Articles | Volume 45, issue 1
https://doi.org/10.5194/jm-45-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-45-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tropical ecosystem shifts at the Eocene–Oligocene transition in the southwestern Caribbean region
Raúl Trejos-Tamayo
CORRESPONDING AUTHOR
Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Manizales, 170004, Colombia
Departamento de Geología, Universidad de Salamanca, Salamanca, 37008, Spain
Darwin Garzón
Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Manizales, 170004, Colombia
Diana Ochoa
Departamento de Geología, Universidad de Salamanca, Salamanca, 37008, Spain
Angelo Plata-Torres
Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Manizales, 170004, Colombia
Smithsonian Tropical Research Institute, Panamá City, 0843-03092, Panamá
Fabrizio Frontalini
Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo,”, Urbino, 61029, Italy
Felipe Vallejo-Hincapié
Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Manizales, 170004, Colombia
Fátima Abrantes
Centro de Ciências do Mar (CCMAR,), Universidade do Algarve, Faro, 8005-139, Portugal
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Algés, 1495-165, Portugal
Vitor Magalhães
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Algés, 1495-165, Portugal
Viviana Arias-Villegas
Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Manizales, 170004, Colombia
Carlos Jaramillo
Smithsonian Tropical Research Institute, Panamá City, 0843-03092, Panamá
Jaime Escobar
Departamento de Ingeniería Civil y Ambiental, Universidad del Norte, Barranquilla, Colombia
Jason H. Curtis
Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
José-Abel Flores
Departamento de Geología, Universidad de Salamanca, Salamanca, 37008, Spain
Constanza Osorio-Tabares
Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Manizales, 170004, Colombia
Mónica Duque-Castaño
Centro de Ciências do Mar (CCMAR,), Universidade do Algarve, Faro, 8005-139, Portugal
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Algés, 1495-165, Portugal
Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
Erika Bedoya
Centro Austral de Investigaciones Científicas CADIC-CONICET, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
Andrés Pardo-Trujillo
Instituto de Investigaciones en Estratigrafía (IIES), Universidad de Caldas, Manizales, 170004, Colombia
Departamento de Ciencias Geológicas, Universidad de Caldas, Manizales, 170004, Colombia
Related authors
No articles found.
João M. F. Ramos, Jairo F. Savian, Daniel R. Franco, Milene F. Figueiredo, Rodolfo Coccioni, and Fabrizio Frontalini
Clim. Past, 22, 357–375, https://doi.org/10.5194/cp-22-357-2026, https://doi.org/10.5194/cp-22-357-2026, 2026
Short summary
Short summary
During the Aptian–Albian interval of the Cretaceous, Earth's climate changed significantly due to volcanism, atmospheric shifts, and reorganised ocean circulation. These changes influenced marine sediments, especially reddish Cretaceous oceanic red beds (CORBs), which reflect intervals of deep-ocean oxygenation. This study analysed sediment cores from ODP Site 1049 (North Atlantic) to determine when CORBs formed and whether similar patterns occurred in other basins, such as the Tethys.
Andrés S. Rigual-Hernández, Amy Leventer, Manuel Fernández-Barba, José A. Flores, Gabriel Navarro, Johan Etourneau, Dimitris Evangelinos, Megan Duffy, Carlota Escutia, Fernando Bohoyo, José M. Sánchez-Santos, Manon Sabourdy, Francisco J. Jiménez-Espejo, and María A. Bárcena
Biogeosciences, 22, 7205–7232, https://doi.org/10.5194/bg-22-7205-2025, https://doi.org/10.5194/bg-22-7205-2025, 2025
Short summary
Short summary
We studied the abundance and composition of key phytoplankton groups in the Drake Passage and Antarctic Peninsula before and during a marine heatwave in summer 2020. An anticyclonic eddy transported warmer waters into the southern Drake Passage. This led to higher diatom abundance and an increase in the abundance of a small diatom species in the southern Drake Passage while reducing coccolithophore populations. The consequences on marine ecosystems and biogeochemical cycles remain uncertain.
Sandra Domingues Gomes, William Fletcher, Abi Stone, Teresa Rodrigues, Andreia Rebotim, Dulce Oliveira, Maria Sánchez Goñi, Fátima Abrantes, and Filipa Naughton
Biogeosciences, 22, 6631–6650, https://doi.org/10.5194/bg-22-6631-2025, https://doi.org/10.5194/bg-22-6631-2025, 2025
Short summary
Short summary
Our study explores how rising CO2 at the end of the last ice age impacted vegetation in the Iberian Peninsula. By analyzing pollen and ocean temperatures in marine sediments, we found that higher CO2 helped forests expand, even in cool or dry conditions. This shows that CO2 played a key role in shaping ecosystems during climate shifts. Understanding this past response helps us see how different factors interact and provides insights into how today’s ecosystems might adapt to rapidly rising CO2.
Fabio Francescangeli, Vincent M. P. Bouchet, Yvonne Milker, Fabrizio Frontalini, Alain Trentesaux, and Eric Armynot du Châtelet
J. Micropalaeontol., 44, 415–430, https://doi.org/10.5194/jm-44-415-2025, https://doi.org/10.5194/jm-44-415-2025, 2025
Short summary
Short summary
We studied tiny seafloor organisms along the French coast to see how their communities change with the seasons. In colder months, only a few hardy species thrive, while warmer months bring greater variety. These shifts reveal how coastal ecosystems respond to natural changes and human impacts, offering new insights for protecting and monitoring these environments.
