Articles | Volume 38, issue 1
https://doi.org/10.5194/jm-38-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-38-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India
Department of Earth Sciences, Indian Institute of Technology Kanpur,
Kanpur, India
Jyoti Sharma
Department of Geology, K. J. Somaiya College of Science and
Commerce,
University of Mumbai, Mumbai, India
Related authors
Sonal Khanolkar and Pratul Kumar Saraswati
J. Micropalaeontol., 35, 54–61, https://doi.org/10.1144/jmpaleo2015-004, https://doi.org/10.1144/jmpaleo2015-004, 2016
Sonal Khanolkar and Pratul Kumar Saraswati
J. Micropalaeontol., 35, 54–61, https://doi.org/10.1144/jmpaleo2015-004, https://doi.org/10.1144/jmpaleo2015-004, 2016
Related subject area
Palynology
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach
Desmocysta hadra, a new Late Cretaceous dinoflagellate cyst species: stratigraphic range, palaeogeographic distribution and palaeoecology
New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes
Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast
Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts
A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica)
Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Manuel Vieira and Salih Mahdi
J. Micropalaeontol., 39, 155–167, https://doi.org/10.5194/jm-39-155-2020, https://doi.org/10.5194/jm-39-155-2020, 2020
Short summary
Short summary
This paper describes a new species of the genus Desmocysta from the Late Cretaceous in the Norwegian Sea. The short stratigraphic range for this new species makes it a good biostratigraphic marker. The available published data also indicate that this genus is restricted to higher latitudes in the Northern Hemisphere and is suggested to have preferred turbid waters and stressed marine environments.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Marcelo Augusto De Lira Mota, Guy Harrington, and Tom Dunkley Jones
J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, https://doi.org/10.5194/jm-39-1-2020, 2020
Short summary
Short summary
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain reveal more accurate age estimates for the critical Eocene–Oligocene transition (EOT), a global climate event marked by the rapid expansion of the first permanent Antarctic ice sheet 34 million years ago. These data suggest a coeval major increase in sedimentation rate. Future isotopic and palaeoecological work on this core can be more precisely integrated with other global records of the EOT.
Kasia K. Śliwińska
J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, https://doi.org/10.5194/jm-38-143-2019, 2019
Short summary
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser
J. Micropalaeontol., 38, 83–95, https://doi.org/10.5194/jm-38-83-2019, https://doi.org/10.5194/jm-38-83-2019, 2019
Short summary
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Cited articles
Alegret, L., Ortiz, S., Arenillas, I., and Molina, E.: What happens when the
ocean is overheated? The foraminiferal response across the Paleocene-Eocene
Thermal Maximum at the Alamedilla section (Spain), Bull. Geol. Soc. Am., 122,
1616–1624, https://doi.org/10.1130/B30055.1, 2010.
Arenillas, I., Molina, E., and Schmitz, B.: Planktic foraminiferal and
13C isotopic changes across the Paleocene/Eocene boundary at
Possagno (Italy), Int. J. Earth Sci., 88, 352–364, 1999.
Bajpai, S., Kapur, V., Das, D., Tiwari, B., Saravanan, N., and Sharma, R.:
Early Eocene land mammals from Vastan lignite mine, district Surat (Gujarat),
western India, J. Palaeontol. Soc. Ind., 50, 101–113, 2005.
Biswas, S.: Tertiary stratigraphy of Kutch, J. Palaeontol. Soc. Ind., 37,
1–29, 1992.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the
Priabonian type-area (Northeast Italy): biostratigraphy and
paleoenvironmental interpretation, Palaeogeogr. Palaeocl., 107, 121–163,
1994.
Chaloner, W.: The palaeoecology of fossil spores, Evolution and environment,
Yale University Press, New Haven, Connecticut, USA, 125–138, 1968.
Chandra, P. and Chowdhary, L.: Stratigraphy of the Cambay basin, Bull. ONGC,
6, 37–50, 1969.
Clay Kelly, D., Bralower, T. J., Zachos, J. C., Silva, I. P., and Thomas, E.:
Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP
Site 865) during the late Paleocene thermal maximum, Geology, 24, 423–426,
1996.
Clementz, M., Bajpai, S., Ravikant, V., Thewissen, J., Saravanan, N., Singh,
I., and Prasad, V.: Early Eocene warming events and the timing of terrestrial
faunal exchange between India and Asia, Geology, 39, 15–18, 2011.
Contreras, L., Pross, J., Bijl, P. K., Koutsodendris, A., Raine, J. I., van
de Schootbrugge, B., and Brinkhuis, H.: Early to middle Eocene vegetation
dynamics at the Wilkes Land Margin (Antarctica), Rev. Palaeobot. Palyno.,
197, 119–142, 2013.
