Articles | Volume 38, issue 2
https://doi.org/10.5194/jm-38-143-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-38-143-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well
Stratigraphy Department, Geological Survey of Denmark and Greenland,
GEUS, Øster Voldgade 10, 1350 Copenhagen K, Denmark
Related authors
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Related subject area
Palynology
Stepwise Oligocene–Miocene breakdown of subpolar gyres and strengthening of the Antarctic Circumpolar Current
Chitinozoan biostratigraphy through the Aeronian–Telychian boundary interval on Anticosti Island, Canada
High Arctic late Paleocene and early Eocene dinoflagellate cysts
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach
Desmocysta hadra, a new Late Cretaceous dinoflagellate cyst species: stratigraphic range, palaeogeographic distribution and palaeoecology
New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes
Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts
Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India
A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica)
Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Carolina Klock, André Desrochers, Patrick I. McLaughlin, Poul Emsbo, Tim De Backer, Fien M. Jonckheere, Cristiana J. P. Esteves, and Thijs R. A. Vandenbroucke
J. Micropalaeontol., 43, 475–495, https://doi.org/10.5194/jm-43-475-2024, https://doi.org/10.5194/jm-43-475-2024, 2024
Short summary
Short summary
Anticosti Island has a well-preserved rock succession throughout the Aeronian–Telychian boundary in the Llandovery Epoch, Silurian period, which includes two important biogeochemical events, the late Aeronian and the Valgu. This study suggests the position of this boundary in Anticosti based on the correlation of the island’s chitinozoan assemblages with the global occurrences, confirming both a remarkable preservation of upper Aeronian rocks and the record of the Valgu event.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Manuel Vieira and Salih Mahdi
J. Micropalaeontol., 39, 155–167, https://doi.org/10.5194/jm-39-155-2020, https://doi.org/10.5194/jm-39-155-2020, 2020
Short summary
Short summary
This paper describes a new species of the genus Desmocysta from the Late Cretaceous in the Norwegian Sea. The short stratigraphic range for this new species makes it a good biostratigraphic marker. The available published data also indicate that this genus is restricted to higher latitudes in the Northern Hemisphere and is suggested to have preferred turbid waters and stressed marine environments.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Marcelo Augusto De Lira Mota, Guy Harrington, and Tom Dunkley Jones
J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, https://doi.org/10.5194/jm-39-1-2020, 2020
Short summary
Short summary
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain reveal more accurate age estimates for the critical Eocene–Oligocene transition (EOT), a global climate event marked by the rapid expansion of the first permanent Antarctic ice sheet 34 million years ago. These data suggest a coeval major increase in sedimentation rate. Future isotopic and palaeoecological work on this core can be more precisely integrated with other global records of the EOT.
Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser
J. Micropalaeontol., 38, 83–95, https://doi.org/10.5194/jm-38-83-2019, https://doi.org/10.5194/jm-38-83-2019, 2019
Short summary
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Sonal Khanolkar and Jyoti Sharma
J. Micropalaeontol., 38, 1–24, https://doi.org/10.5194/jm-38-1-2019, https://doi.org/10.5194/jm-38-1-2019, 2019
Short summary
Short summary
We carried out comparative analyses of multiple microfossil groups like foraminifera, dinoflagellates, pollen and spores from Early and Middle Eocene lignite mine sections from paleotropical sites of the Cambay, Kutch and Barmer basins of western India in order to record the changes in paleovegetation and paleodepositional conditions during the hot and humid climate.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Cited articles
Abels, H. A., Van Simaeys, S., Hilgen, F. J., De Man, E., and Vandenberghe,
N.: Obliquity-dominated glacio-eustatic sea level change in the early
Oligocene: Evidence from the shallow marine siliciclastic Rupelian
stratotype (Boom Formation, Belgium), Terra Nov., 19, 65–73,
https://doi.org/10.1111/j.1365-3121.2006.00716.x, 2007.