Vincent M. P. Bouchet, Silvia Helena de Mello e Sousa, Carla Bonetti, Leticia Burone, Pierre Belart, Wania Duleba, Fabio Francescangeli, Fabrizio Frontalini, Lazaro Laut, Débora S. Raposo, André R. Rodrigues, Sibelle Trevisan Disaró, Daniel Vicente Pupo, Fabrício Leandro Damasceno, Jean-Charles Pavard, and Maria Virgínia Alves Martins
J. Micropalaeontol., 44, 237–261, https://doi.org/10.5194/jm-44-237-2025, https://doi.org/10.5194/jm-44-237-2025, 2025
Short summary
Short summary
This study evaluates benthic foraminifera as indicators of environmental health in Brazil’s coastal waters and tests Foram-AMBI using a regional species list and criteria for ecological quality status (EcoQS). A total of 95 species were classified into five groups based on their response to total organic carbon. Data from Sepetiba Bay and Guanabara Bay validated these groups, showing that Foram-AMBI accurately reflects ecological conditions. The study highlights the importance of regional species lists for biomonitoring.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Elizabeth R. Lasluisa, Oriol Oms, Eduard Remacha, Alba González-Lanchas, Hug Blanchar-Roca, and José Abel Flores
J. Micropalaeontol., 43, 55–68, https://doi.org/10.5194/jm-43-55-2024, https://doi.org/10.5194/jm-43-55-2024, 2024
Short summary
Short summary
We studied sediment samples containing marine plankton under the polarized microscope from the Sabiñánigo sandstone formation, a geological formation located in the Jaca Basin in Spain. The main result of this work was a more precise age for the formation, the Bartonian age, in the Middle Eocene period. In addition, we obtained information on the temperature of the ocean water in which the plankton lived, resulting in the surface ocean waters in this area being warm and poor in nutrients.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Cited articles
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., and Rio, D.: Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes, Newsl. Stratigr., 47, 131–181, https://doi.org/10.1127/0078-0421/2014/0042, 2014.
Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C. A., and Thomas, E.: Turnover and stability in the deep sea: Benthic foraminifera as tracers of Paleogene global change, Glob. Planet Change, 196, 103372, https://doi.org/10.1016/j.gloplacha.2020.103372, 2021.
Arias-Villegas, V., Bedoya Agudelo, E. L., Vallejo-Hincapié, F., Aubry, M.-P., and Pardo-Trujillo, A.: Late Eocene to Early Miocene calcareous nannofossil biostratigraphy from the ANH-San Jacinto- 1 well: Stratigraphic implications for the Sinú-San Jacinto basin in the Caribbean region of Colombia, J. South Am. Earth Sci., 128, 104470, https://doi.org/10.1016/j.jsames.2023.104470, 2023.
Armstrong McKay, D. I., Tyrrell, T., and Wilson, P. A.: Global carbon cycle perturbation across the Eocene-Oligocene climate transition, Paleoceanography, 31, 311–329, https://doi.org/10.1002/2015PA002818, 2016.
Aubry, M.-P.: Late Paleogene Calcareous Nannoplankton Evolution: A Tale of Climatic Deterioration, in: Eocene-Oligocene Climatic and Biotic Evolution, edited by: Prothero, D. R. and Berggren, W. A., Princeton University Press, Princeton, NJ, 272–309, https://doi.org/10.1515/9781400862924.272, 1992.
Auer, G., Piller, W. E., and Harzhauser, M.: High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene, Mar. Micropaleontol., 111, 53–65, https://doi.org/10.1016/j.marmicro.2014.06.005, 2014.
Backman, J.: Quantitative Calcareous Nannofossil Biochronology of Middle Eocene through Early Oligocene Sediment from DSDP Sites 522 and 523, Abh. Geol. B.-A, 39, 21–39, 1987.
Bayon, G., Pierre, C., Etoubleau, J., Voisset, M., Cauquil, E., Marsset, T., Sultan, N., Le Drezen, E., and Fouquet, Y.: Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments, Mar. Geol., 241, 93–109, https://doi.org/10.1016/j.margeo.2007.03.007, 2007.
Benedetti, A.: Eocene/Oligocene deep-water agglutinated foraminifers (DWAF) assemblages from the Madonie Mountains (Sicily, Southern Italy), Palaeontologia Electronica, 20, 1–66, https://doi.org/10.26879/660, 2017.
Berggren, W. A. and Pearson, P. N.: A revised tropical to subtropical Paleogene planktonic foraminiferal zonation, The Journal of Foraminiferal Research, 35, 279–298, https://doi.org/10.2113/35.4.279, 2005.
Blaj, T., Backman, J., and Raffi, I.: Late Eocene to Oligocene preservation history and biochronology of calcareous nannofossils from paleo-equatorial Pacific Ocean sediments, Revista Italiana di Paleontologia e Stratigrafia, 115, 67–85, 2009.
Boersma, A.: Eocene/Oligocene Atlantic Paleo-Oceanography Using Benthic Foraminifera, in: Developments in Palaeontology and Stratigraphy, vol. 9, edited by: Pomerol, Ch. and Premoli-Silva, I., Elsevier, 225–236, https://doi.org/10.1016/S0920-5446(08)70125-0, 1986.
Bolli, H. M., Beckmann, J. P., and Saunders, J. B.: Benthic Foraminiferal Biostratigraphy of the South Caribbean Region, Cambridge University Press, 419 pp., https://doi.org/10.1017/CBO9780511564406, 1994.
Bordiga, M., Henderiks, J., Tori, F., Monechi, S., Fenero, R., Legarda-Lisarri, A., and Thomas, E.: Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge), Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, 2015.
Bosq, M., Bertran, P., Degeai, J.-P., Queffelec, A., and Moine, O.: Geochemical signature of sources, recycling and weathering in the Last Glacial loess from the Rhône Valley (southeast France) and comparison with other European regions, Aeolian Res., 42, 100561, https://doi.org/10.1016/j.aeolia.2019.100561, 2020.
Bown, P. R. and Young, J. R.: Techniques, in: Calcareous Nannofossil Biostratigraphy, British Micropalaeontological Society Publication Series, edited by: Bown, P. R., 16–28, ISBN 0412789701, 1998.
Boyle, E. A.: Chemical accumulation variations under the Peru Current during the past 130,000 years, J. Geophys. Res. Oceans, 88, 7667–7680, https://doi.org/10.1029/JC088iC12p07667, 1983.
Cachão, M. and Moita, M. T.: Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia, Mar. Micropaleontol., 39, 131–155, https://doi.org/10.1016/S0377-8398(00)00018-9, 2000.
Cappelli, C., Bown, P. R., Westerhold, T., Bohaty, S. M., de Riu, M., Lobba, V., Yamamoto, Y., and Agnini, C.: The Early to Middle Eocene Transition: An Integrated Calcareous Nannofossil and Stable Isotope Record From the Northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410), Paleoceanogr. Paleoclimatol., 34, 1913–1930, https://doi.org/10.1029/2019PA003686, 2019.
Carter, S. C., Paytan, A., and Griffith, E. M.: Toward an Improved Understanding of the Marine Barium Cycle and the Application of Marine Barite as a Paleoproductivity Proxy, Minerals, 10, 421, https://doi.org/10.3390/min10050421, 2020.
Cavaleiro, C., Voelker, A. H. L., Stoll, H., Baumann, K.-H., and Kucera, M.: Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith data, Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, 2020.
