Articles | Volume 38, issue 1
https://doi.org/10.5194/jm-38-83-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-38-83-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
Phillip E. Jardine
CORRESPONDING AUTHOR
Institute of Geology and Palaeontology, University of Münster,
48149 Münster, Germany
School of Environment, Earth and Ecosystem Sciences, The Open
University, Walton Hall, Milton Keynes, MK7 6AA, UK
William D. Gosling
Department of Ecosystem and Landscape Dynamics, Institute for
Biodiversity & Ecosystem Dynamics (IBED), University of Amsterdam, P.O.
Box 94240, 1090 GE Amsterdam, the Netherlands
Barry H. Lomax
Agriculture and Environmental Science, University of Nottingham,
Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
Adele C. M. Julier
School of Environment, Earth and Ecosystem Sciences, The Open
University, Walton Hall, Milton Keynes, MK7 6AA, UK
Wesley T. Fraser
Geography, Department of Social Sciences, Oxford Brookes University,
Oxford OX3 0BP, UK
School of Environment, Earth and Ecosystem Sciences, The Open
University, Walton Hall, Milton Keynes, MK7 6AA, UK
Related authors
Leyla J. Seyfullah, Emily A. Roberts, Phillip E. Jardine, and Alexander R. Schmidt
Foss. Rec., 24, 321–337, https://doi.org/10.5194/fr-24-321-2021, https://doi.org/10.5194/fr-24-321-2021, 2021
Short summary
Short summary
Currently, little is known about the natural chemical variability of resins and ambers. To understand how much resin variability occurs naturally we ran experiments on plants and then investigated the resultant resins with FTIR-ATR spectroscopy. We detected that resin viscosity and genetic variation are important factors in determining the amount of variation in resin chemistry. This natural variability needs to be taken into account when testing resin and amber chemistries in the future.
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, and William Gosling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2123, https://doi.org/10.5194/egusphere-2024-2123, 2024
Short summary
Short summary
Few tropical Hg records extend beyond ~12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present a ~96,000-year Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, and suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial-timescales.
Leyla J. Seyfullah, Emily A. Roberts, Phillip E. Jardine, and Alexander R. Schmidt
Foss. Rec., 24, 321–337, https://doi.org/10.5194/fr-24-321-2021, https://doi.org/10.5194/fr-24-321-2021, 2021
Short summary
Short summary
Currently, little is known about the natural chemical variability of resins and ambers. To understand how much resin variability occurs naturally we ran experiments on plants and then investigated the resultant resins with FTIR-ATR spectroscopy. We detected that resin viscosity and genetic variation are important factors in determining the amount of variation in resin chemistry. This natural variability needs to be taken into account when testing resin and amber chemistries in the future.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Frazer Matthews-Bird, Stephen J. Brooks, Philip B. Holden, Encarni Montoya, and William D. Gosling
Clim. Past, 12, 1263–1280, https://doi.org/10.5194/cp-12-1263-2016, https://doi.org/10.5194/cp-12-1263-2016, 2016
Short summary
Short summary
Chironomidae are a family of two-winged aquatic fly of the order Diptera. The family is species rich (> 5000 described species) and extremely sensitive to environmental change, particualy temperature. Across the Northern Hemisphere, chironomids have been widely used as paleotemperature proxies as the chitinous remains of the insect are readily preserved in lake sediments. This is the first study using chironomids as paleotemperature proxies in tropical South America.
Matthew J. Bridgman, Barry H. Lomax, and Sofie Sjogersten
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-105, https://doi.org/10.5194/bg-2016-105, 2016
Preprint withdrawn
Short summary
Short summary
This study investigate if elevated atmospheric carbon dioxide enhance methane emissions from wetlands and if responses vary among different sedge species. Half of the species increased in biomass under elevated carbon dioxide compared to controls, resulting in greater soil methane emissions. In contrast, biomass and methane emissions of the other species was reduced under elevated carbon dioxide. This shows that species specific responses to elevated carbon dioxide impacted methane emissions.