Barke, J., Abels, H. A., Sangiorgi, F., Greenwood, D. R., Sweet, A. R.,
Donders, T., Reichart, G. J., Lotter, A. F., and Brinkhuis, H.: Orbitally
forced Azolla blooms And Middle Eocene Arctic hydrology: Clues from
palynology, Geology, 39, 427–430, https://doi.org/10.1130/G31640.1, 2011.
Bartek, L. R., Vail, P. R., Anderson, J. B., Emmet, P. A., and Wu, S.: Effect
of Cenozoic ice sheet fluctuations in Antarctica on the stratigraphic
signature of the Neogene, J. Geophys. Res.-Sol. Ea., 96, 6753–6778,
https://doi.org/10.1029/90JB02528, 1991.
Bijl, P. K., Pross, J., Warnaar, J., Stickley, C. E., Huber, M., Guerstein, R., Houben, A. J. P., Sluijs, A., Visscher, H., and Brinkhuis, H.: Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography, Paleoceanography, 26, PA1202, https://doi.org/10.1029/2009PA001905, 2011.
Bijl, P. K., Brinkhuis, H., Egger, L. M., Eldrett, J. S., Frieling, J.,
Grothe, A., Houben, A. J. P., Pross, J., Śliwińska, K. K., and
Sluijs, A.: Comment on “Wetzeliella and its allies – the “hole” story: a
taxonomic revision of the Paleogene dinoflagellate subfamily
Wetzelielloideae” by Williams et al. (2015), Palynology, 41, 423–429,
https://doi.org/10.1080/01916122.2016.1235056, 2017.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the
Priabonian type-area (Northeast Italy): biostratigraphy and
paleoenvironmental interpretation, Palaeogeogr. Palaeocl., 170, 121–163,
https://doi.org/10.1016/0031-0182(94)90168-6, 1994.
Bujak, J. and Mudge, D.: A high-resolution North Sea Eocene dinocyst
zonation, J. Geol. Soc. London., 151, 449–462, 1994.
Clausen, O. R., Śliwińska, K. K., and Gołedowski, B.: Oligocene
climate changes controlling forced regression in the eastern North Sea, Mar.
Pet. Geol., 29, 1–14, https://doi.org/10.1016/j.marpetgeo.2011.10.002, 2012.
Coccioni, R., Montanari, A., Bice, D., Brinkhuis, H., Deino, A., Frontalini,
F., Lirer, F., Maiorano, P., Monechi, S., Pross, J., Sagnotti, L., Sideri,
M., Sprovieri, M., Tateo, F., Rochette, P., Touchard, Y., Van Simaeys, S.,
and Williams, G. L.: The Global Stratotype Section and Point (GSSP) for the
base of the Chattian Stage (Paleogene System, Oligocene Series) at Monte
Cagnero, Italy, Episodes, 41, 17–32, https://doi.org/10.18814/epiiugs/2018/v41i1/018003,
2018.
Costa, L. I. and Manum, S. B.: The description of the interregional zonation of the Paleogene (D1–D15) and Miocene (D16–D20), The northwest European Tertiary Basin – Results of the International Geological Correlation Programme, Project No. 124, in: Geologisches Jahrbuch A, edited by: Vinken, R., 321–330, 1988.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.:
Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57, https://doi.org/10.1038/nature03135,
2005.
Dale, B.: Dinoflagellate cyst ecology: modeling and geological applications, in: Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, edited by: Jansonius, J. and McGregor, D. C., Dallas, 1249–1276, 1996.
Damassa, S. P. and Williams, G. L.: Late Eocene-Oligocene dinoflagellate
provincialism in the North Atlantic Ocean, in: Cenozoic Plants and Climates
of the Arctic. NATO ASI Series (Series I: Global Environmental Change),
edited by: Boulter, M. C. and Fisher, H. C., Springer, Berlin,
Heidelberg, 73–92, 1994.