Celis, S. A., Rodríguez-Tovar, F. J., Pardo-Trujillo, A., García-García, F., Giraldo-Villegas, C. A., Gallego, F., Plata, Á., Trejos-Tamayo, R., Vallejo-Hincapié, F., and Cardona, F. J.: Deciphering influencing processes in a tropical delta system (middle-late Eocene? to Early Miocene, Colombian Caribbean): Signals from a well-core integrative sedimentological, ichnological, and micropaleontological analysis, J. South Am. Earth Sci., 127, 104368, https://doi.org/10.1016/j.jsames.2023.104368, 2023.
Celis, S. A., García-García, F., Rodríguez-Tovar, F. J., Giraldo-Villegas, C. A., and Pardo-Trujillo, A.: Coarse-grained submarine channels: from confined to unconfined flows in the Colombian Caribbean (late Eocene), Sediment Geol., 459, 106550, https://doi.org/10.1016/j.sedgeo.2023.106550, 2024.
Chao, A.: Nonparametric estimation of the number of classes in a population, Scandinavian Journal of Statistics, 11, 265–270, 1984.
Coxall, H. K. and Pearson, P. N.: The Eocene–Oligocene Transition, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, The Geological Society of London on behalf of The Micropalaeontological Society, 351–387, https://doi.org/10.1144/TMS002.16, 2007.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.: Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433, 53–57, https://doi.org/10.1038/nature03135, 2005.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245–249, 2003.
De Lira Mota, M. A., Dunkley Jones, T., Sulaiman, N., Edgar, K. M., Yamaguchi, T., Leng, M. J., Adloff, M., Greene, S. E., Norris, R., Warren, B., Duffy, G., Farrant, J., Murayama, M., Hall, J., and Bendle, J.: Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition, Nat. Commun., 14, 4748, https://doi.org/10.1038/s41467-023-39806-6, 2023.
Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K., and Lear, C. H.: Major shifts in calcareous phytoplankton assemblages through the Eocene-Oligocene transition of Tanzania and their implications for low-latitude primary production, Paleoceanography, 23, https://doi.org/10.1029/2008PA001640, 2008.
Duque-Caro, H.: Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama seaway, Palaeogeogr. Palaeoclimatol. Palaeoecol., 77, 203–234, https://doi.org/10.1016/0031-0182(90)90178-A, 1990.
Dypvik, H. and Harris, N. B.: Geochemical facies analysis of fine-grained siliciclastics using , and ratios, Chem. Geol., 181, 131–146, https://doi.org/10.1016/S0009-2541(01)00278-9, 2001.
Fioroni, C., Villa, G., Persico, D., Wise, S. W., and Pea, L.: Revised middle Eocene-upper Oligocene calcareous nannofossil biozonation for the Southern Ocean, Revue de Micropaléontologie, 55, 53–70, https://doi.org/10.1016/j.revmic.2012.03.001, 2012.
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chemical Geology, 159, 3–30, https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M., Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico, F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition, Science, 352, 76–80, https://doi.org/10.1126/science.aab0669, 2016.
Germeraad, J. H., Hopping, C. A., and Muller, J.: Palynology of tertiary sediments from tropical areas, Rev. Palaeobot. Palynol., 6, 189–348, https://doi.org/10.1016/0034-6667(68)90051-1, 1968.
Gooday, A. J.: Benthic foraminifera (protista) as tools in deep-water palaeoceanography: Environmental influences on faunal characteristics, in: Advances in Marine Geology, vol. 46, edited by: Southward, A. J., Tyler, P. A., Young, C. M., and Fuiman, L. A., Elsevier Science Ltd., San Diego, California, 1–90, https://doi.org/10.1016/S0065-2881(03)46002-1, 2003.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. and Ogg, G. M.: Geologic Time Scale 2020 Volume 1 and Volume 2, Elsevier, 1–1357 pp., https://doi.org/10.1016/C2020-1-02369-3, 2020.
Grygar, T. M., Mach, K., Hron, K., Fačevicová, K., Martinez, M., Zeeden, C., and Schnabl, P.: Lithological correction of chemical weathering proxies based on K, Rb, and Mg contents for isolation of orbital signals in clastic sedimentary archives, Sediment Geol., 406, 105717, https://doi.org/10.1016/j.sedgeo.2020.105717, 2020.
Guerreiro, C. V., Ferreira, A., Cros, L., Stuut, J.-B., Baker, A., Tracana, A., Pinto, C., Veloso, V., Rees, A. P., Cachão, M. A. P., Nunes, T., and Brotas, V.: Response of coccolithophore communities to oceanographic and atmospheric processes across the North- and Equatorial Atlantic, Front. Mar. Sci., 10, 1119488, https://doi.org/10.3389/fmars.2023.1119488, 2023.
Hammer, D. A. T., Ryan, P. D., Hammer, Ø., and Harper, D. A. T.: Past: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontologia Electronica, 4, 178, http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 8 January 2025), 2001.
Haug, G. H. and Tiedemann, R.: Effect of the formation of the Isthmusof Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673–676, 1998.
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C.: Role of Panama uplift on oceanic freshwater balance, Geology, 29, 207, https://doi.org/10.1130/0091-7613(2001)029<0207:ROPUOO>2.0.CO;2, 2001.
Heymann, C., Nelle, O., Dörfler, W., Zagana, H., Nowaczyk, N., Xue, J., and Unkel, I.: Late Glacial to mid-Holocene palaeoclimate development of Southern Greece inferred from the sediment sequence of Lake Stymphalia (NE-Peloponnese), Quaternary International, 302, 42–60, https://doi.org/10.1016/j.quaint.2013.02.014, 2013.
Holbourn, A., Henderson, A. S., and MacLeod, N.: Atlas of Benthic Foraminifera, Wiley, 1–642, https://doi.org/10.1002/9781118452493, 2013.
Hoorn, C.: Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study, Palaeogeogr. Palaeoclimatol. Palaeoecol., 105, 267–309, https://doi.org/10.1016/0031-0182(93)90087-Y, 1993.
Houben, A. J. P., van Mourik, C. A., Montanari, A., Coccioni, R., and Brinkhuis, H.: The Eocene–Oligocene transition: Changes in sea level, temperature or both?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 335–336, 75–83, https://doi.org/10.1016/j.palaeo.2011.04.008, 2012.