S. G. A. Flantua, H. Hooghiemstra, M. Vuille, H. Behling, J. F. Carson, W. D. Gosling, I. Hoyos, M. P. Ledru, E. Montoya, F. Mayle, A. Maldonado, V. Rull, M. S. Tonello, B. S. Whitney, and C. González-Arango
Clim. Past, 12, 483–523, https://doi.org/10.5194/cp-12-483-2016, https://doi.org/10.5194/cp-12-483-2016, 2016
Short summary
Short summary
This paper serves as a guide to high-quality pollen records in South America that capture environmental variability during the last 2 millennia. We identify the pollen records suitable for climate modelling and discuss their sensitivity to the spatial signature of climate modes. Furthermore, evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
Related subject area
Palynology
High Arctic late Paleocene and early Eocene dinoflagellate cysts
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach
Desmocysta hadra, a new Late Cretaceous dinoflagellate cyst species: stratigraphic range, palaeogeographic distribution and palaeoecology
New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes
Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast
Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well
Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts
Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India
A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica)
Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Manuel Vieira and Salih Mahdi
J. Micropalaeontol., 39, 155–167, https://doi.org/10.5194/jm-39-155-2020, https://doi.org/10.5194/jm-39-155-2020, 2020
Short summary
Short summary
This paper describes a new species of the genus Desmocysta from the Late Cretaceous in the Norwegian Sea. The short stratigraphic range for this new species makes it a good biostratigraphic marker. The available published data also indicate that this genus is restricted to higher latitudes in the Northern Hemisphere and is suggested to have preferred turbid waters and stressed marine environments.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Marcelo Augusto De Lira Mota, Guy Harrington, and Tom Dunkley Jones
J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, https://doi.org/10.5194/jm-39-1-2020, 2020
Short summary
Short summary
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain reveal more accurate age estimates for the critical Eocene–Oligocene transition (EOT), a global climate event marked by the rapid expansion of the first permanent Antarctic ice sheet 34 million years ago. These data suggest a coeval major increase in sedimentation rate. Future isotopic and palaeoecological work on this core can be more precisely integrated with other global records of the EOT.
Kasia K. Śliwińska
J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, https://doi.org/10.5194/jm-38-143-2019, 2019
Short summary
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Sonal Khanolkar and Jyoti Sharma
J. Micropalaeontol., 38, 1–24, https://doi.org/10.5194/jm-38-1-2019, https://doi.org/10.5194/jm-38-1-2019, 2019
Short summary
Short summary
We carried out comparative analyses of multiple microfossil groups like foraminifera, dinoflagellates, pollen and spores from Early and Middle Eocene lignite mine sections from paleotropical sites of the Cambay, Kutch and Barmer basins of western India in order to record the changes in paleovegetation and paleodepositional conditions during the hot and humid climate.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Cited articles
Andersen, T. S.: Identification of wild grasses and cereal pollen, Danmarks
Geologiske Undersoegelse, Arbog, 1978, 69–92, 1979.
Andersen, T. S. and Bertelsen, F.: Scanning Electron Microscope Studies of
Pollen of Cereals and other Grasses, Grana, 12, 79–86,
https://doi.org/10.1080/00173137209428830, 1972.
Bağcıoğlu, M., Zimmermann, B., and Kohler, A.: A multiscale
vibrational spectroscopic approach for identification and biochemical
characterization of pollen, Plos One, 10, 1–19,
https://doi.org/10.1371/journal.pone.0137899, 2015.
Bağcıoğlu, M., Kohler, A., Seifert, S., Kneipp, J., Zimmermann,
B., and McMahon, S.: Monitoring of plant-environment interactions by
high-throughput FTIR spectroscopy of pollen, Methods Ecol. Evol., 8, 870–880,
https://doi.org/10.1111/2041-210x.12697, 2017.