Contreras, L., Pross, J., Bijl, P. K., O'Hara, R. B., Raine, J. I., Sluijs,
A., and Brinkhuis, H.: Southern high-latitude terrestrial climate change
during the Palaeocene–Eocene derived from a marine pollen record (ODP Site
1172, East Tasman Plateau), Clim. Past, 10, 1401–1420,
https://doi.org/10.5194/cp-10-1401-2014, 2014.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K.,
Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L., Peterse,
F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.:
Synchronous tropical and polar temperature evolution in the Eocene, Nature,
559, 382–386, https://doi.org/10.1038/s41586-018-0272-2, 2018.
Crouch, E. M., Dickens, G. R., Brinkhuis, H., Aubry, M. P., Hollis, C. J.,
Rogers, K. M., and Visscher, H.: The Apectodinium acme and terrestrial
discharge during the Paleocene-Eocene thermal maximum: New palynological,
geochemical and calcareous nannoplankton observations at Tawanui, New
Zealand, Palaeogeogr. Palaeocl., 194, 387–403,
https://doi.org/10.1016/S0031-0182(03)00334-1, 2003.
Dilcher, D. L.: Epiphyllous fungi from Eocene deposits in western Tennessee,
USA, Palaeontogr. Abt. B, 116, 1–54, 1965.
Dolson, J., Burley, S. D., Sunder, V., Kothari, V., Naidu, B., Whiteley, N.
P., Farrimond, P., Taylor, A., Direen, N., and Ananthakrishnan, B.: The
discovery of the Barmer Basin, Rajasthan, India, and its petroleum geology
Barmer Basin Petroleum Geology, India, AAPG Bull., 99, 433–465, 2015.
Dutta, S., Tripathi, S. M., Mallick, M., Mathews, R. P., Greenwood, P. F.,
Rao, M. R., and Summons, R. E.: Eocene out-of-India dispersal of Asian
dipterocarps, Rev. Palaeobot. Palyno., 166, 63–68, 2011.
Evans, D., Sagoo, N., Renema, W., Cotton, L. J., Müller, W., Todd, J. A.,
Saraswati, P. K., Stassen, P., Ziegler, M., and Pearson, P. N.: Eocene
greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry, P.
Natl. Acad. Sci. USA, 115, 1174–1179, 2018.
Frieling, J. and Sluijs, A.: Towards quantitative environmental
reconstructions from ancient nonanalogue microfossil assemblages: Ecological
preferences of Paleocene–Eocene dinoflagellates, Earth-Sci. Rev., 185,
956–973, 2018.
Frieling, J., Reichart, G.-J., Middelburg, J. J., Röhl, U., Westerhold, T.,
Bohaty, S. M., and Sluijs, A.: Tropical Atlantic climate and ecosystem regime
shifts during the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 39–55,
https://doi.org/10.5194/cp-14-39-2018, 2018.
Garg, R., Ateequzzaman, K., Prasad, V., Tripathi, S., Singh, I., Jauhri, A.,
and Bajpai, S.: Agediagnostic dinoflagellate cysts from the lignite-bearing
sediments of the Vastan lignite mine, Surat District, Gujarat, western India,
J. Palaeontol. Soc. India, 53, 99–105, 2008.
Giusberti, L., Coccioni, R., Sprovieri, M., and Tateo, F.: Perturbation at
the sea floor during the Paleocene–Eocene Thermal Maximum: Evidence from
benthic foraminifera at Contessa Road, Italy, Mar. Micropaleontol., 70,
102–119, 2009.
Grimm, E.: TGView, Illinois State Museum, Research and Collections Center,
2004.
Harrington, G. J.: Pollen assemblages and Palaeocene–Eocene stratigraphy in
the Bighorn and Clarks Fork Basins, edited by: Gingerich, P. D., University
of Michigan Papers on Paleontology, Vol. 33, 89–96, 2001.
Jaramillo, C., Rueda, M. J., and Mora, G.: Cenozoic plant diversity in the
neotropics, Science, 311, 1893–1896, https://doi.org/10.1126/science.1121380, 2006.
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H.,
Pratt, L. M., Krishnan, S., Cardona, A., Romero, M., Quiroz, L., Rodriguez,
G., Rueda, M. J., De La Parra, F., Morón, S., Green, W., Bayona, G.,
Montes, C., Quintero, O., Ramirez, R., Mora, G., Schouten, S., Bermudez, H.,
Navarrete, R., Parra, F., Alvarán, M., Osorno, J., Crowley, J. L.,
Valencia, V., and Vervoort, J.: Effects of rapid global warming at the
paleocene-eocene boundary on neotropical vegetation, Science, 330, 957–961,
https://doi.org/10.1126/science.1193833, 2010.