Hu, D., Böning, P., Köhler, C. M., Hillier, S., Pressling, N., Wan, S., Brumsack, H. J. and Clift, P. D.: Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea, Chem. Geol., 326–327, 1–18, https://doi.org/10.1016/j.chemgeo.2012.07.024, 2012.
Hu, L., Zhang, Y., Wang, Y., Ma, P., Wu, W., Ge, Q., Bian, Y., and Han, X.: Paleoproductivity and deep-sea oxygenation in Cosmonaut Sea since the last glacial maximum: impact on atmospheric CO2, Front. Mar. Sci., 10, 1215048, https://doi.org/10.3389/fmars.2023.1215048, 2023.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A. T., Kunzmann, L., Ladant, J.-B., Lear, C. H., Moraweck, K., Pearson, P. N., Piga, E., Pound, M. J., Salzmann, U., Scher, H. D., Sijp, W. P., Śliwińska, K. K., Wilson, P. A., and Zhang, Z.: The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Iturralde-Vinent, M. A.: Meso-Cenozoic Caribbean Paleogeography: Implications for the Historical Biogeography of the Region, Int. Geol. Rev., 48, 791–827, https://doi.org/10.2747/0020-6814.48.9.791, 2006.
Iturralde-Vinent, M. A. and MacPhee, R. D. E.: Paleogeography of the Caribbean region: implications for Cenozoic biogeography, Bull. Am. Mus. Nat. Hist., 238, 1–95, 1999.
Jain, S. and Collins, L. S.: Trends in Caribbean Paleoproductivity related to the Neogene closure of the Central American Seaway, Mar. Micropaleontol., 63, 57–74, https://doi.org/10.1016/j.marmicro.2006.11.003, 2007.
Jaramillo, C.: Evolution of the Isthmus of Panama: biological, paleoceanographic, and paleoclimatological implications, in: Mountains, Climate and Biodiversity, edited by: Hoorn, C. and Antonelli, A., Oxford, John Wiley & Sons, 323–338, ISBN 978-1-119-15987-2, 2018.
Jaramillo, C. and Rueda, M.: A Morphological Electronic Database of Cretaceous-Cenozoic Fossil Pollen and Spores from Northern South America and Extant Pollen and Spores V.24, https://research.si.edu/publication-details/?id=154919 (last access: 11 January 2025), 31 December 2024.
Jaramillo, C., Rueda, M. J., and Mora, G.: Cenozoic Plant Diversity in the Neotropics, Science, 311, 1893–1896, https://doi.org/10.1126/science.1121380, 2006.
Jaramillo, C. A. and Dilcher, D. L.: Middle Paleogene palynology of Central Colombia, South America: A study of pollen and spores from tropical latitudes, Palaeontographica Abteilung B, 258, 87–259, https://doi.org/10.1127/palb/258/2001/87, 2001.
Jaramillo, C. A., Rueda, M., and Torres, V.: A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia, Palynology, 35, 46–84, https://doi.org/10.1080/01916122.2010.515069, 2011.
Jiang, S. and Wise, S. W.: Distinguishing the influence of diagenesis on the paleoecological reconstruction of nannoplankton across the Paleocene/Eocene Thermal Maximum: An example from the Kerguelen Plateau, southern Indian Ocean, Mar. Micropaleontol., 72, 49–59, https://doi.org/10.1016/j.marmicro.2009.03.003, 2009.
Jones, A. P., Dunkley Jones, T., Coxall, H., Pearson, P. N., Nala, D., and Hoggett, M.: Low-latitude calcareous nannofossil response in the Indo-Pacific Warm Pool across the Eocene-Oligocene Transition of Java, Indonesia, Paleoceanography and Paleoclimatology, 34, 1833–1847, https://doi.org/10.1029/2019PA003597, 2019.
Jones, R. W.: The Challenger Foraminifera, 1st Edn., edited by: Jones, R. W., Oxford University Press, Oxford, 1–300, ISBN-10 0198540965, ISBN-13 9780198540960, 1994.
Jorissen, F. J.: Benthic foraminiferal microhabitats below the sediment-water interface, in: Modern Foraminifera, edited by: Sen Gupta, B., Springer Netherlands, Dordrecht, 161–179, https://doi.org/10.1007/0-306-48104-9_10, 1999.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V.: A conceptual model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, https://doi.org/10.1016/0377-8398(95)00047-X, 1995.
Kaiho, K.: Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean, Geology, 22, 719–722, https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2, 1994.
Kaminski, M. A.: Calibration of the benthic foraminiferal oxygen index in the Marmara Sea, Geological Quarterly, 56, 73–80, https://doi.org/10.7306/gq.1061, 2012.
Kaminski, M. A. and Gradstein, F. M.: Atlas of Paleogene Cosmopolitan Deep-water Agglutinated Foraminifera, Grzybowski Foundation Special Publication 10, 1–547, ISBN-13 9788391238585, ISBN-10 839123858X, 2005.
Kaminski, M. A. and Ortiz, S.: The Eocene-Oligocene turnover of Deep-Water Agglutinated Foraminifera at ODP Site 647, Southern Labrador Sea (North Atlantic), Micropaleontology, 60, 53–66, 2014.
Kraatz, B. P. and Geisler, J. H.: Eocene–Oligocene transition in Central Asia and its effects on mammalian evolution, Geology, 38, 111–114, https://doi.org/10.1130/G30619.1, 2010.
Kranner, M., Harzhauser, M., Beer, C., Auer, G., and Piller, W. E.: Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index, Sci. Rep., 12, 1–13, https://doi.org/10.1038/s41598-022-05295-8, 2022.
Kylander, M. E., Ampel, L., Wohlfarth, B., and Veres, D.: High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies, J. Quat. Sci., 26, 109–117, https://doi.org/10.1002/jqs.1438, 2011.
Lear, C. H., Elderfield, H., and Wilson, P. A.: A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes, Earth Planet Sci. Lett., 208, 69–84, https://doi.org/10.1016/S0012-821X(02)01156-1, 2003.
Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M., and Pearson, A.: Global Cooling During the Eocene-Oligocene Climate Transition, Science, 323, 1187–1190, https://doi.org/10.1126/science.1166368, 2009.
Loeblich Jr., A. R. and Tappan, H.: Foraminiferal General and Their Classification, Van Nostrand Reinhold Company, New York, 1–970, ISBN-10 0442259379, ISBN-13 9780442259372, 1987.