Danielsen, M., Michelsen, O., and Clausen, O. R.: Oligocene sequence
stratigraphy and basin development in the Danish North Sea sector based on
log interpretations, Mar. Pet. Geol., 14, 931–950,
https://doi.org/10.1016/S0264-8172(97)00043-3, 1997.
de Kaenel, E. and Villa, G.: Oligocene-Miocene calcareous nannofossil
biostratigraphy and paleoecology from the Iberia Abyssal Plain, Proc. Ocean
Drill. Program. Sci. Results, 149, 79–145,
https://doi.org/10.2973/odp.proc.sr.149.208.1996, 1996.
De Schepper, S., Head, M. J., and Louwye, S.: Pliocene dinoflagellate cyst
stratigraphy, palaeoecology and sequence stratigraphy of the Tunnel-Canal
Dock, Belgium, Geol. Mag., 146, 92–112, https://doi.org/10.1017/S0016756808005438,
2009.
Downie, C., Hussain, M. A., and Williams, G. L.: Dinoflagellate cyst and
acritarch associations in the Paleogene of southeast England, Geosci. Man,
3, 29–35, https://doi.org/10.1080/00721395.1971.9989706, 1971.
Dybkjær, K.: Dinocyst stratigraphy and palynofacies studies used for
refining a sequence stratigraphic model – Uppermost Oligocene to lower
Miocene, Jylland, Denmark, Rev. Palaeobot. Palynol., 131, 201–249,
https://doi.org/10.1016/j.revpalbo.2004.03.006, 2004.
Dybkjær, K. and Rasmussen, E. S.: Organic-walled dinoflagellate cyst stratigraphy in an expanded Oligocene-Miocene boundary section in the eastern North Sea Basin (Frida-1 Well, Denmark) and correlation from basinal to marginal areas, J. Micropalaeontol., 26, 1–17, https://doi.org/10.1144/jm.26.1.1, 2007.
Dybkjær, K., Rasmussen, E. S., Śliwińska, K. K., Esbensen, K. H.,
and Mathiesen, A.: A palynofacies study of past fluvio-deltaic and shelf
environments, the Oligocene-Miocene succession, North Sea Basin: A reference
data set for similar Cenozoic systems, Mar. Pet. Geol., 100,
111–147, https://doi.org/10.1016/j.marpetgeo.2018.08.012, 2019.
Eaton, G. L.: Dinoflagellate cysts from the Bracklesham Beds (Eocene) of the Isle of Wight, southern England, British Museum (Natural History) Geology, Bulletin, 26, 227–332, 1976.
Edwards, L. E.: Dinoflagellates, in: Fossil prokaryotes and protists, edited
by: Lipps, J. H., Blackwell, Cambridge, 105–127, 1993.
Egger, L. M., Śliwińska, K. K., van Peer, T. E., Liebrand, D.,
Lippert, P. C., Friedrich, O., Wilson, P. A., Norris, R. D., and Pross, J.:
Magnetostratigraphically-calibrated dinoflagellate cyst bioevents for the
uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP
Expedition 342, Paleogene Newfoundland sediment drifts), Rev. Palaeobot.
Palynol., 234, 159–185, https://doi.org/10.1016/j.revpalbo.2016.08.002, 2016.
Eidvin, T., Riis, F., Rasmussen, E. S., and Rundberg, Y.: Investigation of
Oligocene to Lower Pliocene deposits in the Nordic offshore area and onshore
Denmark, NPD Bull., 10, 1–62, 2013.
Eidvin, T., Riis, F., and Rasmussen, E. S.: Oligocene to Lower Pliocene
deposits of the Norwegian continental shelf, Norwegian Sea, Svalbard,
Denmark and their relation to the uplift of Fennoscandia: A synthesis, Mar.
Pet. Geol., 56, 184–221, https://doi.org/10.1016/j.marpetgeo.2014.04.006, 2014.
Eldrett, J. S., Harding, I. C., Firth, J. V., and Roberts, A. P.:
Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst
biostratigraphy from the Norwegian-Greenland Sea, Mar. Geol., 204,
91–127, https://doi.org/10.1016/S0025-3227(03)00357-8, 2004.
Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E., and Roberts, A.
P.: Continental ice in Greenland during the Eocene and Oligocene, Nature,
446, 176–179, https://doi.org/10.1038/nature05591, 2007.
Eshet, Y., Almogi-Labin, A., and Bein, A.: Dinoflagellate cysts,
paleoproductivity and upwelling systems: A Late Cretaceous example from
Israel, Mar. Micropaleontol., 23, 231–240,
https://doi.org/10.1016/0377-8398(94)90014-0, 1994.
Fensome, R. A., Guerstein, G. R., and Williams, G. L.: New insights on the
Paleogene dinoflagellate cyst genera
Enneadocysta and Licracysta gen. nov.
based on material from offshore eastern Canada and southern Argentina,
Micropaleontology, 52, 385–410, https://doi.org/10.2113/gsmicropal.52.5.385, 2006.
Fyfe, J. A., Gregersen, U., Jord, H., Rundberg, Y., Evans, D., Stewart, D.,
Hovland, M., and Andersen, P.: Oligocene to Holocene, in: The Millennium
Atlas: petroleum geology of the cebntral and northern North Sea, edited by:
Evans, D., Graham, C., Armour, A., and Bathurst, P., The Geological
Society of London, London, 279–287, 2003.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M.,
Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico,
F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the
Eocene-Oligocene boundary climate transition, Science, 352,
76–80, https://doi.org/10.1126/science.aab0669, 2016.
Gedl, P.: Dinoflagellate cyst record of the Eocene-Oligocene boundary
succession in flysch deposits at Leluchów, Carpathian Mountains, Poland,
Geol. Soc. London, Spec. Publ., 230, 257–273,
https://doi.org/10.1144/GSL.SP.2004.230.01.13, 2004.
Head, M. J.: Morphology and Paleoenvironmental Significance of the Cenozoic
Dinoflagellate Genera Tectatodinium and Habibacysta, Micropaleontology,
40, 289–321, https://doi.org/10.2307/1485937, 1994.
Head, M. J. and Norris, G.: Palynology and dinocyst stratigraphy of the
Eocene and Oligocene in ODP leg 105, hole 647A, Labrador Sea, Ocean Drill.
Program. Proc. Sci. Res., 105, 515–550, 1989.
Heilmann-Clausen, C. and Van Simaeys, S.: Dinoflagellate cysts from the
Middle Eocene to lowermost Oligocene succession in the Kysing research
borehole, central Danish basin, Palynology, 29, 143–204,
https://doi.org/10.1080/01916122.2005.9989606, 2005.
Huuse, M. and Clausen, O. R.: Morphology and origin of major Cenozoic
sequence boundaries in the Eastern North Sea Basin: Top Eocene, near-top
Oligocene and the mid-Miocene unconformity, Basin Res., 13, 17–41,
https://doi.org/10.1046/j.1365-2117.2001.00123.x, 2001.
Jaramillo, C. A. and Oboh-Ikuenobe, F. E.: Sequence stratigraphic
interpretations from palynofacies, dinocyst and lithological data of Upper
Eocene–Lower Oligocene strata in southern Mississippi and Alabama, US
Gulf Coast, Palaeogeogr. Palaeocl., 145, 259–302,
https://doi.org/10.1016/S0031-0182(98)00126-6, 1999.
Jarsve, E. M., Eidvin, T., Nystuen, J. P., Faleide, J. I., Gabrielsen, R. H.,
and Thyberg, B. I.: The Oligocene succession in the eastern North Sea: Basin
development and depositional systems, Geol. Mag., 152, 668–693,
https://doi.org/10.1017/S0016756814000570, 2015.
King, C., Gale, A. S., and Barry, T. L.: A revised correlation of Tertiary
rocks in the British Isles and adjacent areas of NW Europe, edited by:
King, C., Gale, A. S., and Barry, T. L., Geological Society of London, 2016.