Bell, B. A., Fletcher, W. J., Ryan, P., Seddon, A. W. R., Wogelius, R. A.,
and Ilmen, R.: UV-B-absorbing compounds in modern Cedrus atlantica pollen:
The potential for a summer UV-B proxy for Northwest Africa, Holocene, 28, 1382–1394,
https://doi.org/10.1177/0959683618777072, 2018.
Bennett, M. D.: Nuclear DNA Content and Minimum Generation Time in
Herbaceous Plants, P. Roy. Soc. B-Biol. Sci., 181, 109–135, 1972.
Bernard, S., Benzerara, K., Beyssac, O., Balan, E., and Brown Jr., G. E.:
Evolution of the macromolecular structure of sporopollenin during thermal
degradation, Heliyon, 1, e00034, https://doi.org/10.1016/j.heliyon.2015.e00034, 2015.
Beug, H. J.: Leitfaden der Pollenbestimmung, Gustav Fischer Verlag,
Stuttgart, 1961.
Beug, H. J.: Leitfaden der Pollenbestimmung für Mitteleuropa und
angrenzende Gebiete, Pfeil, München, 2004.
Bottema, S.: Prehistoric cereal gathering and farming in the Near East: the
pollen evidence, Rev. Palaeobot. Palyno., 73, 21–33, 1992.
Charmet, G.: Wheat domestication: lessons for the future, C. R.
Biol., 334, 212–220, https://doi.org/10.1016/j.crvi.2010.12.013, 2011.
Christensen, B. B.: Measurement as a means of identifying fossil pollen,
Danmarks Geologiske Undersøgelse (Series) IV, 3, 1–22, 1946.
Crowther, A., Lucas, L., Helm, R., Horton, M., Shipton, C., Wright, H. T.,
Walshaw, S., Pawlowicz, M., Radimilahy, C., Douka, K., Picornell-Gelabert,
L., Fuller, D. Q., and Boivin, N. L.: Ancient crops provide first
archaeological signature of the westward Austronesian expansion, P. Natl Acad.
Sci. USA, 113, 6635–6640, https://doi.org/10.1073/pnas.1522714113, 2016.
Cunniff, J., Wilkinson, S., Charles, M., Jones, G., Rees, M., and Osborne,
C. P.: Functional traits differ between cereal crop progenitors and other
wild grasses gathered in the Neolithic fertile crescent, Plos One, 9,
e87586, https://doi.org/10.1371/journal.pone.0087586, 2014.
Cushing, E. J.: Size increase in pollen grains mounted in thin slides,
Pollen et Spores, 3, 265–274, 1961.
Dell'Anna, R., Lazzeri, P., Frisanco, M., Monti, F., Malvezzi Campeggi, F.,
Gottardini, E., and Bersani, M.: Pollen discrimination and classification by
Fourier transform infrared (FT-IR) microspectroscopy and machine learning,
Anal Bioanal. Chem., 394, 1443–1452, https://doi.org/10.1007/s00216-009-2794-9, 2009.
Depciuch, J., Kasprzyk, I., Drzymała, E., and Parlinska-Wojtan, M.:
Identification of birch pollen species using FTIR spectroscopy,
Aerobiologia, 34, 525–538, https://doi.org/10.1007/s10453-018-9528-4, 2018.
Dickson, C.: Distinguishing cereal from wild grass pollen: some limitations,
Circaea, 5, 67–71, 1988.
Domínguez, E., Mercado, J. A., Quesada, M. A., and Heredia, A.:
Isolation of intact pollen exine using anhydrous hydrogen fluoride, Grana,
37, 93–96, 1998.
Dvorak, J., Akhunov, E. D., Akhunov, A. R., Deal, K. R., and Luo, M. C.:
Molecular characterization of a diagnostic DNA marker for domesticated
tetraploid wheat provides evidence for gene flow from wild tetraploid wheat
to hexaploid wheat, Mol. Biol. Evol., 23, 1386–1396, https://doi.org/10.1093/molbev/msl004,
2006.