Lorente, M. A.: Palynology and palynofacies of the upper tertiary in Venezuela, Diss Bot, 99, 1–255, ISBN 978-3-443-64011-8, 1986.
Loubere, P. and Fariduddin, M.: Benthic Foraminifera and the flux of organic carbon to the seabed, in: Modern Foraminifera, edited by: Sen Gupta, B., Springer Netherlands, Dordrecht, 181–199, https://doi.org/10.1007/0-306-48104-9_11, 1999.
Lowery, C. M. and Bralower, T. J.: Elevated Post K-Pg Export Productivity in the Gulf of Mexico and Caribbean, Paleoceanogr. Paleoclimatol., 37, e2021PA004400, https://doi.org/10.1029/2021PA004400, 2022.
Mackensen, A. and Douglas, R. G.: Down-core distribution of live and dead deep-water benthic foraminifera in box cores from the Weddell Sea and the California continental borderland, Deep Sea Research Part A. Oceanographic Research Papers, 36, 879–900, https://doi.org/10.1016/0198-0149(89)90034-4, 1989.
Magurran, A. E.: Measuring Biological Diversity, Blackwell Publishing, Oxford, UK, 1–70 pp., 2004.
Malinverno, E., Bosio, G., Di Celma, C., Gariboldi, K., Gioncada, A., Pierantoni, P. P., Collareta, A., Molli, G., Bagnoli, G., Sarti, G., Urbina, M., and Bianucci, G.: (Bio)stratigraphic overview and paleoclimatic-paleoceanographic implications of the middle-upper Eocene deposits from the Ica River Valley (East Pisco Basin, Peru), Palaeogeogr. Palaeoclimatol. Palaeoecol., 578, 110567, https://doi.org/10.1016/j.palaeo.2021.110567, 2021.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Proc. 2nd Int. Conf. Planktonic Microfossils Roma, edited by: Farinacci, A., Tecnosci., Rome, 739–785, 1971.
Merico, A., Tyrrell, T., and Wilson, P. A.: Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall, Nature, 452, 979–982, https://doi.org/10.1038/nature06853, 2008.
Miller, K. G., Browning, J. V., Aubry, M.-P., Wade, B. S., Katz, M. E., Kulpecz, A. A., and Wright, J. D.: Eocene-Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama, Geol. Soc. Am. Bull., 120, 34–53, https://doi.org/10.1130/B26105.1, 2008.
Miller, K. G., Wright, J. D., Katz, M. E., Wade, B. S., Browning, J. V, Cramer, B. S., and Rosenthal, Y.: Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation, in: The Late Eocene Earth – Hothouse, Icehouse, and Impacts, vol. 452, edited by: Koeberl, C. and Montanari, A., Geological Society of America, 167–178, https://doi.org/10.1130/2009.2452(11), 2009.
Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., and Wright, J. D.: Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records, Sci. Adv., 6, https://doi.org/10.1126/sciadv.aaz1346, 2020.
Miloslavich, P., Díaz, J. M., Klein, E., Alvarado, J. J., Díaz, C., Gobin, J., Escobar-Briones, E., Cruz-Motta, J. J., Weil, E., Cortés, J., Bastidas, A. C., Robertson, R., Zapata, F., Martín, A., Castillo, J., Kazandjian, A., and Ortiz, M.: Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns, PLoS One, 5, e11916, https://doi.org/10.1371/journal.pone.0011916, 2010.
Montes, C., Silva, C. A., Bayona, G. A., Villamil, R., Stiles, E., Rodriguez-Corcho, A. F., Beltran-Triviño, A., Lamus, F., Muñoz-Granados, M. D., Pérez-Angel, L. C., Hoyos, N., Gomez, S., Galeano, J. J., Romero, E., Baquero, M., Cardenas-Rozo, A. L., and von Quadt, A.: A Middle to Late Miocene Trans-Andean Portal: Geologic Record in the Tatacoa Desert, Front. Earth Sci. (Lausanne), 8, https://doi.org/10.3389/feart.2020.587022, 2021.
Moore, T. C., Wade, B. S., Westerhold, T., Erhardt, A. M., Coxall, H. K., Baldauf, J., and Wagner, M.: Equatorial Pacific productivity changes near the Eocene-Oligocene boundary, Paleoceanography, 29, 825–844, https://doi.org/10.1002/2014PA002656, 2014.
Mora-Bohórquez, J. A., Oncken, O., Le Breton, E., Ibánez-Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., and Mesa, A.: Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction, Tectonics, 36, 2599–2629, https://doi.org/10.1002/2017TC004612, 2017.
Mora-Bohórquez, J. A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., and de Freitas, M.: Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia, Mar. Pet. Geol., 97, 288–310, https://doi.org/10.1016/j.marpetgeo.2018.06.032, 2018.
Mora-Bohórquez, J. A., Oncken, O., Le Breton, E., Ibáñez-Mejía, M., Veloza, G., Mora, A., Vélez, V., and De Freitas, M.: Formation and Evolution of the Lower Magdalena Valley Basin and San Jacinto Fold Belt of Northwestern Colombia: Insights from Upper Cretaceous to Recent Tectono–Stratigraphy, The Geology of Colombia, Volume 3 Paleogene – Neogene, Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 21–66, https://doi.org/10.32685/pub.esp.37.2019.02, 2020.
Moreno-Sánchez, M. and Pardo-Trujillo, A.: Stratigraphical and Sedimentological Constraints on Western Colombia: Implications on the Evolution of the Caribbean Plate, in: The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, vol. Chapter 40, edited by: Bartolini, C., Buffler, R. T., and Blickwede, J., American Association of Petroleum Geologists Memoir 79, 891–924, https://doi.org/10.1306/M79877C40, 2003.
Muller, J., Di Giacomo, E., and Van Erve, A.: A Palynological Zonation for the Cretaceous, Tertiary, and Quaternary of Northern South America, AASP Contribution Series, 19, 1–76, ISSN 0160-8843, 1987.
Nesbitt, H. W., Markovics, G., and Price, R. C.: Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. Cosmochim. Acta, 44, 1659–1666, https://doi.org/10.1016/0016-7037(80)90218-5, 1980.
O'Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., Finnegan, S., Gasparini, G. M., Grossman, E. L., Johnson, K. G., Keigwin, L. D., Knowlton, N., Leigh, E. G., Leonard-Pingel, J. S., Marko, P. B., Pyenson, N. D., Rachello-Dolmen, P. G., Soibelzon, E., Soibelzon, L., Todd, J. A., Vermeij, G. J., and Jackson, J. B. C.: Formation of the Isthmus of Panama, Sci. Adv., 2, https://doi.org/10.1126/sciadv.1600883, 2016.