Knox, R. W. O. B., Bosh, J. H. A., Rasmussen, E.S. Heilmann-Clausen, C.,
Hiss, M., Kasiński, J., King, C., Köthe, A., Słodkowska, B. and
Standke, G., and Vandenberghe, N.: Cenozoic, in: Petroleum Geological Atlas of the
Southern Permian Basin Area, edited by: Doornenbal, J. C. and
Stevenson, A. G., EAGE Publication B.V., Houten, 211–223, 2010.
Köthe, A.: Paleogene dinoflagellates from northwest Germany:
biostratigraphy and paleoenvironment, Geol. Jahrbuch. R. A, 118, 1–111,
1990.
Köthe, A.: Tertiary dinocyst zonation in northern Germany, Rev.
Paleobiol., 22, 895–923, 2003.
Köthe, A. and Piesker, B.: Stratigraphic distribution of Paleogene and
Miocene dinocysts in Germany, Rev. Paleobiol., 26, 1–39, 2007.
Lagrou, D., Vandenberghe, N., Van Simaeys, S., and Hus, J.:
Magnetostratigraphy and rock magnetism of the Boom Clay (Rupelian
stratotype) in Belgium, Geol. en Mijnbouw/Netherlands J. Geosci., 83,
209–225, https://doi.org/10.1017/S001677460002028X, 2004.
Lavier, L. L., Steckler, M. S., and Brigaud, F.: Climatic and tectonic
control on the Cenozoic evolution of the West African margin, Mar. Geol.,
178, 63–80, https://doi.org/10.1016/S0025-3227(01)00175-X, 2001.
Lund, J. J.: A Lower Oligocene Norwegian Sea Dinoflagellate Cyst Found in
the North Sea and in the Rupelian Type Area in Belgium, in Northern European
Cenozoic Stratigraphy, Proc. 8th Biann. Meet. RCNNS/RCNPS, 83–90,
2002.
Marret, F. and Zonneveld, K. A. F.: Atlas of modern organic-walled
dinoflagellate cyst distribution, Rev. Palaeobot. Palynol., 125,
1–200, https://doi.org/10.1016/S0034-6667(02)00229-4, 2003.
Michelsen, O. and Danielsen, M.: Sequence and systems tract interpretation
of the epicontinental Oligocene deposits in the Danish North Sea, Geol.
Siliciclastic Shelf Seas Geol. Soc. Spec. Publ., 117, 1–13, 1996.
Michelsen, O., Danielsen, M., Heilmann-Clausen, C., Jordt, H., Laursen, G. V.,
and Thomsen, E.: Cenozoic sequence stratigraphy in the eastern North Sea,
Final report of the CENOS-project, 1–51, 1992.
Michelsen, O., Thomsen, E., Danielsen, M., Heilmann-Clausen, C., Jordt, H.,
and Laursen, G. V: Cenozoic Sequence Stratigraphy In The Eastern North Sea,
Mesozoic Cenozoic Seq. Stratigr. Eur. Basins, 60, 91–118,
https://doi.org/10.2110/pec.98.02.0091, 1998.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the Ice House:
Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, J. Geophys.
Res.-Sol. Ea., 96, 6829–6848, https://doi.org/10.1029/90JB02015, 1991.
Miller, K. G., Mountain, G. S., Browning, J. V., Kominz, M., Sugarman, P.
J., Christie-Blick, N., Katz, M. E., and Wright, J. D.: Cenozoic global sea
level, sequences, and the New Jersey transect: Results from coastal plain
and continental slope drilling, Rev. Geophys., 36, 569–601,
https://doi.org/10.1029/98RG01624, 1998.
NPD_report: NPD Paper No. 23 Interpreted lithology,
available at: http://factpages.npd.no/pbl/NPD_papers/170_01_NPD_Paper_No.23_Lithology__Well_11_10_1.pdf, 1969a.
