Articles | Volume 39, issue 2
https://doi.org/10.5194/jm-39-139-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-39-139-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes
Department of Stratigraphy, Geological Survey of Denmark and
Greenland, GEUS, Øster Voldgade 10, 1350 Copenhagen K, Denmark
Martin J. Head
Department of Earth Sciences, Brock University, 1812 Sir Isaac Brock
Way, St. Catharines, Ontario L2S 3A1, Canada
Related authors
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3912, https://doi.org/10.5194/egusphere-2024-3912, 2025
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including end Permian mass extinction, and climate crises like the Paleocene-Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in context of global climate fluctuations and continuous drift of Svalbard from near equator to Arctic latitudes.
Kim Senger, Denise Kulhanek, Morgan T. Jones, Aleksandra Smyrak-Sikora, Sverre Planke, Valentin Zuchuat, William J. Foster, Sten-Andreas Grundvåg, Henning Lorenz, Micha Ruhl, Kasia K. Sliwinska, Madeleine L. Vickers, and Weimu Xu
Sci. Dril., 32, 113–135, https://doi.org/10.5194/sd-32-113-2023, https://doi.org/10.5194/sd-32-113-2023, 2023
Short summary
Short summary
Geologists can decipher the past climates and thus better understand how future climate change may affect the Earth's complex systems. In this paper, we report on a workshop held in Longyearbyen, Svalbard, to better understand how rocks in Svalbard (an Arctic archipelago) can be used to quantify major climatic shifts recorded in the past.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Cited articles
Alberti, G.: Zur Kenntnis mesozoischer und alttertiärer Dinoflagellaten
und Hystrichosphaerideen von Nord- und Mitteldeutschland sowie einigen
anderen europäischen Gebieten, Palaeontogr. Abt. A, 116,
1–58, 1961.
Barss, M. S., Bujak, J. P., and Williams, G. L.: Palynological zonation and
correlation of sixty-seven wells, eastern Canada, Geological Survey of
Canada Paper, Hull, Quebec, 78-24, 1–117, 1979.
Benedek, P. N.: Phytoplanktonten aus dem Mittel- und Oberoligozän von Tönisberg (Niederrheingebiet), Palaeontographica, Abteilung B, 137, 1–71, pl. 1–16, 1972.
Birkenmajer, K., Gedl, P., and Worobiec, E.: Dinoflagellate cyst and
spore-pollen spectra from the Lower Oligocene Krabbedalen Formation at Kap
Brewster, East Greenland, Pol. Polar Res., 31, 103–140,
https://doi.org/10.4202/ppres.2010.07, 2010.
Brinkhuis, H., Munsterman, D. K., Sangers, S., Sluijs, A., Warnaar, J., and
Williams, G. L.: Late Eocene–Quaternary dinoflagellate cysts from ODP Site
1168, off western Tasmania, in: Proceedings of the Ocean Drilling Program,
Scientific Results, Vol. 189, edited by: Exon, N. F., Kennett, J. P., and Malone, M. J., College Station, TX (Ocean Drilling Program), 1–36, https://doi.org/10.2973/odp.proc.sr.189.105.2003, 2003.
Bujak, J. P. and Davies, E. H.: Modern and fossil Peridiniineae. American Association of Stratigraphic Palynologists, Contributions Series, no.13, 203 pp., 12 pl., 1983.
Bütschli, O.: Erster Band. Protozoa, in: Dr. H.G. Bronn's Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild; 865–1088; C.F. Winter'sche Verlagsbuchhandlung, Leipzig and Heidelberg, Germany, 1885.
Clausen, O. R., Śliwińska, K. K., and Gołedowski, B.: Oligocene
climate changes controlling forced regression in the eastern North Sea,
Mar. Petrol. Geol., 29, 1–14,
https://doi.org/10.1016/j.marpetgeo.2011.10.002, 2012.
Coccioni, R., Montanari, A., Bice, D., Brinkhuis, H., Deino, A., Frontalini,
F., Lirer, F., Maiorano, P., Monechi, S., Pross, J., Sagnotti, L., Sideri,
M., Sprovieri, M., Tateo, F., Rochette, P., Touchard, Y., Van Simaeys, S.,
and Williams, G. L.: The Global Stratotype Section and Point (GSSP) for the
base of the Chattian Stage (Paleogene System, Oligocene Series) at Monte
Cagnero, Italy, Episodes, 41, 17–32,
https://doi.org/10.18814/epiiugs/2018/v41i1/018003, 2018.
Cookson, I. C.: Microplankton from the Paleocene Pebble Point Formation, south-western Victoria, Proceedings of the Royal Society of Victoria, 78, 137–141, pl. 24–25, 1965.
