Articles | Volume 38, issue 1
https://doi.org/10.5194/jm-38-83-2019
https://doi.org/10.5194/jm-38-83-2019
Research article
 | 
07 Jun 2019
Research article |  | 07 Jun 2019

Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture

Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser

Related authors

Experimental induction of resins as a tool to understand variability in ambers
Leyla J. Seyfullah, Emily A. Roberts, Phillip E. Jardine, and Alexander R. Schmidt
Foss. Rec., 24, 321–337, https://doi.org/10.5194/fr-24-321-2021,https://doi.org/10.5194/fr-24-321-2021, 2021
Short summary

Related subject area

Palynology
High Arctic late Paleocene and early Eocene dinoflagellate cysts
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024,https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023,https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023,https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023,https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023,https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary

Cited articles

Andersen, T. S.: Identification of wild grasses and cereal pollen, Danmarks Geologiske Undersoegelse, Arbog, 1978, 69–92, 1979. 
Andersen, T. S. and Bertelsen, F.: Scanning Electron Microscope Studies of Pollen of Cereals and other Grasses, Grana, 12, 79–86, https://doi.org/10.1080/00173137209428830, 1972. 
Bağcıoğlu, M., Zimmermann, B., and Kohler, A.: A multiscale vibrational spectroscopic approach for identification and biochemical characterization of pollen, Plos One, 10, 1–19, https://doi.org/10.1371/journal.pone.0137899, 2015. 
Bağcıoğlu, M., Kohler, A., Seifert, S., Kneipp, J., Zimmermann, B., and McMahon, S.: Monitoring of plant-environment interactions by high-throughput FTIR spectroscopy of pollen, Methods Ecol. Evol., 8, 870–880, https://doi.org/10.1111/2041-210x.12697, 2017. 
Bell, B. A., Fletcher, W. J., Ryan, P., Seddon, A. W. R., Wogelius, R. A., and Ilmen, R.: UV-B-absorbing compounds in modern Cedrus atlantica pollen: The potential for a summer UV-B proxy for Northwest Africa, Holocene, 28, 1382–1394, https://doi.org/10.1177/0959683618777072, 2018. 
Download
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.