NPD_report: Well completion report Syracuse 11/10-1X
Production License, available at:
http://factpages.npd.no/pbl/wellbore_documents/170_11_10_1_COMPLETION_REPORT.pdf, 1969b.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
heartbeat of the Oligocene climate system, Science, 314,
1894–1898, https://doi.org/10.1126/science.1133822, 2006.
Pekar, S. and Miller, K. G.: New Jersey Oligocene “Icehouse” sequences
(ODP Leg 150X) correlated with global δ18O and Exxon eustatic
records, Geology, 24, 567–570, 1996.
Pekar, S. F., Miller, K. G., and Kominz, M. A.: Reconstructing the stratal
geometry of latest Eocene to Oligocene sequences in New Jersey: Resolving a
patchwork distribution into a clear pattern of progradation, Sediment.
Geol., 134, 93–109, 2000.
Pekar, S. F., Christie-Blick, N., Kominz, M. A., and Miller, K. G.:
Calibration between eustatic estimates from backstripping and oxygen
isotopic records for the Oligocene, Geology, 30, 903–906,
2002.
Powell, A. J., Lewis, J., and Dodge, J. D.: The palynological expressions of
post-Palaeogene upwelling: a review, Geol. Soc. Lond. Sp.
Publ., 64, 215–226, 1992.
Pross, J.: Dinoflagellate cyst biogeography and biostratigraphy as a tool
for palaeoceanographic reconstructions: An example from the Oligocene of
western and northwestern Europe, Neues Jahrb. Geol. P.-A., 219, 207–219,
2001a.
Pross, J.: Paleo-oxygenation in tertiary epeiric seas: Evidence from
dinoflagellate cysts, Palaeogeogr. Palaeocl., 166,
369–381, https://doi.org/10.1016/S0031-0182(00)00219-4, 2001b.
Pross, J. and Schmiedl, G.: Early Oligocene dinoflagellate cysts from the
Upper Rhine Graben (SW Germany), Mar. Micropaleontol., 45, 1–24,
https://doi.org/10.1594/PANGAEA.736658, 2002.
Pross, J., Houben, A. J. P., van Simaeys, S., Williams, G. L., Kotthoff, U.,
Coccioni, R., Wilpshaar, M., and Brinkhuis, H.: Umbria-Marche revisited: A
refined magnetostratigraphic calibration of dinoflagellate cyst events for
the Oligocene of the Western Tethys, Rev. Palaeobot. Palynol., 158,
213–235, https://doi.org/10.1016/j.revpalbo.2009.09.002, 2010.
Rasmussen, E. S., Dybkjær, K., and Piasecki, S.: Lithostratigraphy of the Upper Oligocene – Miocene succession of Denmark, Geological Survey of Denmark and Greenland Bulletin, 22, 92 pp., 2010.
Schiøler, P.: Dinoflagellate cysts and acritarchs from the Oligocene–Lower Miocene interval of the Alma-1X well, Danish North Sea, J. Micropalaeontol., 24, 1–37, https://doi.org/10.1144/jm.24.1.1, 2005.
Schiøler, P., Andsbjerg, J., Clausen, O. R., Dam, G., Dybkjaer, K.,
Hamberg, L., Heilmann-Clausen, C., Johannessen, E. P., Kristensen, L. E.,
Prince, I., and Rasmussen, J. A.: Lithostratigraphy of the Palaeogene –
Lower Neogene succession of the Danish North Sea, Geol. Surv. Denmark
Greenl. Bull., 12, 1–77, 2007.
Śliwinska, K. K.: MSc thesis. North Sea Basin depositional history in relation to climatic trends during the Oligocene – elucidated with dinoflagellates, Department of Earth Sciences, Aarhus University, 74 pp., 2009.
Śliwińska, K. K.: PhD. disseration: The depositional history of the
Oligocene in the North Sea Basin in relation to the climatic development,
Department of Earth Sciences, Aarhus University, Aarhus, 90 pp., 2011.
Śliwińska, K. K. and Heilmann-Clausen, C.: Early Oligocene cooling
reflected by the dinoflagellate cyst Svalbardella cooksoniae, Palaeogeogr.
