Articles | Volume 32, issue 1
https://doi.org/10.1144/jmpaleo2011-025
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.1144/jmpaleo2011-025
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New species of Neogene radiolarians from the Southern Ocean – part II
Johan Renaudie
Museum für Naturkunde, Leibniz-Institut für Evolutions - und Biodiversitätsforschung an der Humboldt -Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
David B. Lazarus
Museum für Naturkunde, Leibniz-Institut für Evolutions - und Biodiversitätsforschung an der Humboldt -Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany
Related authors
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 35, 26–53, https://doi.org/10.1144/jmpaleo2014-026, https://doi.org/10.1144/jmpaleo2014-026, 2016
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 31, 29–52, https://doi.org/10.1144/0262-821X10-026, https://doi.org/10.1144/0262-821X10-026, 2012
Cécile Figus, Johan Renaudie, Or M. Bialik, and Jakub Witkowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3768, https://doi.org/10.5194/egusphere-2024-3768, 2024
Short summary
Short summary
The compilation of Palaeogene deep-sea diatom-bearing sediment occurrences indicates that the deposition of diatom-bearing sediments is mainly controlled by nutrient availability and ocean circulation in the Atlantic, Pacific and Indian oceans. Comparison with shallow marine diatomites suggests that the peak in the number of diatom-bearing sites in the Atlantic may be related to tectonic reorganizations that caused the cessation of shallow marine diatomite deposition between ~46 and ~44 Ma.
Cécile Figus, Or M. Bialik, Andrey Y. Gladenkov, Tatyana V. Oreshkina, Johan Renaudie, Pavel Smirnov, and Jakub Witkowski
Clim. Past, 20, 2629–2644, https://doi.org/10.5194/cp-20-2629-2024, https://doi.org/10.5194/cp-20-2629-2024, 2024
Short summary
Short summary
A global-scale compilation of Palaeogene diatomite occurrences shows how palaeogeographic and palaeoceanographic changes impacted diatom accumulation, especially in the middle Eocene. Diatomite deposition dropped in epicontinental seas between ~ 46 and ~ 44 Ma, while diatom accumulation began around 43.5 Ma in open-ocean settings. The compilation also shows an indirect correlation between Palaeogene climate fluctuations and diatomite deposition in shallow-marine and freshwater environments.
Gabrielle Rodrigues de Faria, David Lazarus, Johan Renaudie, Jessica Stammeier, Volkan Özen, and Ulrich Struck
Clim. Past, 20, 1327–1348, https://doi.org/10.5194/cp-20-1327-2024, https://doi.org/10.5194/cp-20-1327-2024, 2024
Short summary
Short summary
Export productivity is part of the global carbon cycle, influencing the climate system via biological pump. About 34 million years ago, the Earth's climate experienced a climate transition from a greenhouse state to an icehouse state with the onset of ice sheets in Antarctica. Our study shows important productivity events in the Southern Ocean preceding this climatic shift. Our findings strongly indicate that the biological pump potentially played an important role in that past climate change.
Johan Renaudie and David B. Lazarus
EGUsphere, https://doi.org/10.5194/egusphere-2023-3087, https://doi.org/10.5194/egusphere-2023-3087, 2024
Short summary
Short summary
We provide a new compilation of rates at which sediments deposited in the deep sea over the last 70 million years. We highlight a bias, linked to the drilling process, that makes it more likely for high rates to be recovered for younger sediments than for older ones. Correcting for this bias, the record show, contrary to previous estimates, a more stable history, thus providing some insights on the past mismatch between physico-chemical model estimates and observations.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Johan Renaudie, Effi-Laura Drews, and Simon Böhne
Foss. Rec., 21, 183–205, https://doi.org/10.5194/fr-21-183-2018, https://doi.org/10.5194/fr-21-183-2018, 2018
Short summary
Short summary
Our ability to reconstruct the marine planktonic diatom early Paleogene history is hampered by decreased preservation as well as by observation bias. Collecting new diatom data in various Paleocene samples from legacy deep-sea sediment sections allows us to correct for the latter. The results show that the Paleocene deep-sea diatoms seem in fact as diverse and abundant as in the later Eocene while exhibiting very substantial survivorship of Cretaceous species up until the Eocene.