Damassa, S. P., Goodman, D. K., Kidson, E. J., and Williams, G. L.:
Correlation of Paleogene dinoflagellate assemblages to standard nannofossil
zonation in North Atlantic DSDP sites, Rev. Palaeobot.
Palyno., 65, 331–339, https://doi.org/10.1016/0034-6667(90)90083-U, 1990.
De Coninck, J.: Organic-walled phytoplankton biostratigraphy of the
Eocene-Oligocene transition in the Kallo Borehole and the Rupelian
stratotype area (northwestern Belgium), Bulletin de la Société belge
de géologie, 105, 171–209, 1996.
Egger, L. M., Śliwińska, K. K., van Peer, T. E., Liebrand, D.,
Lippert, P. C., Friedrich, O., Wilson, P. A., Norris, R. D., and Pross, J.:
Magnetostratigraphically-calibrated dinoflagellate cyst bioevents for the
uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP
Expedition 342, Paleogene Newfoundland sediment drifts), Rev.
Palaeobot. Palyno., 234, 159–185,
https://doi.org/10.1016/j.revpalbo.2016.08.002, 2016.
Ehrenberg, C. G.: Animalia evertebrata exclusis Insectis. Series prima, in: Symbolae physicae, seu icones et descriptiones Mammalium, Avium, Insectorum et animalia evertebra, quae ex itinere per Africam borealem et Asiam occidentalem studio nova aut illustrata redierunt, edited by: Hemprich, F. G. and Ehrenberg, C. G., 126 pp. (1831), 10 pls (1828), available at https://biodiversitylibrary.org/page/48517135 (last access: 13 August 2020), 1828–1831.
Eidvin, T., Bugge, T., and Smelror, M.: The Molo Formation, deposited by
coastal progradation on the inner Mid-Norwegian continental shelf, coeval
with the Kai Formation to the west and the Utsira Formation in the North
Sea, Norsk Geol. Tidsskr., 87, 75–142,
https://doi.org/10.1016/j.ultrasmedbio.2010.03.005, 2007.
Eldrett, J. S. and Harding, I. C.: Palynological analyses of Eocene to
Oligocene sediments from DSDP Site 338, Outer Vøring Plateau, Mar.
Micropaleontol., 73, 226–240, https://doi.org/10.1016/j.marmicro.2009.10.004,
2009.
Eldrett, J. S., Harding, I. C., Firth, J. V., and Roberts, A. P.:
Magnetostratigraphic calibration of Eocene–Oligocene dinoflagellate cyst
biostratigraphy from the Norwegian–Greenland Sea, Mar. Geol.,
204, 91–127, https://doi.org/10.1016/S0025-3227(03)00357-8, 2004.
Eldrett, J. S., Harding, I. C., Wilshaw, R., and Xuan, C.: A new high
northern latitude dinocyst-based magneto-biostratigraphic calibration for
the Norwegian-Greenland Sea, Newsl. Stratigr., 52, 435–460,
https://doi.org/10.1127/nos/2019/0496, 2019.
Evitt, W. R.: Dinoflagellate studies II. The archeopyle, Stanford
University Publications, Geological Sciences, Stanford, CA, 1967.
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L.: A classification of fossil and living dinoflagellates, Micropaleontology Press Special Paper, no. 7, 351 pp., New York, New York, 1993.
Fensome, R. A., Williams, G. L., and MacRae, R. A.: Late Cretaceous and
Cenozoic fossil dinoflagellates and other palynomorphs from the Scotian
Margin, offshore eastern Canada, J. Syst. Palaeontol., 7,
1–79,
https://doi.org/10.1017/S1477201908002538, 2009.
Firth, J. V.: Upper middle Eocene to Oligocene dinoflagellate
biostratigraphy and assemblage variations in Hole 913B, Greenland Sea, in:
Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 151,
edited by: Thiede, J., Myhre, A. M., Firth, J. V., Johnson, G. L., and
Ruddiman, W. F., College Station, TX (Ocean Drilling Program), 351–365, https://doi.org/10.2973/odp.proc.sr.151.124.1996, 1996.
Firth, J. V., Eldrett, J. S., Harding, I. C., Coxall, H. K., and Wade, B.
S.: Integrated biomagnetochronology for the Palaeogene of ODP Hole 647A:
implications for correlating palaeoceanographic events from high to low
latitudes, Geol. Soc. Lond. Spec. Publ., 373, 29–78,
https://doi.org/10.1144/SP373.9, 2013.
Friis, H.: Lithostratigraphy and sedimentary petrography of the Oligocene
sediments from Harre borehole, Denmark, in:
Lithostratigraphy and biostratigraphy of the Tertiary sequence from the
Harre borehole, Denmark, edited by: Nielsen, O. B., Vol. 1, 35–45, Aarhus Geoscience, Department
of Earth Sciences, Aarhus University, 1994.