Kalia, P.: Buliminds from the Middle Eocene of Rajasthan, India, J.
Palaeontol. Soc. India, 21, 44–48, 1978.
Kelly, D. C., Bralower, T. J., and Zachos, J. C.: Evolutionary consequences
of the latest Paleocene thermal maximum for tropical planktonic foraminifera,
Palaeogeogr. Palaeocl., 141, 139–161, 1998.
Khanolkar, S. and Saraswati, P. K.: Palaeoenvironmental Significance of
Rectilinear Benthic Foraminifera in the Middle Eocene section of Matanaomadh
Sub-basin, Kutch, Proceedings of XXIII Indian Colloquium of Micropaleontology
and Stratigraphy, Special Publication Geological Society of India, 1,
307–317, 2013.
Khanolkar, S. and Saraswati, P. K.: Ecological response of shallow-marine
foraminifera to early Eocene warming in equatorial India, J. Foramin. Res.,
45, 293–304, 2015.
Khanolkar, S. and Saraswati, P. K.: Some observations on an atypical planktic
foraminifer from the Middle Eocene of Kutch, India, J. Micropalaeontol., 35,
54–61, https://doi.org/10.1144/jmpaleo2015-004, 2016.
Khanolkar, S., Kumar Saraswati, P., and Rogers, K.: Ecology of foraminifera
during the middle Eocene climatic optimum in Kutch, India, Geodin. Acta, 29,
181–193, 2017.
Kroon, D. and Nederbragt, A. J.: Ecology and paleoecology of triserial
planktic foraminifera, Mar. Micropaleontol., 16, 25–38, 1990.
Kumar, K., Rana, R. S., and Singh, H.: Fishes of the Khuiala Formation (Early
Eocene) of the Jaisalmer Basin, Western Rajasthan, India, Curr. Sci. India,
93, 553–559, 2007.
Kumar, M.: Palynostratigraphy and palaeoecology of early Eocene palynoflora
of Rajpardi lignite, Bharuch District, Gujarat, 1994.
Kumar, P., Yuan, X., Kumar, M. R., Kind, R., Li, X., and Chadha, R.: The
rapid drift of the Indian tectonic plate, Nature, 449, 894–897, 2007.
Langenheim, J. H.: Biology of amber-producing trees: Focus on case studies of
Hymenaea and Agathis, in: Amber, Resinite and Fossil Resins, edited by:
Anderson, K. G. and Crelling, J. C., American Chemical Society Symposium
Series 617, Washington, DC, 1–31, 1995.
Loeblich Jr., A. R. and Tappan, H.: Foraminiferal genera and their
classification, Springer, New York, 2015.
Luciani, V., Giusberti, L., Agnini, C., Fornaciari, E., Rio, D., Spofforth,
D. J., and Pälike, H.: Ecological and evolutionary response of Tethyan
planktonic foraminifera to the middle Eocene climatic optimum (MECO) from the
Alano section (NE Italy), Palaeogeogr. Palaeocl., 292, 82–95, 2010.
Mandal, J. and Guleria, J. S.: Palynology of Vastan Lignite (Surat District)
Gujarat: its age palaeoecology and depositional environment, Palaeobotanist,
55, 51–66, 2006.
McGowran, B.: Maastrichtian to Eocene foraminiferal assemblages in the
northern and eastern Indian Ocean region: Correlations and historical
patterns, in: Indian Ocean geology and biostratigraphy, edited by: Heirtzler,
J. R., Bolli, H. M., Davies, T. A., Saunders, J. B., and Sclater, J. G.,
American Geophysical Union Special Publication, 417–458,
https://doi.org/10.1029/SP009p0417, 1977.
McGowran, B.: The Tertiary of Australia: foraminiferal overview, Mar.
Micropaleontol., 4, 235–264, 1979.
McGowran, B., Holdgate, G. R., Li, Q., and Gallagher, S. J.: Cenozoic
stratigraphic succession in southeastern Australia, Aust. J. Earth Sci., 51,
459–496, 2004.
Murray, J. W.: Ecology and applications of benthic foraminifera, Cambridge
University Press, 2006.
Murray, J. W. and Wright, C. A.: Palaeogene foraminiferida and palaeoecology,
Hampshire and Paris Basins and the English Channel, 14, Palaeontological
Association, 14, 1–129, 1974.
Naafs, B. D. A., Rohrssen, M., Inglis, G. N., Lähteenoja, O., Feakins, S.