Johan Renaudie
Biogeosciences, 13, 6003–6014, https://doi.org/10.5194/bg-13-6003-2016, https://doi.org/10.5194/bg-13-6003-2016, 2016
Short summary
Short summary
Marine planktonic diatoms are today both the main silica and carbon exporter to the deep sea. However, 50 million years ago, radiolarians were the main silica exporter and diatoms were a rare, geographically restricted group. Quantification of their rise to dominance suggest that diatom abundance is primarily controlled by the continental weathering and has a negative feedback, observable on a geological timescale, on the carbon cycle.
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 35, 26–53, https://doi.org/10.1144/jmpaleo2014-026, https://doi.org/10.1144/jmpaleo2014-026, 2016
Johan Renaudie and David B. Lazarus
J. Micropalaeontol., 31, 29–52, https://doi.org/10.1144/0262-821X10-026, https://doi.org/10.1144/0262-821X10-026, 2012
Cited articles
A., Abelmann: Early to Middle Miocene radiolarian stratigraphy of the Kerguelen Plateau, Leg 120In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 120Ocean Drilling Program, College Station, TX, 757–783., 1992.
A., Abelmann, U., Brathauer, R., Gersonde, R., Sieger and U., Zielinski: Radiolarian-based transfer function for the estimation of sea surface temperatures in the Southern Ocean (Atlantic sector), Paleoceanography, 14, 410-421, 1999.
M. D., Abramoff, P. J., Magelhaes and S. J., Ram: Image Processing with ImageJ, Biophotonics International, 11, 36-42, 2004.
J. A., Barron, J. G., Baldauf and E., Barrera: Biochronologic and Magnetochronologic synthesis of Leg 119 sediments from the Kerguelen Plateau and Prydz Bay, AntarcticaIn : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 119Ocean Drilling Program, College Station, TX, 813–847., 1991.
W. A., Berggren, D. V., Kent, C. C., Swisher and M.-P., Aubry: A revised Cenozoic geochronology and chronostratigraphyIn : (Eds), Geochronology, time scales and global stratigraphic correlations: A unified temporal framework for a historical geologySEPM Special Volume, 54: 129–212., 1995.
K. R., Bjørklund: a Radiolaria from the Norwegian Sea, Leg 38 of the Deep Sea Drilling ProjectIn : (Eds), Initial Reports of the Deep Sea Drilling Project, 38US Government Printing Office, Washington D.C., 1101–1168., 1976.
K. R., Bjørklund: Actinomma haysi , n. sp., its Holocene distribution and size variation in Atlantic Ocean sediments, Micropaleontology, 23, 114-126, 1976.
J. R., Blueford: Miocene actinommid Radiolaria from the Equatorial Pacific, Micropaleontology, 28, 189-213, 1982.
S. M., Bohaty, S. W., Wise, R. A., Duncan, C. L., Moore and P. J., Wallace: Neogene diatom biostratigraphy, tephra stratigraphy, and chronology of ODP Hole 1138A, Kerguelen PlateauIn : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 183Ocean Drilling Program, College Station, TX, 1–53., 2003.
D., Boltovskoy: Classification and Distribution of South Atlantic recent Polycystine RadiolariaPalaeontologica Electronica, 1: http://palaeo-electronica.org/1998_2/boltovskoy/issue2.htm., 1998.
A. S., Campbell and B. L., Clark: Eocene radiolarian faunas from the Mt. Diablo area, California, Geological Society of America, Special Papers, 39, 1-112, 1942.
A. S., Campbell and B. L., Clark: Radiolaria from the Upper Cretaceous of Middle California, Geological Society of America, Special Papers, 57, 1-61, 1944.
J.-P., Caulet: Radiolarians from the Kerguelen Plateau, ODP Leg 119In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 119Ocean Drilling Program, College Station, TX, 513–546., 1991.
T., Cavalier-Smith: The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa, International Journal of Systematic and Evolutionary Microbiology, 52, 297-354, 2002.
P. H., Chen: Antarctic RadiolariaIn : (Eds), Initial Reports of the Deep Sea Drilling Project, 28US Government Printing Office, Washington D.C., 437–513., 1975.
P. T., Cleve: Notes on some Atlantic plankton organisms, Kongliga Svenska Vetenskaps-Akademiens Handlingar, 34, 1-22, 1900.