Palaeocl., 305, 138–149,
https://doi.org/10.1016/j.palaeo.2011.02.027, 2011.
Śliwińska, K. K., Clausen, O. R., and Heilmann-Clausen, C.: A
mid-Oligocene cooling (Oi-2b) reflected in the dinoflagellate record and in
depositional sequence architecture. An integrated study from the eastern
North Sea Basin, Mar. Pet. Geol., 27, 1424–1430,
https://doi.org/10.1016/j.marpetgeo.2010.03.008, 2010.
Śliwińska, K. K., Abrahamsen, N., Beyer, C., Brünings-Hansen,
T., Thomsen, E., Ulleberg, K., and Heilmann-Clausen, C.: Bio- and
magnetostratigraphy of Rupelian-mid Chattian deposits from the Danish land
area, Rev. Palaeobot. Palynol., 172, 48–69,
https://doi.org/10.1016/j.revpalbo.2012.01.008, 2012.
Śliwinska, K. K., Heilmann-Clausen, C., and Thomsen, E.: Correlation Between the Type Chattian in NW Europe and the Rupelian–Chattian Candidate GSSP in Italy, in: STRATI 2013, Springer Geology, edited by: Rocha, R., Pais, J., Kullberg, J., and Finney, S., Springer, Cham,
https://doi.org/10.1007/978-3-319-04364-7_57, 2014a.
Śliwińska, K. K., Dybkjær, K., Schoon, P. L., Beyer, C., King,
C., Schouten, S., and Nielsen, O. B.: Paleoclimatic and paleoenvironmental
records of the Oligocene-Miocene transition, central Jylland, Denmark, Mar.
Geol., 350, 1–15, https://doi.org/10.1016/j.margeo.2013.12.014, 2014b.
Śliwińska, K. K., Thomsen, E., Schouten, S., Schoon, P. L., and
Heilmann-Clausen, C.: Climate- and gateway-driven cooling of Late eocene to
earliest oligocene sea surface temperatures in the North sea Basin, Sci.
Rep., 9, 4458, https://doi.org/10.1038/s41598-019-41013-7, 2019.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse;
organic-walled dinoflagellate cysts as paleoenvironmental indicators in the
Paleogene, Earth-Sci. Rev., 68, 281–315,
https://doi.org/10.1016/j.earscirev.2004.06.001, 2005.
Snyder, S. W. and Waters, V. J.: Cenozoic planktonic foraminiferal
biostratigraphy of the Goban Spur Region, Deep Sea Drilling Project Leg 80,
in: Initial Reports of the Deep Sea Drilling Project, Vol. 80, edited by: Graciansky, P.
C., Poag, C. W. et al., 80, 439–472, 1985.
Sterrenburg, F. A. S., Hamilton, P., and Williams, D.: Universal coordinate
method for locating light-microscope specimens, Diatom Res., 27, 91–94,
https://doi.org/10.1080/0269249X.2012.688493, 2012.
Stover, L. E. and Hardenbol, J.: Dinoflagellates and depositional sequences
in the Lower Oligocene (Rupelian) Boom Clay Formation, Belgium, Bull. la
Société belge géologie, 102, 5–77, 1994.
Sun, J., Ni, X., Bi, S., Wu, W., Ye, J., Meng, J., and Windley, B. F.:
Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene
Boundary in Asia, Sci. Rep., 4, https://doi.org/10.1038/srep07463, 2014.
Tripati, A. and Darby, D.: Evidence for ephemeral middle Eocene to early
Oligocene Greenland glacial ice and pan-Arctic sea ice, Nat. Commun., 9,
https://doi.org/10.1038/s41467-018-03180-5, 2018.
Vandenberghe, N., Hilgen, F. J., and Speijer, R. J.: The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., 855–921, 2012.
Van Mourik, C. A. and Brinkhuis, H.: The Massignano Eocene-Oligocene golden
spike section revisited, Stratigraphy, 2, 13–30, 2005.