Faegri, K. and Deuse, P.: Size variations in pollen grains with different
treatment, Pollen et Spores, 2, 293–298, 1960.
Firbas, F.: Der Pollenanalytysche Nachweis des Getreidebaus, Zeitschrift
für Botanik, 31, 447–478, 1937.
Fraser, W. T., Scott, A. C., Forbes, A. E. S., Glasspool, I. J., Plotnick,
R. E., Kenig, F., and Lomax, B. H.: Evolutionary stasis of sporopollenin
biochemistry revealed by unaltered Pennsylvanian spores, New Phytol., 196,
397-401, https://doi.org/10.1111/j.1469-8137.2012.04301.x, 2012.
Fraser, W. T., Watson, J. S., Sephton, M. A., Lomax, B. H., Harrington, G.
J., Gosling, W. D., and Self, S.: Changes in spore chemistry and appearance
with increasing maturity, Rev. Palaeobot. Palyno., 201, 41–46,
https://doi.org/10.1016/j.revpalbo.2013.11.001, 2014.
Fuller, D. Q.: Contrasting patterns in crop domestication and domestication
rates: recent archaeobotanical insights from the Old World, Ann. Bot., 100,
903–924, https://doi.org/10.1093/aob/mcm048, 2007.
Gonzalez-Cruz, P., Uddin, M. J., Atwe, S. U., Abidi, N., and Gill, H. S.:
Chemical Treatment Method for Obtaining Clean and Intact Pollen Shells of
Different Species, ACS Biomater. Sci. Eng., 4, 2319–2329,
https://doi.org/10.1021/acsbiomaterials.8b00304, 2018.
Gottardini, E., Rossi, S., Cristofolini, F., and Benedetti, L.: Use of
Fourier transform infrared (FT-IR) spectroscopy as a tool for pollen
identification, Aerobiologia, 23, 211–219, 2007.
Holt, K. A. and Bebbington, M. S.: Separating morphologically similar
pollen types using basic shape features from digital images: A preliminary
study, Appl. Plant Sci., 2, 1400032, https://doi.org/10.3732/apps.1400032, 2014.
Holt, K. A. and Bennett, K. D.: Principles and methods for automated
palynology, New Phytol., 203, 735–742, https://doi.org/10.1111/nph.12848, 2014.
Holt, K. A., Allen, G., Hodgson, R., Marsland, S., and Flenley, J.: Progress
towards an automated trainable pollen location and classifier system for use
in the palynology laboratory, Rev. Palaeobot. Palyno., 167, 175–183,
https://doi.org/10.1016/j.revpalbo.2011.08.006, 2011.
International Wheat Genome Sequencing Consortium: A chromosome-based draft sequence
of the hexaploid bread wheat (Triticum aestivum) genome, Science, 345,
1251788, https://doi.org/10.1126/science.1251788, 2014.
Ivleva, N. P., Niessner, R., and Panne, U.: Characterization and
discrimination of pollen by Raman microscopy, Anal. Bioanal. Chem., 381,
261–267, https://doi.org/10.1007/s00216-004-2942-1, 2005.
Jardine, P. E. and Lomax, B. H.: Is pollen size a robust proxy for moisture
availability?, Rev. Palaeobot. Palyno., 246, 161–166,
https://doi.org/10.1016/j.revpalbo.2017.06.013, 2017.
Jardine, P. E., Fraser, W. T., Lomax, B. H., and Gosling, W. D.: The impact
of oxidation on spore and pollen chemistry, J. Micropalaeontol., 34, 139–149,
https://doi.org/10.1144/jmpaleo2014-022, 2015.
Jardine, P. E., Fraser, W. T., Lomax, B. H., Sephton, M. A., Shanahan, T.
M., Miller, C. S., and Gosling, W. D.: Pollen and spores as biological
recorders of past ultraviolet irradiance, Sci. Rep.-UK, 6, 1–8,
https://doi.org/10.1038/srep39269, 2016.