J., Collinson, M. E., Kennedy, E. M., Singh, P. K., Singh, M. P., Lunt, D.
J., and Pancost, R. D.: High temperatures in the terrestrial midlatitudes
during the early Palaeogene, Nat. Geosci., 11, 766–771,
https://doi.org/10.1038/s41561-018-0199-0, 2018.
Nagappa, Y.: Foraminiferal biostratigraphy of the Cretaceous-Eocene
succession in the IndiaPakistan-Burma region, Micropaleontology, 5, 145–177,
1959.
Nagy, J.: Environmental significance of foraminiferal morphogroups in
Jurassic North Sea deltas, Palaeogeogr. Palaeocl., 95, 111–134, 1992.
Nigam, R., Mazumder, A., Henriques, P. J., and Saraswat, R.: Benthic
foraminifera as proxy for oxygen-depleted conditions off the central west
coast of India, Journal of Geological Society of India, 70, 1047–1051, 2007.
Ocean Drilling Stratigraphic Network: ODSN Plate Tectonic Reconstruction
Service, available at:
http://www.odsn.de/odsn/services/paleomap/paleomap.html, last access:
April 2004.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G.,
Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm
tropical sea surface temperatures in the Late Cretaceous and Eocene epochs,
Nature, 413, 481–487, 2001.
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., Berggren, W. A.,
Premoli Silva, I., Coxall, H., Premec Fucek, V., and Wade, B.: Atlas of
Eocene planktonic foraminifera, Epitome, 1, 274–274, 2005.
Prasad, V., Singh, I. B., Bajpai, S., Garg, R., Thakur, B., Singh, A.,
Saravanan, N., and Kapur, V. V.: Palynofacies and sedimentology-based
high-resolution sequence stratigraphy of the lignitebearing muddy coastal
deposits (early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India,
Facies, 59, 737–761, 2013.
Preece, R., Kaminski, M., and Dignes, T.: Miocene benthonic foraminiferal
morphogroups in an oxygen minimum zone, offshore Cabinda, Geol. Soc. Spec.
Publ., 153, 267–282, 1999.
Pross, J.: Paleo-oxygenation in tertiary epeiric seas: Evidence from
dinoflagellate cysts, Palaeogeogr. Palaeocl., 166, 369–381,
https://doi.org/10.1016/S0031-0182(00)00219-4, 2001.
Pross, J. and Schmiedl, G.: Early Oligocene dinoflagellate cysts from the
Upper Rhine Graben (SW Germany): paleoenvironmental and paleoclimatic
implications, Mar. Micropaleontol., 45, 1–24, 2002.
Punekar, J. and Saraswati, P. K.: Age of the Vastan Lignite in context of
some oldest Cenozoic fossil mammals from India, J. Geol. Soc. India, 76,
63–68, 2010.
Rage, J.-C., Bajpai, S., Thewissen, J. G., and Tiwari, B. N.: Early Eocene
snakes from Kutch, Western India, with a review of the Palaeophiidae,
Geodiversitas, 25, 695–716, 2003.
Rana, R., Kumar, K., Singh, H., and Rose, K.: Lower vertebrates from the late
palaeocene–earliest eocene Akli formation, giral lignite mine, Barmer
District, western India, Curr. Sci. India, 89, 1606–1613, 2005.
Rao, M., Sahni, A., Rana, R., and Verma, P.: Palynostratigraphy and
depositional environment of Vastan lignite mine (Early Eocene), Gujarat,
western India, J. Earth Syst. Sci., 122, 289–307, 2013.
Reolid, M., Rodríguez-Tovar, F. J., Nagy, J., and Olóriz, F.:
Benthic foraminiferal morphogroups of mid to outer shelf environments of the
Late Jurassic (Prebetic Zone, southern Spain): characterization of biofacies
and environmental significance, Palaeogeogr. Palaeocl., 261, 280–299, 2008.
Rull, V.: Middle Eocene mangroves and vegetation changes in the Maracaibo
Basin, Venezuela, Palaios, 13, 287–296, 1998.
Samant, B. and Phadtare, N.: Stratigraphic palynoflora of the Early Eocene
Rajpardi lignite, Gujarat andthe lower age limit of the Tarkeswar Formation
of South Cambay Basin, India, Palaeontogr. Abt. B, 245, 1–108, 1997.
Samanta, A., Bera, M., Ghosh, R., Bera, S., Filley, T., Pande, K., Rathore,
S., Rai, J., and Sarkar, A.: Do the large carbon isotopic excursions in
terrestrial organic matter across Paleocene–Eocene boundary in India
indicate intensification of tropical precipitation?, Palaeogeogr. Palaeocl.,
387, 91–103, 2013.