P., De Wever, A., Sanfilippo, W. R., Riedel and B., Gruber: Triassic radiolarians from Greece, Sicily and Turkey, Micropaleontology, 25, 75-110, 1979.
P., De Wever, P., Dumitrica, J.-P., Caulet, C., Nigrini and M., Caridroit: Radiolarians in the Sedimentary RecordGordon and Breach, Amsterdam, 533pp., 2001.
V. A., Dogiel and V. V., Reshetnyak: Materialy po radiolyariyam severo-zapadnoy chasti tikhogo okeana, Issledovanya Dalnevostochnykh Morei SSSR, 3, 5-36, 1952.
P., Dumitrica: Triassic Palaeoscenidiidae and Entactiniidae from the Vicentinian Alps (Italy) and Eastern Carpathians (Romania), Dàri de seamà ale sedintelor, 64, 39-54, 1978.
P., Dumitrica: Internal morphology of the Saturnalidae (Radiolaria): Systematic and phylogenetic consequences, Revue de Micropaléontologie, 28, 181-196, 1985.
P., Dumitrica: Middle Triassic Tripedurnulidae, n. fam. (Radiolaria) from the eastern Carpathians (Romania) and Vicentinian Alps (Italy), Revue de Micropaléontologie, 34, 261-278, 1991.
C. G., Ehrenberg: Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre, 1838, 59-147, 1839.
C. G., Ehrenberg: Über 2 neue Lager von Gebirgsmassen aus Infusorien als Meeres-Absatz in Nord-Amerika und eine Vergleichung derselben mit den organischen Kreide-Gebirgen in Europa und Afrika, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre, 1844, 57-97, 1844.
C. G., Ehrenberg: Über die mikroskopischen kieselschaligen Polycystinen als mächtige Gebirgsmasse von Barbados und über das Verhältniss der aus mehr als 300 neuen Arten bestehenden ganz eigenthümlichen Formengruppe jener Felsmasse zu den jetzt lebenden Thieren und zur Kreidebildung, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre, 1847, 40-60, 1847.
C. G., Ehrenberg: Die systematische Charakteristik der neuen Mikroskopischen Organismen des Tiefen Atlantischen Oceans, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Bericht, Jahre, 1854, 236-250, 1854.
C. G., Ehrenberg: b MikrogeologieVoss, Leipzig, 374pp., 1854.
C. G., Ehrenberg: Mikrogeologische Studien über das kleinste Leben der Meeres-Tiefgründe aller zonen und dessen geologischen Einfluss, Monatsberichte der Königlich Preußischen Akademie der Wissenchanften zu Berlin, 265-322, 1872.
C. G., Ehrenberg: Größere Felsproben des Polycystinen-Mergels von Barbados mit weiteren Erläuterungen, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre, 1873, 213-262, 1874.
C. G., Ehrenberg: Fortsetzung der mikrogeologischen Studien als Gesammt übersicht der mikroskopischen Paläontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rücksicht auf den Polycystinen-mergel von Barbados, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre, 1875, 1-225, 1876.
S., Funakawa: Plagiacanthidae (Radiolaria) from the Upper Miocene of Eastern Hokkaido, Japan, Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 174, 458-483, 1994.
S., Funakawa: Lophophaeninae (Radiolaria) from the upper Oligocene to lower Miocene and intrageneric variation in their internal skeletal structures, Journal of Geosciences, Osaka City University, 38, 13-59, 1995.
S., Funakawa and H., Nishi: Late middle Eocene to late Oligocene radiolarian biostratigraphy in the Southern Ocean (Maud Rise, ODP Leg 113, Site 689), Marine Micropaleontology, 54, 213-247, 2005.
H., Furutani: Skeletal construction and phylogeny of Palaeoscenidiidae, News of Osaka Micropaleontologists, Special Volume, 5, 11-16, 1982.
R., Gersonde, A., Abelmann and L. H., Burckle: Biostratigraphic Synthesis of Neogene Siliceous Microfossils from the Antarctic Ocean, ODP Leg 113 (Weddell Sea)In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 113Ocean Drilling Program, College Station, TX, 915–936., 1990.
R. M., Goll: Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in the Pacific and Caribbean Basins, Part I, Journal of Paleontology, 42, 1409-1432, 1968.