Jardine, P. E., Abernethy, F. A. J., Lomax, B. H., Gosling, W. D., and
Fraser, W. T.: Shedding light on sporopollenin chemistry, with reference to
UV reconstructions, Rev. Palaeobot. Palyno., 238, 1–6,
https://doi.org/10.1016/j.revpalbo.2016.11.014, 2017.
Jardine, P. E., Gosling, W. D., Lomax, B. H., Julier, A. C. M., and Fraser,
W. T.: Data and code from “Chemotaxonomy of domesticated grasses: a pathway
to understanding the origins of agriculture”, figshare, https://doi.org/10.6084/m9.figshare.8046395, 2019.
Joly, C., Barillé, L., Barreau, M., Mancheron, A., and Visset, L.: Grain
and annulus diameter as criteria for distinguishing pollen grains of cereals
from wild grasses, Rev. Palaeobot. Palyno., 146, 221–233,
https://doi.org/10.1016/j.revpalbo.2007.04.003, 2007.
Julier, A. C. M., Jardine, P. E., Coe, A. L., Gosling, W. D., Lomax, B. H.,
and Fraser, W. T.: Chemotaxonomy as a tool for interpreting the cryptic
diversity of Poaceae pollen, Rev. Palaeobot. Palyno., 235, 140–147, 2016.
Kellogg, E. A.: Relationships of cereal crops and other grasses, P. Natl. Acad.
Sci. USA, 95, 2005–2010, 1998.
Köhler, E. and Lange, E.: A contribution to distinguishing cereal from
wild grass pollen grains by LM and SEM, Grana, 18, 133–140,
https://doi.org/10.1080/00173137909424973, 1979.
Kuhn, M.: caret: Classification and Regression Training, R package version 6.0-77, available at: https://CRAN.R-project.org/package=caret (last access: 5 June 2019), 2017.
Larson, G., Piperno, D. R., Allaby, R. G., Purugganan, M. D., Andersson, L.,
Arroyo-Kalin, M., Barton, L., Climer Vigueira, C., Denham, T., Dobney, K.,
Doust, A. N., Gepts, P., Gilbert, M. T., Gremillion, K. J., Lucas, L.,
Lukens, L., Marshall, F. B., Olsen, K. M., Pires, J. C., Richerson, P. J.,
Rubio de Casas, R., Sanjur, O. I., Thomas, M. G., and Fuller, D. Q.: Current
perspectives and the future of domestication studies, P. Natl. Acad. Sci. USA,
111, 6139–6146, https://doi.org/10.1073/pnas.1323964111, 2014.
Leff, B., Ramankutty, N., and Foley, J. A.: Geographic distribution of major
crops across the world, Global Biogeochem. Cy., 18, GB1009,
https://doi.org/10.1029/2003gb002108, 2004.
Liland, K. H. and Mevik, B.-H.: baseline: Baseline Correction of Spectra, R package version 1.2-1, available at: https://CRAN.R-project.org/package=baseline (last access: 5 June 2019), 2015.
Loader, N. J. and Hemming, D. L.: Preparation of pollen for stable carbon
isotope analyses, Chem. Geol., 165, 339–344, 2000.
Lomax, B. H., Fraser, W. T., Sephton, M. A., Callaghan, T. V., Self, S.,
Harfoot, M., Pyle, J. A., Wellman, C. H., and Beerling, D. J.: Plant spore
walls as a record of long-term changes in ultraviolet-B radiation, Nat.
Geosci., 1, 592–596, https://doi.org/10.1038/ngeo278, 2008.
Mander, L. and Punyasena, S. W.: Grass pollen surface ornamentation: a
review of morphotypes and taxonomic utility, J. Micropalaeontol., 35, 121–124,
https://doi.org/10.1144/jmpaleo2015-025, 2016.