Olde, K., Jarvis, I., Uličný, D., Pearce, M. A., Trabucho-Alexandre, J., Čech, S., Gröcke, D. R., Laurin, J., Švábenická, L., and Tocher, B. A.: Geochemical and palynological sea-level proxies in hemipelagic sediments: A critical assessment from the Upper Cretaceous of the Czech Republic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 435, 222–243, https://doi.org/10.1016/j.palaeo.2015.06.018, 2015.
Ortiz, S. and Kaminski, M. A.: Record of deep-sea, benthic elongate-cylindrical foraminifera across the Eocene-Oligocene Transition in the north Atlantic Ocean (ODP Hole 674A), Journal of Foraminiferal Research, 42, 345–368, 2012.
Osorio-Granada, E., Pardo-Trujillo, A., Restrepo-Moreno, S. A., Gallego, F., Muñoz, J., Plata, A., Trejos-Tamayo, R., Vallejo, F., Barbosa-Espitia, A., Cardona-Sánchez, F. J., Foster, D. A., and Kamenov, G.: Provenance of Eocene–Oligocene sediments in the San Jacinto Fold Belt: Paleogeographic and geodynamic implications for the northern Andes and the southern Caribbean, Geosphere, 16, 210–228, https://doi.org/10.1130/GES02059.1, 2020.
Ozsvárt, P., Kocsis, L., Nyerges, A., Győri, O., and Pálfy, J.: The Eocene-Oligocene climate transition in the Central Paratethys, Palaeogeogr. Palaeoclimatol. Palaeoecol., 459, 471–487, https://doi.org/10.1016/j.palaeo.2016.07.034, 2016.
Pälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K., Klaus, A., and Expedition 320/321 Scientists: Methods, Expedition 320/321 Scientists, in: Proceedings of the IODP, 320/321, edited by: Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and Expedition 320/321 Scientists, Integrated Ocean Drilling Program Management International, Inc., Tokyo, 1–80, https://doi.org/10.2204/iodp.proc.320321.102.2010, 2010.
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K. M., Evans, H., Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore Jr, T. C., Murphy, B. H., Murphy, D. P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.: A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609–614, https://doi.org/10.1038/nature11360, 2012.
Pardo-Trujillo, A., Plata-Torres, A., Ramírez, E., Vallejo-Hincapié, F., and Trejos-Tamayo, R.: Eocene to Miocene palynology of the Amagá Basin (Cauca Valley, Colombia) compared to the Caribbean Region, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 47, 1–18, https://doi.org/10.18257/raccefyn.1921, 2023.
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C. and Berggren, W. A. (Eds.): Atlas of Eocene Planktonic Foraminifera, Cushman Foundation for Foraminiferal Research Special Publication 41, Cushman Foundation for Foraminiferal Research, Fredericksburg, VA, ISBN 978-1-970168-36-5, https://pubs.geoscienceworld.org/cushmanfoundation/books/edited-volume/2266/Atlas-of-Eocene-Planktonic-Foraminifera (last access: 5 December 2025), 31 August 2006.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide through the Eocene–Oligocene climate transition, Nature, 461, 1110–1113, https://doi.org/10.1038/nature08447, 2009.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesna, É.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011.
Peeters, F. J. C., Hoek, R. P., Brinkhuis, H., Wilpshaar, M., de Boer, P. L., Krijgsman, W. and Meulenkamp, J. E.: Differentiating glacio-eustacy and tectonics; a case study involving dinoflagellate cysts from the Eocene–Oligocene transition of the Pindos Foreland Basin (NW Greece), Terra Nova, 10, 245–249, https://doi.org/10.1046/j.1365-3121.1998.00198.x, 1998.
Perch-Nielsen, K.: Cenozoic calcareous nannofossils, in: Plankton Stratigraphy, edited by: Bolli, H., Saunders, J. B., and Perch-Nielsen, K., Cambridge University Press, Cambridge, 427–554, ISBN 978-0521367196, 1985.
Pindell, J., Kennan, L., Stanek, K. P., Maresch, W. V., and Draper, G.: Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved, Geologica Acta: an international earth science journal, 4, 303–341, 2006.
Pindell, J. L. and Kennan, L.: Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update, Geological Society, London, Special Publications, 328, 1–55, https://doi.org/10.1144/SP328.1, 2009.
Plata-Torres, A., Pardo-Trujillo, A., and Flores, J. A.: A contribution to the knowledge of Cretaceous to Neogene Palynology in the Colombian Caribbean., Rev. Palaeobot. Palynol., 325, 105098, https://doi.org/10.1016/j.revpalbo.2024.105098, 2024.
Prauss, M.: Sea-level changes and organic-walled phytoplankton response in a Late Albian epicontinental setting, Lower Saxony basin, NW Germany, Palaeogeogr. Palaeoclimatol. Palaeoecol., 174, 221–249, https://doi.org/10.1016/S0031-0182(01)00295-4, 2001.
Prothero, D. R. and Berggren, W. A.: Eocene-Oligocene climatic and biotic evolution, Princeton University Press, Princeton, NJ, 1–567, http://www.jstor.org/stable/j.ctt7zvp65 (last access: 5 December 2025), 1992.
Prothero, D. R., Ivany, L. C., and Nesbitt, E. A.: From Greenhouse to Icehouse, Columbia University Press, New York, 1–547, https://cup.columbia.edu/book/from-greenhouse-to-icehouse/9780231127165/ (last access: 5 December 2025), 2003.
Punyasena, S. W., Jaramillo, C., de la Parra, F., and Du, Y.: Probabilistic correlation of single stratigraphic samples: A generalized approach for biostratigraphic data, Am. Assoc. Pet. Geol. Bull., 96, 235–244, https://doi.org/10.1306/06201111026, 2012.
Rea, D. K. and Lyle, M. W.: Paleogene calcite compensation depth in the eastern subtropical Pacific: Answers and questions, Paleoceanography, 20, 1–9, https://doi.org/10.1029/2004PA001064, 2005.
Restrepo-Moreno, S., Foster, D. A., Stockli, D. F., and Parra-Sánchez, L. N.: Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology, Earth Planet. Sci. Lett., 278, 1–12, https://doi.org/10.1016/j.epsl.2008.09.037, 2009.