R. M., Goll: Morphological intergradation between modern populations of Lophospyris and Phormospyris (Trissocyclidae, Radiolaria), Micropaleontology, 22, 379-418, 1976.
R. M., Goll: The Neogene evolution of Zygocircus, Neosemantis and Callimitra : their bearing on nassellarian classification, Micropaleontology, 25, 365-396, 1979.
R. M., Goll and K. R., Bjørklund: A new radiolarian biostratigraphy for the Neogene of the Norwegian Sea: ODP Leg 104In : (Eds), Proceedings of the Ocean Drilling Project, Scientific Results, 104Ocean Drilling Program, College Station, TX, 697–737., 1989.
Q. H., Goodbody: Wenlock Palaeoscenidiidae and Entactiniidae (Radiolaria) from the Cape Phillips Formation of the Canadian Arctic Archipelago, Micropalaeontology, 32, 129-157, 1986.
E., Haeckel: Über neue, lebende Radiolarien des Mittelmeeres, Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Jahre, 1860, 794-817, 1860.
E., Haeckel: Die Radiolarien (Rhizopoda Radiaria)Reimer, Berlin, 572pp., 1862.
E., Haeckel: Naturliche SchopfungsgeschichteReimer, Berlin, 718pp., 1879.
E., Haeckel: Entwurf eines Radiolarien-Systems auf Grund von Studien der Challenger-Radiolarien, Jenaische Zeitschrift für Naturwissenschaft, 15, 418-472, 1881.
E., Haeckel: Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. Report on the Scientific Results of the voyage of H.M.S , Challenger during the years 1873–1876. Zoology, 18, 1887.
V., Haecker: Altertümliche Spharellarien und Cyrtellarien aus grossen Meerestiefen, Archiv für Protistenkunde, 10, 114-126, 1907.
D. M., Harwood, D. B., Lazarus and A., Abelmann: Neogene integrated magnetobiostratigraphy of the central Kerguelen Plateau, Leg 120In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 120Ocean Drilling Program, College Station, TX, 1031–1052., 1992.
J. D., Hays: Radiolaria and late Tertiary and Quaternary history of Antarctic seasIn : (Ed.), Biology of the Antarctic Seas IIAntarctic Research Series, 5: 125–184., 1965.
J. D., Hays, J. A., Lozano, N. J., Shackleton and G., Irving: Reconstruction of the Atlantic and western Indian Ocean sectors of the 18,000BP Antarctic Ocean, Geological Society of America Memoir, 145, 337-372, 1976.
R., Hertwig: Der organismus der RadiolarienGFischer, Jena, 149pp., 1879.
A., Hollande and M., Enjumet: Cytologie, évolution et systématique des Sphaeroïdés (Radiolaires), Archives du Muséum National d’Histoire Naturelle, 7, 1-134, 1960.
T., Itaki: Late glacial to Holocene Polycystine radiolarians from the Japan Sea, News of Osaka Micropaleontologists, Special Volume, 14, 43-89, 2009.
T., Itaki, B.-K., Khim and K., Ikehara: Last glacial–Holocene water structure in the southwestern Okhotsk Sea inferred from radiolarian assemblages, Marine Micropaleontology, 67, 191-215, 2008.
E., Jørgensen: Protophyten und Protozöen in Plankton aus der norwegischen Westküste, Bergens Museums Aarbog, 6, 51-112, 1900.
E., Jørgensen: The Protist plankton and the diatoms in bottom samplesVIIRadiolariaIn : (Ed.), Hydrographical and Biological investigations in Norwegian FiordsBergen Museum Skrifter, 114–141., 1905.
S., Kamikuri: New late Neogene radiolarian species from the middle to high latitudes of the North Pacific, Revue de Micropaléontologie, 53, 85-106, 2010.
S. A., Kling: Radiolaria from the eastern North Pacific, Deep Sea Drilling Project, Leg 18In : (Eds), Initial Reports of the Deep Sea Drilling Project, 18US Government Printing Office, Washington D.C., 617–671., 1973.
H., Kozur and H., Möstler: Entactinaria subordo nov., a new radiolarian suborder, Geologisch-Paläontlogische Mitteilungen Innsbruck, 11, 399-414, 1982.
D. B., Lazarus: Antarctic Neogene radiolarians from the Kerguelen Plateau, Legs 119 and 120In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 120Ocean Drilling Program, College Station, TX, 785–809., 1992.