Mander, L., Li, M., Mio, W., Fowlkes, C. C., and Punyasena, S. W.:
Classification of grass pollen through the quantitative analysis of surface
ornamentation and texture, P. Roy. Soc. B-Biol. Sci., 280, 20131905,
https://doi.org/10.1098/rspb.2013.1905, 2013.
Mander, L., Baker, S. J., Belcher, C. M., Haselhorst, D. S., Rodriguez, J.,
Thorn, J. L., Tiwari, S., Urrego, D. H., Wesseln, C. J., and Punyasena, S.
W.: Accuracy and consistency of grass pollen identification by human
analysts using electron micrographs of surface ornamentation, Appl. Plant.
Sci., 2, 1400031, https://doi.org/10.3732/apps.1400031, 2014.
Marcussen, T., Sandve, S. R., Heier, L., Spannagl, M., Pfeifer, M.,
Consortium, T. I. W. G. S., Jakobsen, K. S., Wulff, B. B. H., Steuernagel,
B., Mayer, K. F. X., and Olsen, O.-A.: Ancient hybridizations among the
ancestral genomes of bread wheat, Science, 345, 1250092,
https://doi.org/10.1126/science.1251788, 2014.
Mascher, M., Schuenemann, V. J., Davidovich, U., Marom, N., Himmelbach, A.,
Hubner, S., Korol, A., David, M., Reiter, E., Riehl, S., Schreiber, M.,
Vohr, S. H., Green, R. E., Dawson, I. K., Russell, J., Kilian, B.,
Muehlbauer, G. J., Waugh, R., Fahima, T., Krause, J., Weiss, E., and Stein,
N.: Genomic analysis of 6,000-year-old cultivated grain illuminates the
domestication history of barley, Nat. Genet., 48, 1089–1093, https://doi.org/10.1038/ng.3611,
2016.
Meyer, R. S. and Purugganan, M. D.: Evolution of crop species: genetics of
domestication and diversification, Nat. Rev. Genet., 14, 840–852,
https://doi.org/10.1038/nrg3605, 2013.
Meyer, R. S., DuVal, A. E., and Jensen, H. R.: Patterns and processes in
crop domestication: an historical review and quantitative analysis of 203
global food crops, New Phytol., 196, 29–48, https://doi.org/10.1111/j.1469-8137.2012.04253.x,
2012.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F.: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, R package version 1.6-8, available at: https://CRAN.R-project.org/package=e1071 (last access: 5 June 2019), 2017.
Mundargi, R. C., Potroz, M. G., Park, J. H., Seo, J., Tan, E. L., Lee, J.
H., and Cho, N. J.: Eco-friendly streamlined process for sporopollenin exine
capsule extraction, Sci. Rep.-UK, 6, 19960, https://doi.org/10.1038/srep19960, 2016.
Pappas, C. S., Tarantilis, P. A., Harizanis, P. C., and Polissiou, M. G.:
New Method for Pollen Identification by FT-IR Spectroscopy, Appl. Spectrosc.,
57, 23–27, 2003.
Petersen, G., Seberg, O., Yde, M., and Berthelsen, K.: Phylogenetic
relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes
of common wheat (Triticum aestivum), Mol. Phylogenet. Evol., 39, 70–82,
https://doi.org/10.1016/j.ympev.2006.01.023, 2006.
Piperno, D. R., Weiss, E., Holst, I., and Nadel, D.: Processing of wild
cereal grains in the Upper Palaeolithic revealed by starch grain analysis,
Nature, 430, 670–673, 2004.
Preece, C., Livarda, A., Wallace, M., Martin, G., Charles, M., Christin, P.
A., Jones, G., Rees, M., and Osborne, C. P.: Were Fertile Crescent crop
progenitors higher yielding than other wild species that were never
domesticated?, New Phytol., 207, 905–913, https://doi.org/10.1111/nph.13353, 2015.