Robinson, E.: Upper Paleogene larger Foraminiferal Succession on a Tropical Carbonate Bank, Nicaragua Rise, Caribbean Region, in: From Greenhouse to Icehouse, edited by: Prothero, D. R., Ivany, L. C., and Nesbitt, E. A., Columbia University Press, New York, 294–302, https://cup.columbia.edu/book/from-greenhouse-to-icehouse/9780231127165/ (last access: 5 December 2025), 2003.
Rodrigues de Faria, G., Lazarus, D., Renaudie, J., Stammeier, J., Özen, V., and Struck, U.: Late Eocene to early Oligocene productivity events in the proto-Southern Ocean and correlation to climate change, Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, 2024.
Roth, P. H. and Thierstein, H.: Calcareous Nannoplankton: Leg 14 of the Deep Sea Drilling Project, in: Initial Reports of the Deep Sea Drilling Project, 14, U.S. Government Printing Office, 421–453, https://doi.org/10.2973/dsdp.proc.14.114.1972, 1972.
Rull, V.: High-impact palynology in petroleum geology: Applications from Venezuela (northern South America), Am. Assoc. Pet. Geol. Bull., 86, 279–300, https://doi.org/10.1306/61EEDAB2-173E-11D7-8645000102C1865D, 2002.
Rull, V.: Eocene/Oligocene global disruption and the revolution of Caribbean mangroves, Perspect. Plant Ecol. Evol. Syst., 59, 125733, https://doi.org/10.1016/j.ppees.2023.125733, 2023.
Santana-Casiano, J. M., González-Dávila, M., Fraile-Nuez, E., de Armas, D., González, A. G., Domínguez-Yanes, J. F., and Escánez, J.: The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro, Sci. Rep., 3, 1140, https://doi.org/10.1038/srep01140, 2013.
Schmiedl, G., Mitschele, A., Beck, S., Emeis, K.-C., Hemleben, C., Schulz, H., Sperling, M., and Weldeab, S.: Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean Sea during times of sapropel S5 and S6 deposition, Palaeogeogr. Palaeoclimatol. Palaeoecol., 190, 139–164, https://doi.org/10.1016/S0031-0182(02)00603-X, 2003.
Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E., and Gooday, A. J.: Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea), Mar. Micropaleontol., 62, 45–73, https://doi.org/10.1016/j.marmicro.2006.07.004, 2007.
Scotese, C. R. and Wright, N. M.: PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic (Version 2), Zenodo, https://zenodo.org/records/5460860 (last access: 15 January 2025), 2018.
Sen Gupta, B. K. and Machain-Castillo, M. L.: Benthic foraminifera in oxygen-poor habitats, Mar. Micropaleontol., 20, 183–201, https://doi.org/10.1016/0377-8398(93)90032-S, 1993.
Sigurdsson, H., Leckie, R. M., Acton, G. D., Abrams, L. J., Bralower, T. J., Carey, S. N., Chaisson, W. P., Cotillon, P., Cunningham, A. D., D'Hondt, S. L., Droxler, A. W., Galbrun, B., Gonzalez, J., Haug, G., Kameo, K., King, J., Lind, I. L., Louvel, V., Lyons, T. W., Murray, R. W., Mutti, M., Myers, G., Pearce, R. B., Pearson, D. G., Peterson, L. C. and Röhl, U.: Site 999, in: Proceedings of the Ocean Drilling Program, 165 Initial Reports, Ocean Drilling Program, 131–230, https://doi.org/10.2973/odp.proc.ir.165.104.1997, 1997.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth Sci. Rev., 68, 281–315, https://doi.org/10.1016/j.earscirev.2004.06.001, 2005.
Speijer, R. P., Pälike, H., Hollis, C. J., Hooker, J. J., and Ogg, J. G.: The Paleogene Period, in: Geologic Time Scale 2020, vol. 2, edited by: Gradstein, F. M., Ogg, J. G., Scmitz, M. D., and Ogg, G. M., Elsevier, 1087–1140, https://doi.org/10.1016/B978-0-12-824360-2.00028-0, 2020.
Spezzaferri, S., Olsson, R. K., Hemleben, C., Wade, B. S., and Coxall, H. K.: Taxonomy, biostratigraphy, and phylogeny of Oligocene and Lower Miocene Globoturborotalita, in: Atlas of Oligocene Planktonic Foraminifera., vol. 46, edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman Foundation for Foraminiferal Research, Special Publication, 231–268, https://www.ucl.ac.uk/mathematical-physical-sciences/earth-sciences/research-earth-sciences/research-groups-and-affiliated-institutes/micropalaeontology/our-research/atlas-oligocene-planktonic-foraminifera (last access: 5 December 2025), 2018.
Stoll, H. M. and Schrag, D. P.: Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate, Geochemistry, Geophysics, Geosystems, 1, 1999GC000015, https://doi.org/10.1029/1999GC000015, 2000.
Su, T., Spicer, R. A., Li, S.-H., Xu, H., Huang, J., Sherlock, S., Huang, Y.-J., Li, S.-F., Wang, L., Jia, L.-B., Deng, W.-Y.-D., Liu, J., Deng, C.-L., Zhang, S.-T., Valdes, P. J., and Zhou, Z.-K.: Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet, Natl. Sci. Rev., 6, 495–504, https://doi.org/10.1093/nsr/nwy062, 2019.
Taylor, V. E., Wilson, P. A., Bohaty, S. M., and Meckler, A. N.: Transient Deep Ocean Cooling in the Eastern Equatorial Pacific Ocean at the Eocene-Oligocene Transition, Paleoceanogr. Paleoclimatol., 38, https://doi.org/10.1029/2023PA004650, 2023a.
Taylor, V. E., Westerhold, T., Bohaty, S. M., Backman, J., Dunkley Jones, T., Edgar, K. M., Egan, K. E., Lyle, M., Pälike, H., Röhl, U., Zachos, J., and Wilson, P. A.: Transient Shoaling, Over-Deepening and Settling of the Calcite Compensation Depth at the Eocene-Oligocene Transition, Paleoceanogr. Paleoclimatol., 38, https://doi.org/10.1029/2022PA004493, 2023b.
Tetard, M., Licari, L., Ovsepyan, E., Tachikawa, K., and Beaufort, L.: Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera, Biogeosciences, 18, 2827–2841, https://doi.org/10.5194/bg-18-2827-2021, 2021.