Van Simaeys, S.: The Rupelian-Chattian boundary in the North Sea Basin and
its calibration to the international time-scale, Geol. en
Mijnbouw/Netherlands, J. Geosci., 83, 241–248,
https://doi.org/10.1017/S0016774600020308, 2004.
Van Simaeys, S. and Vandenberghe, N.: Rupelian, Geol. Belg., 9,
95–101, 2006.
Van Simaeys, S., De Man, E., Vandenberghe, N., Brinkhuis, H., and Steurbaut,
E.: Stratigraphic and palaeoenvironmental analysis of the Rupelian-Chattian
transition in the type region: Evidence from dinoflagellate cysts,
foraminifera and calcareous nannofossils, Palaeogeogr. Palaeocl., 208, 31–58, https://doi.org/10.1016/j.palaeo.2004.02.029, 2004.
Van Simaeys, S., Brinkhuis, H., Pross, J., Williams, G. L., and Zachos, J.
C.: Arctic dinoflagellate migrations mark the strongest Oligocene
glaciations, Geology, 33, 709–712, https://doi.org/10.1130/G21634.1, 2005a.
Van Simaeys, S., Munsterman, D., and Brinkhuis, H.: Oligocene dinoflagellate
cyst biostratigraphy of the southern North Sea Basin, Rev. Palaeobot.
Palynol., 134, 105–128, https://doi.org/10.1016/j.revpalbo.2004.12.003, 2005b.
Versteegh, G. J. M.: Recognition of cyclic and non-cyclic environmental
changes in the Mediterranean Pliocene: A palynological approach, Mar.
Micropaleontol., 23, 147–183, https://doi.org/10.1016/0377-8398(94)90005-1, 1994.
Wade, B. S. and Pälike, H.: Oligocene climate dynamics,
Paleoceanography, 19, 1–16, https://doi.org/10.1029/2004PA001042, 2004.
Wall, D., Dale, B., Lohmann, G. P., and Smith, W. K.: The environmental and
climatic distribution of dinoflagellate cysts in modern marine sediments
from regions in the North and South Atlantic Oceans and adjacent seas, Mar.
Micropaleontol., 2, 121–200, https://doi.org/10.1016/0377-8398(77)90008-1, 1977.
Williams, G., Fensome, R., and MacRae, R.: The Lentins and Williams Index of
Fossil Dinoflagellates 2017 Edition, AASP Contrib. Ser., 48, 1–1097,
2017.
Williams, G. L. and Downie, C.: Further dinoflagellate cysts from the London
Clay, in: Studies on Mesozoic and Cainozoic dinoflagellate cysts, edited by:
Davey, R. J., Downie, C., Sarjeant, W. A. S., and Williams, G. L.,
British Museum (Natural History) Geology, Bulletin, Supplement 3, 215–236, 1966.
Williams, G. L. and Manum, S. B.: Oligocene – Early Miocene Dinocyst
Stratigraphy of Hole 985a (Norwegian Sea), in: Proceedings of the Ocean
Drilling Program, Scientific Results, Vol. 162, edited by: Raymo, M. E.,
Jansen, E., Blum, P., and Herbert, T. D., 99–109, 1999.
Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A., and Weegink,
J. W.: Southern Ocean and global dinoflagellate cyst events compared: Index
events for the Late Cretaceous-Neogene, Proc. Ocean Drill. Program, Sci.
Results, 189, 1–98, https://doi.org/10.2973/odp.proc.sr.189.107.2004, 2004.
Zachos, J. C., Breza, J. R., and Wise, S. W.: Early Oligocene ice-sheet
expansion on Antarctica: stable isotope and sedimentological evidence from
Kerguelen Plateau, southern Indian Ocean, Geology, 20, 569–573,
1992.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S.,
Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L.,
Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J.
F., Kim, S. Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L.,
Lu, S. H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J.,
Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T.,
Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J. L.,
Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern
dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot.
Palynol., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
This study provides an age model based on dinocysts for the early Oligocene succession from the...