Preece, C., Livarda, A., Christin, P. A., Wallace, M., Martin, G., Charles,
M., Jones, G., Rees, M., and Osborne, C. P.: How did the domestication of
Fertile Crescent grain crops increase their yields?, Funct. Ecol., 31,
387–397, https://doi.org/10.1111/1365-2435.12760, 2017.
Preece, C., Clamp, N. F., Warham, G., Charles, M., Rees, M., Jones, G., and
Osborne, C. P.: Cereal progenitors differ in stand harvest characteristics
from related wild grasses, J. Ecol., 106, 1286–1297, https://doi.org/10.1111/1365-2745.12905,
2018.
Pummer, B. G., Bauer, H., Bernardi, J., Chazallon, B., Facq, S., Lendl, B.,
Whitmore, K., and Grothe, H.: Chemistry and morphology of dried-up pollen
suspension residues, J. Raman. Spectrosc., 44, 1654–1658, https://doi.org/10.1002/jrs.4395,
2013.
R Core Team: R: A language and environment for statistical computing,
Vienna, Austria, R Foundation for Statistical Computing, 2017.
Reitsma, T. J.: Size modification of recent pollen grains under different
treatments, Rev. Palaeobot. Palyno., 9, 175–202, 1969.
Rowley, J. R.: The Exine Structure of “Cereal” and “Wild” Type Grass
Pollen, Grana Palynologica, 2, 9–15, https://doi.org/10.1080/00173136009429441, 1960.
Savard, M., Nesbitt, M., and Jones, M. K.: The role of wild grasses in
subsistence and sedentism: new evidence from the northern Fertile Crescent,
World Archaeol., 38, 179–196, https://doi.org/10.1080/00438240600689016, 2006.
Schulte, F., Lingott, J., Panne, U., and Kneipp, J.: Chemical
characterization and classification of pollen, Anal. Chem., 80, 9551–9556,
https://doi.org/10.1021/ac801791a, 2008.
Schulte, F., Mäder, J., Kroh, L. W., Panne, U., and Kneipp, J.:
Characterization of Pollen Carotenoids with in situ and High-Performance
Thin-Layer Chromatography Supported Resonant Raman Spectroscopy, Anal. Chem.,
81, 8426–8433, 2009.
Schulte, F., Panne, U., and Kneipp, J.: Molecular changes during pollen
germination can be monitored by Raman microspectroscopy, J. Biophotonics, 3,
542–547, https://doi.org/10.1002/jbio.201000031, 2010.
Sluyter, A.: Analysis of maize (Zea mays subsp. mays) pollen: normalizing the effects of
microscope-slide mounting media on diameter determinations, Palynology, 21,
35–39, 1997.
Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Zuloaga, F.
O., Judziewicz, E. J., Filgueiras, T. S., Davis, J. I., and Morrone, O.: A
worldwide phylogenetic classification of the Poaceae (Gramineae), J. Syst.
Evol., 53, 117–137, https://doi.org/10.1111/jse.12150, 2015.
Steemans, P., Lepot, K., Marshall, C. P., Le Herisse, A., and Javaux, E. J.:
FTIR characterisation of the chemical composition of Silurian miospores
(cryptospore and trilete spores) from Gotland, Sweden, Rev. Palaeobot.
Palyno., 162, 577–590, 2010.
Stevens, A. and Ramirez-Lopez, L.: An introduction to the prospectr
package, R package Vignette, R package version 0.1.3, available at: https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr-intro.pdf (last access: 5 June 2019), 2013.
Strömberg, C. A. E.: Evolution of Grasses and Grassland Ecosystems, Ann.
Rev. Earth Pl. Sc., 39, 517–544, https://doi.org/10.1146/annurev-earth-040809-152402, 2011.
Tweddle, J. C., Edwards, K. J., and Fieller, N. R. J.: Multivariate
statistical and other approaches for the separation of cereal from wild
Poaceae pollen using a large Holocene dataset, Veg. Hist. Archaeobot., 14,
15–30, https://doi.org/10.1007/s00334-005-0064-0, 2005.