Thomas, E.: Middle Eocene – late Oligocene bathyal benthic foraminifera (Weddel Sea): Faunal changes and implications for ocean circulation, in: Late Eocene-Oligocene climatic and biotic evolution, edited by: Prothero, D. R. and Berggren, W. A., Princeton University Press, Princeton, 245–271, http://www.jstor.org/stable/j.ctt7zvp65 (last access: 5 December 2025), 1992.
Thomas, E.: Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth?, in: Large Ecosystem Perturbations: Causes and Consequences, edited by: Monechi, S., Coccioni, R., and Rampino, M. R., Geological Society of America, 1–23, https://doi.org/10.1130/2007.2424(01), 2007.
Traverse, A.: Paleopalynology, 2nd edn., Springer Netherlands, Dordrecht, 1–814, https://doi.org/10.1007/978-1-4020-5610-9, 2007.
Trejos-Tamayo, R., Garzón, D., Salazar-Ríos, A., Pardo-Trujillo, A., and Flores, J. A.: Paleoambientes en la parte central del Cinturón Plegado de San Jacinto (Caribe colombiano) entre el Eoceno tardío y el Mioceno Temprano: Inferencias a partir de foraminíferos bentónicos, Boletín de Geología, 46, 169–191, https://doi.org/10.18273/revbol.v46n3-2024007, 2024.
Trejos-Tamayo, R., Garzón-Oyola, D., Rodríguez-Abaunza, A., Frontalini, F., Betancur, J. P., Gallego, F., Pardo-Trujillo, A., and Flores, J.-A.: Late Eocene–early Miocene paleoenvironmental shifts in the NW South American margin: Tectonic and climatic drivers inferred from benthic foraminifera, Global and Planetary Change, 104744, https://doi.org/10.1016/j.gloplacha.2025.104744, 2025a.
Trejos-Tamayo, R., Garzon Oyola, D. M., Ochoa, D., Plata-Torres, A., Frontalini, F., Vallejo-Hincapié, F., Abrantes, F., Magalhães, V., Arias-Villega, V., Jaramillo, C., Escobar, J., Curtis, J., Flores, J.-A., Osorio-Tabares, C., Duque-Castaño, M., Bedoya, E., and Pardo-Trujillo, A.: Supplementary dataset for “Tropical ecosystem shifts at the Eocene-Oligocene Transition in the Southwestern Caribbean Region”, Zenodo [data set], https://doi.org/10.5281/zenodo.17330356, 2025b.
Vallejo-Hincapié, F., Pardo-Trujillo, A., Barbosa-Espitia, Á., Aguirre, D., Celis, S. A., Giraldo-Villegas, C. A., Plata-Torres, Á., Trejos-Tamayo, R., Salazar-Ríos, A., Flores, J.-A., Aubry, M.-P., Gallego, F., Delgado, E., and Foster, D.: Miocene vanishing of the Central American Seaway between the Panamá Arc and the South American Plate, Geol. Soc. Am. Bull., https://doi.org/10.1130/B37499.1, 2024.
van Couvering, J. A., Aubry, M.-P., Berggren, W. A., Bujak, J. P., Naeser, C. W. and Wieser, T.: The terminal eocene event and the polish connection, Palaeogeogr Palaeoclimatol Palaeoecol, 36, 321–362, https://doi.org/10.1016/0031-0182(81)90111-5, 1981.
Van Morkhoven, F. P. C. M., Berggren, W. A., and Edwards, A. S.: Cenozoic Cosmopolitan Deep-water Benthic Foraminifera, edited by: Oertli, H. J., Elf Aquitaine, 1–421, ISBN 978-2901026204, 1986.
Villa, G., Fioroni, C., Pea, L., Bohaty, S., and Persico, D.: Middle Eocene–late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748, Mar. Micropaleontol., 69, 173–192, https://doi.org/10.1016/j.marmicro.2008.07.006, 2008.
Wade, B. S. and Pearson, P. N.: Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania, Mar. Micropaleontol., 68, 244–255, https://doi.org/10.1016/j.marmicro.2008.04.002, 2008.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth Sci. Rev., 104, 111–142, https://doi.org/10.1016/j.earscirev.2010.09.003, 2011.
Wade, B. S., Houben, A. J. P., Quaijtaal, W., Schouten, S., Rosenthal, Y., Miller, K. G., Katz, M. E., Wright, J. D., and Brinkhuis, H.: Multiproxy record of abrupt sea-surface cooling across the Eocene-Oligocene transition in the Gulf of Mexico, Geology, 40, 159–162, https://doi.org/10.1130/G32577.1, 2012.
Wade, B. S., Pearson, P. N., Olsson, R. K., Premoli Silva, I., Berggren, W. A., Spezzaferri, S., Huber, B. T., Coxall, H. K., Fucek, V. P., Kucenjak, M. H., Hemleben, C., Leckie, R. M., and Smart, C. W.: Taxonomy, biostratigraphy, phylogeny, and diversity of the Oligocene and Early Miocene planktonic foraminifera, in: Atlas of Oligocene Planktonic Foraminifera, edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman Foundation Special Publication., 11–28, 2018.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369, 1383–1387, https://doi.org/10.1126/science.aba6853, 2020.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Breza, J. R., and Wise, S. W.: Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean, Geology, 20, 569–573, https://doi.org/10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2, 1992.
Zavala, C.: Hyperpycnal (over density) flows and deposits, Journal of Palaeogeography, 9, 17, https://doi.org/10.1186/s42501-020-00065-x, 2020.
Ziveri, P., Baumann, K.-H., Böckel, B., Bollmann, J., and Young, J. R.: Biogeography of selected Holocene coccoliths in the Atlantic Ocean, in: Coccolithophores, edited by: Thiertein, H. R. and Young, J. R., Springer Berlin Heidelberg, Berlin, Heidelberg, 403–428, https://doi.org/10.1007/978-3-662-06278-4_15, 2004.
Short summary
Our study investigates how tropical marine ecosystems responded to climate change during the Eocene–Oligocene transition (~34 Ma). Based on microfossil and geochemical data from a Caribbean drill core, we identify enhanced terrigenous input, increased surface productivity, changes in carbonate preservation, and reduced deep-water oxygenation. Likely driven by global cooling and sea-level fall, these shifts offer new insights into low-latitude paleoenvironmental change.
Our study investigates how tropical marine ecosystems responded to climate change during the...