M., Roopnarine, P. D., Myhre, S. E., Reyes, K. R., and Donnenfield, J. T.: Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone, Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, 2020.
Pearson, P. N.: Increased atmospheric CO2 during the middle Eocene, Science, 330, 763–764, 2010.
Peñalver-Clavel, I., Agnini, C., Westerhold, T., Cramwinckel, M. J., Dallanave, E., Bhattacharya, J., Sutherland, R., and Alegret, L.: Integrated record of the Late Lutetian Thermal Maximum at IODP site U1508, Tasman Sea: The deep-sea response, Mar. Micropaleontol., 191, 102390, https://doi.org/10.1016/j.marmicro.2024.102390, 2024.
Peñalver-Clavel, I., Batenburg, S. J., Sutherland, R., Dallanave, E., Dickens, G. R., Westerhold, T., Agnini, C., and Alegret, L.: Intensified bottom water formation in the southwest Pacific during the early Eocene greenhouse – insights from neodymium isotopes, Geology, 2025, https://doi.org/10.1130/G52974.1, 2025a.
Peñalver-Clavel, I., Westerhold, T., and Alegret, L.: Supplementary Information: Deep-sea benthic foraminiferal response to the Late Lutetian Thermal Maximum at Demerara Rise (ODP Site 1260, equatorial western Atlantic), Zenodo [data set], https://doi.org/10.5281/zenodo.17599663, 2025b.
Pflum, C. E. and Frerichs, W. E.: Gulf of Mexico Deep-water Foraminifers, in: Cushman Foundation for Foraminiferal Research (Volume 14), edited by: Sliter, W. V., Cushman Foundation for Foraminiferal Research, ISBN 9781970168082, 1976.
Pineau, E., Donnadieu, Y., Maffre, P., Lique, C., Huck, T., Gramoullé, A., and Ladant, J.-B.: A model-based study of the emergence of North Atlantic deep water during the Cenozoic: A tale of geological and climatic forcings, Paleoceanography and Paleoclimatology, 40, e2024PA005020, https://doi.org/10.1029/2024PA005020, 2025.
Putra, P. S., Yulianto, E., and Nugroho, S. H.: Distribution patterns of foraminifera in paleotsunami layers: A review, Natural Hazards Research, 3, 1–13, https://doi.org/10.1016/j.nhres.2022.12.004, 2023.
Renaudie, J., Danelian, T., Saint Martin, S., Le Callonnec, L., and Tribovillard, N.: Siliceous phytoplankton response to a Middle Eocene warming event recorded in the tropical Atlantic (Demerara Rise, ODP Site 1260A), Palaeogeogr. Palaeoclimatol. Palaeoecol., 286, 121–134, 2010.
Rivero-Cuesta, L., Westerhold, T., Agnini, C., Dallanave, E., Wilkens, R.H., and Alegret, L.: Paleoenvironmental changes at ODP Site 702 (South Atlantic): Anatomy of the Middle Eocene Climatic Optimum, Paleoceanogr. and Paleoclimatol., 34, 2047–2066, https://doi.org/10.1029/2019PA003806, 2019.
Rivero-Cuesta, L., Westerhold, T., and Alegret, L.: The Late Lutetian Thermal Maximum (middle Eocene): first record of deep-sea benthic foraminifera response, Palaeogeogr. Palaeoclimatol. Palaeoecol., 545, 109637, https://doi.org/10.1016/j.palaeo.2020.109637, 2020.
Röhl, U. and Abrams, L. J.: High-resolution, downhole and non-destructive core measurements from sites 999 and 1001 in the Caribbean Sea: Application to the Late Paleocene thermal maximum, in: Proc. ODP, Sci. Results, 165: College Station, TX (Ocean Drilling Program), edited by: Leckie, R. M., Sigurdsson, H., Acton, G. D., and Draper, G., 191–203, 2000.
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the duration of the Paleocene-Eocene thermal maximum (PETM), Geochem. Geophys. Geosyst., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007.
Sen Gupta, B. K.: Introduction to modern foraminifera, in: Systematics of Modern Foraminifera, edited by: Sen Gupta, B. K., Kluwer Academic Publishers, 7–36, https://doi.org/10.1007/0-306-48104-9_2, 1999.
Sexton, P. F., Wilson, P. A., and Norris, R. D.: Testing the Cenozoic multisite composite d18O and d13C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207), Paleoceanography, 21, PA2019, https://doi.org/10.1029/2005PA001253, 2006.
Sexton, P. F., Norris, R. D., Wilson, P. A., Pälike, H., Westerhold, T., Röhl, U., Bolton, C. T., and Gibbs, S.: Eocene global warming events driven by ventilation of oceanic dissolved organic carbon, Nature, 471, 349–352, 2011.
Suganuma, Y. and Ogg, J. G.: Campanian through Eocene magnetostratigraphy of sites 1257–1261, ODP Leg 207, Demerara Rise (Western Equatorial Atlantic), Proceedings ODP Scientific Results, 207, 1–48, 2006.
Sutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., Bhattacharya, J., Bordenave, A., Chang, L., Collot, J., Cramwinckel, M. J., Dallanave, E., Drake, M. K., Etienne, S. J. G., Giorgioni, M., Gurnis, M., Harper, D. T., Huang, H.-H. M., Keller, A. L., Lam, A. R., Li, H., Matsui, H., Morgans, H. E. G., Newsam, C., Park, Y.-H., Pascher, K. M., Pekar, S. F., Penman, D. E., Saito, S., Stratford, W. R., Westerhold, T., and Zhou, X.: Expedition 371 methods, Proc. Int. Ocean Discov. Prog., 371, 1–65, https://doi.org/10.14379/iodp.proc.371.2019, 2019.
Sutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., Bhattacharya, J., Bordenave, A., Chang, L., Collot, J., Cramwinckel, M. J., Dallanave, E., Drake, M. K., Etienne, S. J. G., Giorgioni, M., Gurnis, M., Harper, D. T., Huang, H.-H. M., Keller, A. L., and Zhou, X.: Continental-scale geographic change across Zealandia during paleogene subduction initiation, Geology, 48, 419–424, https://doi.org/10.1130/G47008.1, 2020.
Thomas, E.: Late Cretaceous – early Eocene mass extinctions in the deep sea, Geol. Soc. Am. Spec. Pap., 247, 481–495, 1990.
Thomas, E.: The biogeography of the late Paleocene benthic foraminiferal extinction, in: Late Paleocene–Early Eocene biotic and climatic events in the marine and terrestrial records, edited by: Aubry, M. P., Lucas, S., and Berggren, W. A., Columbia University Press, New York, 214–243, 1998.
Thomas, E.: Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the initial Eocene thermal maximum, Southern Ocean site 690, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by: Scott, L. W., Gingerich, P. D., Schmitz, B., and Thomas, E., GSA Spec. Pap., 369, 319–332, 2003.
Thomas, E.: Cenozoic mass extinctions in the deep sea; what disturbs the largest habitat on Earth?, in: Large Ecosystem Perturbations: Causes and Consequences, edited by: Monechi, S., Coccioni, R., and Rampino, M., GSA Spec. Pap. 424, Boulder, Colorado, 1–24, https://doi.org/10.1130/2007.2424(01), 2007.
Thomas, E., Zachos, J. C., and Bralower, T. J.: Deep-Sea Environments on a Warm Earth: Latest Paleocene-Early Eocene, in: Warm Climates in Earth History, edited by: Huber, B. T., Macleod, K. G., and Wing, S. L., Cambridge University Press, 132–160, 2000.
Thomas, E., Boscolo-Galazzo, F., Balestra, B., Monechi, S., and Röhl, U.: Early Eocene Thermal Maximum 3: biotic response at Walvis Ridge (SE Atlantic Ocean), Paleoceanogr. Paleoclimatol., 33, 862–883, 2018.
Tjalsma, R. C. and Lohmann, G. P.: Paleocene-Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean, 4. Micropaleontology special Publication, 1–89, 1983.
Tripati, A. and Elderfield, H.: Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum, Science, 308, 1894–1898, https://doi.org/10.1126/science.1109202, 2005.
Van Morkhoven, F. P. C. M., Berggren, W. A., and Edwards, A. S.: Cenozoic cosmopolitan deep-water benthic foraminifera: Pau, France, Bull. Centre Recher. Explor. Prod.-Aquit., 11, 421, ISBN 2-901026-20-6, 1986.
Wade, B. S. and Kroon, D.: Middle Eocene regional climate instability: evidence from the western North Atlantic, Geology, 30, 1011–1014, 2002.
Westerhold, T. and Röhl, U.: Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: missing link found in the tropical western Atlantic: orbital pacing of Eocene climate, Geochem. Geophys. Geosyst., 14, 4811–4825, 2013.
Westerhold, T., Röhl, U., Donner, B., Frederichs, T., Kordesch, W. E. C., Bohaty, S. M., and Zeebe, R. E.: Late lutetian thermal maximum-crossing a thermal threshold in earth's climate system?, Geochem. Geophys. Geosyst., 19, 73–82, https://doi.org/10.1002/2017GC007240, 2018.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Zhang, Y., De Boer, A. M., Lunt, D. J., Hutchinson, D. K., Ross, P., Van de Flierdt, T., Sexton, P., Coxall, H. K., Steinig, S., Ladant, J. B., Zhu, J., Donnadieu, Y., Zhang, Z., Chan, W. L., Abe-Ouchi, A., Niezgodzki, I., Lohmann, G., Knorr, G., Poulsen, C. J., and Huber, M.: Early Eocene Ocean meridional overturning circulation: The roles of atmospheric forcing and strait geometry, Paleoceanog. Paleoclimatol., 37, e2021PA004329, https://doi.org/10.1029/2021PA004329, 2022.
Short summary
A study in the equatorial Atlantic Ocean (Ocean Drilling Program Site 1260) reveals the deep-sea biotic response to a middle Eocene warming event 41.52 million years ago. Low-diversity benthic foraminiferal assemblages indicate environmental stress during the warming event. We argue that the biotic response in the deep sea and carbonate dissolution at this site were likely related to its paleoceanographic setting.
A study in the equatorial Atlantic Ocean (Ocean Drilling Program Site 1260) reveals the deep-sea...