Saraswati, P. K., Sarkar, U., and Banerjee, S.: Nummulites solitarius –
Nummulites burdigalensis lineage in Kutch with remarks on the age of Naredi
Formation, J. Geol. Soc. India, 79, 476–482, 2012.
Saraswati, P. K., Khanolkar, S., Raju, D. S. N., Dutta, S., Banerjee, S.,
Wang, Y., and Liu, M.: Foraminiferal biostratigraphy of lignite mines of
Kutch India: Age of lignite fossil vertebrates, J. Palaeogeogr., 3, 90–98,
2014.
Saraswati, P. K., Khanolkar, S., and Banerjee, S.: Paleogene stratigraphy of
Kutch, India: an update about progress in foraminiferal biostratigraphy,
Geodin. Acta, 30, 100–118, 2018.
Sarkar, U., Banerjee, S., Saraswati, P., Yuan, W., and Min, L.: Integrated
borehole and outcrop study for documentation of sea level cycles within the
Early Eocene Naredi Formation, western Kutch, India, J. Palaeogeogr., 1,
126–137, 2012.
Selkirk, D.: Tertiary fossil fungi from Kiandra, New South Wales, Proc.
Linnean. Soc. NSW, 1975,
Sharma, J. and Saraswati, P. K.: Lignites of Kutch, western India:
Dinoflagellate biostratigraphy and palaeoclimate, Revue de
Micropaléontologie, 58, 107–119, 2015.
Singh, A., Rai, A., Verma, K., Das, S., and Bharti, S.: Benthic foraminiferal
diversity response to the climate induced changes in the eastern Arabian Sea
oxygen minimum zone during the last 30 ka BP, Quaternary Int., 374,
118–125, 2015.
Singh, S. and Kalia, P.: A new planktonic foraminifer from the middle Eocene
of India, Micropaleontology, 16, 76–82, 1970.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L.,
Munsterman, D., Bohaty, S. M., Zachos, J. C., Reichart, G. J., Schouten, S.,
Pancost, R. D., Damsté, J. S. S., Welters, N. L. D., Lotter, A. F., and
Dickens, G. R.: Eustatic variations during the Paleocene-Eocene greenhouse
world, Paleoceanography, 23, 1–18, https://doi.org/10.1029/2008PA001615, 2008.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse;
organic-walled dinoflagellate cysts as paleoenvironmental indicators in the
Paleogene, Earth-Sci. Rev., 68, 281–315, 2005.
Stassen, P., Steurbaut, E., Morsi, A.-M., Schulte, P., and Speijer, R.:
Biotic impact of Eocene Thermal Maximum 2 in a shelf setting (Dababiya,
Egypt), Austrian J. Earth Sci., 105, 154–160, 2012.
Suan, G., Popescu, S.-M., Suc, J.-P., Schnyder, J., Fauquette, S., Baudin,
F., Yoon, D., Piepjohn, K., Sobolev, N. N., and Labrousse, L.: Subtropical
climate conditions and mangrove growth in Arctic Siberia during the early
Eocene, Geology, 45, 539–542, 2017.
Thomas, E. and Shackleton, N. J.: The Paleocene-Eocene benthic foraminiferal
extinction and stable isotope anomalies, Geol. Soc. Spec. Publ., 101,
401–441, 1996.
Tripathi, S. K. and Srivastava, D.: Palynology and palynofacies of the early
Palaeogene lignite bearing succession of Vastan, Cambay Basin, western India,
Acta Palaeobotanica, 52, 157–175, 2012.
Westgate, J. W. and Gee, C. T.: Paleoecology of a middle Eocene mangrove
biota (vertebrates, plants, and invertebrates) from southwest Texas,
Palaeogeogr. Palaeocl., 78, 163–177, 1990.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
rhythms, and aberrations in global climate 65 Ma to present, Science, 292,
686–693, 2001.
Zamagni, J., Mutti, M., Ballato, P., and Košir, A.: The Paleocene–Eocene
thermal maximum (PETM) in shallow-marine successions of the Adriatic
carbonate platform (SW Slovenia), Bulletin, 124, 1071–1086, 2012.
Short summary
We carried out comparative analyses of multiple microfossil groups like foraminifera, dinoflagellates, pollen and spores from Early and Middle Eocene lignite mine sections from paleotropical sites of the Cambay, Kutch and Barmer basins of western India in order to record the changes in paleovegetation and paleodepositional conditions during the hot and humid climate.
We carried out comparative analyses of multiple microfossil groups like foraminifera,...