D. B., Lazarus: Environmental control of diversity, evolutionary rates and taxa longevities in Antarctic Neogene Radiolaria, Palaeontologia Electronica, 5, 32-2002.
D. B., Lazarus: The Micropaleontological Reference Center Network, Scientific Drilling, 3, 46-49, 2006.
D. B., Lazarus and A., Pallant: Oligocene and Neogene radiolarians from the Labrador Sea, ODP Leg 105In : (Eds), Proceedings of the Ocean Drilling Program, Scientific Results, 105Ocean Drilling Program, College Station, TX, 349–380., 1989.
J. M., Lees: GEOmap: Topographic and Geologic Mapping, 1, 5-4, 2010.
A. R., Loeblich and H. N., Tappan: Remarks on the systematics of the Sarkodina (Protozoa), renamed homonyms and new and validated genera, Proceedings of the Biological Society of Washington, 74, 213-234, 1961.
H., Mast: Die Astrosphaeriden, Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition auf dem Dampfer ‘Valdivia’ 1898–1899, 19, 123-190, 1910.
T. C., Moore: Mid-Tertiary evolution of the radiolarian genus Calocycletta , Micropaleontology, 18, 144-152, 1972.
T. C., Moore: Method of randomly distributing grains for microscope examination, Journal of Sedimentary Petrology, 43, 904-906, 1973.
J., Müller: Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres, Königlichen Preußischen Akademie der Wissenschaften zu Berlin, Abhandlungen, Jahre, 1858, 1-62, 1858.
K., Nakaseko: Miocene radiolarian fossil assemblage from the southern Tojama Prefecture in Japan, Science Reports, College of General Education, Osaka University, 4, 65-127, 1955.
K., Nakaseko: On some species of the genus Thecosphaera from the Neogene Formations, Japan, Science Reports, College of General Education, Osaka University, 20, 59-66, 1972.
K., Nakaseko, K., Nagata and A., Nishimura: Discovery of Miocene Radiolaria belonging to Pentactinocarpinae in Japan (Preliminary Report), News of Osaka Micropaleontologists, Special Volume, 5, 423-425, 1982.
K., Nakaseko, K., Nagata and A., Nishimura: Pentactinosphaera hokurikuensis (Nakaseko): a revised Early Miocene Radiolaria, Science Reports, College of General Education, Osaka University, 32, 31-37, 1983.
K., Nakaseko and A., Nishimura: Miocene radiolarian fossils of the Oki Islands in Shimane Prefecture, Japan, Science Reports, College of General Education, Osaka University, 23, 45-73, 1974.
B., O’Connor: Lower Miocene Radiolaria from Te Kopua Point, Kaipara Harbour, New Zealand, Micropaleontology, 43, 101-128, 1997.
K., Ogane, N., Suzuki, Y., Aita, T., Sakai and D., Lazarus: Ehrenberg’s radiolarian collections from BarbadosIn : (Eds), Joint Haeckel and Ehrenberg Project: Reexamination of the Haeckel and Ehrenberg Microfossil Collection as a historical and scientific legacyNational Museum of Nature and Science Monographs, Tokyo, 40: 97–106., 2009.
M. G., Petrushevskaya: Osobennosti i konstruktsii skeleta radiolyarii Botryoidae (otr. Nassellaria), Trudy Zoologicheskogo Instituta, 35, 79-118, 1965.
M. G., Petrushevskaya: Radiolyarii otryadov Spumellaria i Nassellaria antarkticheskoi oblasti. Issledovaniya Fauny Morei, Resultaty Biologicheskikh Issledovanii Sovetskoi Antarkticheskoi Ekspeditsii 1955–1958, 4, 1-186, 1967.
M. G., Petrushevskaya: Gomologii v skeletakh radiolyarii Nassellaria. 1. Osnovnye dugi v semeistve Cyrtoidea, Zoologicheskii Zhurnal, 47, 1296-1310, 1968.
M. G., Petrushevskaya: Radiolyarii Nassellaria v planktone mirovogo okeana, Issledovaniya Fauny Morei, 9, 1-294, 1971.
M. G., Petrushevskaya: Cenozoic radiolarians of the Antarctic, Leg 29, Deep Sea Drilling ProjectIn : (Eds), Initial Reports of the Deep Sea Drilling Project, 29US Government Printing Office, Washington D.C., 541–676., 1975.