Varmuza, K. and Filzmoser, P.: Introduction to Multivariate Statistical
Analysis in Chemometrics, CRC Press, Boca Raton, 336 pp., 2009.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S,
Springer, New York, 2002.
Vignola, C., Masi, A., Balossi Restelli, F., Frangipane, M., Marzaioli, F.,
Passariello, I., Stellato, L., Terrasi, F., and Sadori, L.: δ13C and δ15N from 14 C-AMS dated cereal grains reveal
agricultural practices during 4300–2000 BC at Arslantepe (Turkey), Rev.
Palaeobot. Palyno., 247, 164–174, https://doi.org/10.1016/j.revpalbo.2017.09.001, 2017.
Watson, J. S., Septhon, M. A., Sephton, S. V., Self, S., Fraser, W. T.,
Lomax, B. H., Gilmour, I., Wellman, C. H., and Beerling, D. J.: Rapid
determination of spore chemistry using thermochemolysis gas
chromatography-mass spectrometry and micro-Fourier transform infrared
spectroscopy, Photochem. Photobiol., 6, 689–694, https://doi.org/10.1039/b617794h, 2007.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a Correlation Matrix, R package version 0.84, available at: https://github.com/taiyun/corrplot (last access: 5 June 2019), 2017.
Weiss, E., Wetterstrom, W., Nadel, D., and Bar-Yosef, O.: The broad spectrum
revisited: evidence from plant remains, P. Natl. Acad. Sci. USA, 101, 9551–9555,
https://doi.org/10.1073/pnas.0402362101, 2004.
Willcox, G., Fornite, S., and Herveux, L.: Early Holocene cultivation before
domestication in northern Syria, Veg. Hist. Archaeobot., 17, 313–325,
https://doi.org/10.1007/s00334-007-0121-y, 2007.
Woutersen, A., Jardine, P. E., Bogotá-Angel, G., Zhang, H.-X.,
Silvestro, D., Antonelli, A., Gogna, E., Erkens, R. H. J., Gosling, W. D.,
Dupont-Nivet, G., and Hoorn, C.: A novel approach to study the morphology
and chemistry of pollen in a phylogenetic context, applied to the
steppe-desert taxon Nitraria L. (Nitrariaceae), PeerJ, 6, e5055, https://doi.org/10.7717/peerj.5055,
2018.
Zimmermann, B.: Characterization of Pollen by Vibrational Spectroscopy, Appl.
Spectrosc., 64, 1364–1373, 2010.
Zimmermann, B.: Chemical characterization and identification of Pinaceae
pollen by infrared microspectroscopy, Planta, 247, 171–180,
https://doi.org/10.1007/s00425-017-2774-9, 2018.
Zimmermann, B. and Kohler, A.: Infrared spectroscopy of pollen identifies
plant species and genus as well as environmental conditions, Plos One, 9,
1–12, https://doi.org/10.1371/journal.pone.0095417.t001, 2014.
Zimmermann, B., Bagcioglu, M., Sandt, C., and Kohler, A.: Vibrational
microspectroscopy enables chemical characterization of single pollen grains
as well as comparative analysis of plant species based on pollen
ultrastructure, Planta, 242, 1237–1250, https://doi.org/10.1007/s00425-015-2380-7, 2015a.
Zimmermann, B., Tkalčec, Z., Mešić, A., and Kohler, A.:
Characterizing aeroallergens by infrared spectroscopy of fungal spores and
pollen, Plos One, 10, 1–22, https://doi.org/10.1371/journal.pone.0124240, 2015b.
Zimmermann, B., Tafintseva, V., Bağcıoğlu, M., Høegh Berdahl,
M., and Kohler, A.: Analysis of Allergenic Pollen by FTIR Microspectroscopy,
Anal. Chem., 88, 803–811, https://doi.org/10.1021/acs.analchem.5b03208, 2016.
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are...