M. G., Petrushevskaya and G. E., Kozlova: Radiolaria: Leg 14, Deep Sea Drilling ProjectIn : (Eds), Initial Reports of the Deep Sea Drilling Project, 14US Government Printing Office, Washington D.C., 495–648., 1972.
A., Popofsky: Die Radiolarien der Antarktis, 10, 183-305, 1908.
A., Popofsky: Die Sphaerellarien des Warmwassergebietes, 13, 73-159, 1912.
A., Popofsky: Die Nassellarien des Warmwassergebietes, 14, 217-416, 1913.
J., Renaudie and D. B., Lazarus: New species of Neogene radiolarians from the Southern Ocean, Journal of Micropalaeontology, 31, 29-52, 2012.
W. R., Riedel: Radiolaria in Antarctic sediments. Reports of the B.A.N.Z, Antarctic Research Expedition, Series B, 6, 218-254, 1958.
W. R., Riedel: Some new families of Radiolaria, Proceedings of the Geological Society of London, 1640, 148-149, 1967.
A., Sanfilippo and J.-P., Caulet: Taxonomy and evolution of Paleogene Antarctic and tropical Lophocyrtid radiolarians, Micropaleontology, 44, 1-43, 1998.
A., Sanfilippo and W. R., Riedel: A revised generic and suprageneric classification of the Artiscins (Radiolaria), Journal of Paleontology, 54, 1008-1011, 1980.
C., Spencer-Cervato: The Cenozoic deep-sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database, Palaeontologia Electronica, 2, 270-1999.
K., Sugiyama: Skeletal structures of lower and Middle Miocene lophophaenids (Radiolaria) from central Japan, Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 169, 44-72, 1993.
K., Sugiyama: Lower Miocene New Nassellarians (Radiolaria) from the Toyohama Formation, Morozaki Group, Central Japan, Bulletin of the Mizunami Fossil Museum, 21, 1-11, 1994.
K., Sugiyama: Nassellarian fauna from the Middle Miocene Oidawara Formation, Mizunami Group, central Japan, News of Osaka Micropaleontologists, Special Volume, 11, 227-250, 1998.
K., Sugiyama and H., Furutani: Middle Miocene radiolarians from the Oidawara Formation, Mizunami Group, Gifu Prefecture, central Japan, Bulletin of the Mizunami Fossil Museum, Dr. Junji Itoigawa memorial volume, 19, 199-213, 1992.
K., Sugiyama, T., Nobuhara and K., Inoue: Preliminary report on Pliocene radiolarians from the Nobori Formation, Tonohama Group, Shikoku, Southwest Japan, Journal of Earth and Planetary Science, Nagoya University, 39, 1-30, 1992.
N., Suzuki, D., Lazarus, K., Ogane, Y., Aita and T., Sakai: General results of re-examination of Enhrenberg’s radiolarian collections with instructions on efficient methods to find microfossils from the collectionIn : (Eds), Joint Haeckel and Ehrenberg Project: Reexamination of the Haeckel and Ehrenberg Microfossil Collection as a historical and scientific legacyNational Museum of Nature and Science Monographs, Tokyo, 40: 71–86., 2009.
K., Takahashi: Radiolarian flux and seasonality: climatic and El Niño response in the Subarctic Pacific, 1982–1984, Global Biogeochemical Cycles, 1, 213-231, 1987.
K., Takahashi: Radiolaria: Flux, ecology and taxonomy in the Pacific and AtlanticIn : (Ed.), Ocean Biocoenosis SeriesWoods Hole Oceanographic Institution, Woods Hole, MA, 3: 1–303., 1991.
F. M., Weaver: Antarctic Radiolaria from the southeast Pacific Basin, Deep Sea Drilling Project, Leg 35In : (Eds), Initial Reports of the Deep Sea Drilling Project, 35US Government Printing Office, Washington D.C., 569–603., 1976.
F. M., Weaver: Cenozoic radiolarians from the Southwest Atlantic, Falkland Plateau region, Deep Sea Drilling Project, Leg 71In : (Eds), Initial Reports of the Deep Sea Drilling Project, 71US Government Printing Office, Washington D.C., 667–686., 1983.