Gedl, P.: Dinoflagellate cyst record of the Eocene–Oligocene boundary
succession in flysch deposits at Leluchów, Carpathian Mountains, Poland,
Geol. Soc. Lond. Spec. Publ., 230, 309–324,
https://doi.org/10.1144/GSL.SP.2004.230.01.13, 2004.
Haeckel, E.: Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammegeschichte, I. Systematische Phylogenie der Protisten und Pflanzen, Berlin, Reimer, XV+400 pp., 1894.
Head, M. J.: A palynological investigation of Tertiary strata at
Renardodden, W. Spitsbergen, 6th International Palynological Conference,
Abstracts Vol., p. 61, Calgary, Canada, 6th International Palynology Conference, 1984.
Head, M. J. and Norris, G.: Palynology and dinocyst stratigraphy of the
Eocene and Oligocene in ODP Leg 105, Hole 647A, Labrador Sea, Ocean Drilling
Program, Proceedings, Scientific Results, Vol. 105, College Station, TX (Ocean Drilling Program), 515–550, 1989.
Heilmann-Clausen, C. and Van Simaeys, S.: Dinoflagellate cysts from the
Middle Eocene to lowermost Oligocene succession in the Kysing research
borehole, central Danish basin, Palynology, 29, 143–204,
https://doi.org/10.1080/01916122.2005.9989606, 2005.
Iakovleva, A. I.: Palynological reconstruction of the Eocene marine
palaeoenvironments in south of Western Siberia, Acta Palaeobotanica, 51,
229–248, 2011.
Ioannides, N. S.: Dinoflagellate cysts from Upper Cretaceous–Lower Tertiary
sections, Bylot and Devon Islands, Arctic archipelago, Geological Survey of
Canada, Bulletin, 37, 1–99, 1986.
Lentin, J. K. and Williams, G. L.: A monograph of fossil peridinioid dinoflagellate cysts, Bedford Institute of Oceanography, Report Series, no. BI-R-75-16, 237 pp., 1976 (cover date 1975, issue date 1976).
Lindgren, S.: Acid resistant peridinioid dinoflagellates from the Maastrichtian of Trelleborg, southern Sweden, Acta Universitatis Stockholmiensis, Stockholm Contributions in Geology, 39, 145–201, 1984.
Manum, S. B.: Some dinoflagellates and hystrichosphaerids from the Lower
Tertiary of Spitsbergen, Nytt Magasin for Botanikk, 8, 17–26, 1960.
Manum, S. B.: Dinocysts in Tertiary Norwegian-Greenland Sea sediments (Deep
Sea Drilling Project Leg 38) with observations on palynomorphs and
palynodebris in relation to environment, in: Initial Reports of the Deep Sea Drilling Project, Volume
38, edited by: Talwani, M., Udintsev, G., et al., Washington (U.S. Govt. Printing Office), 897–919, https://doi.org/10.2973/dsdp.proc.38.129.1976, 1976.
Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K., and Scholze,
A.: Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104), in:
Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 104,
edited by: Eldholm, O., Thiede, J., and Taylor, E., College Station, TX (Ocean Drilling Program), 611–662, https://doi.org/10.2973/odp.proc.sr.104.176.1989, 1989.
Nøhr-Hansen, H.: Dinoflagellate cyst stratigraphy of the Palaeogene
strata from the Hellefisk-1, Ikermiut-1, Kangâmiut-1, Nukik-1, Nukik-2
and Qulleq-1 wells, offshore West Greenland, Mar. Petrol. Geol.,
20, 987–1016, https://doi.org/10.1016/S0264-8172(02)00116-2, 2003.
Norris, R. D., Wilson, P. A., Blum, P., Fehr, A., Agnini, C., Bornemann, A.,
Boulila, S., Bown, P. R., Cournede, C., Friedrich, O., Ghosh, A. K., Hollis,
C. J., Hull, P. M., Jo, K., Junium, C. K., Kaneko, M., Liebrand, D.,
Lippert, P. C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B. N.,
Penman, D., Romans, B., Scher, H. D., Sexton, P., Takagi, H., Turner, S. K.,
Whiteside, J. H., Yamaguchi, T., and Yamamoto, Y.: Site U1411, Proceedings
of the Integrated Ocean Drilling Program, 342, 1–76,
https://doi.org/10.2204/iodp.proc.342.112.2014, 2014.
Pascher, A.: Über Flagellaten und Algen, Deutsche Botanische Gesellschaft, Berichte, 32, 136–160, 1914.
Poulsen, N. E., Manum, S. B., Williams, G. L., and Ellegaard, M.: Tertiary
dinoflagellate biostratigraphy of Sites 907, 908, and 909 in the
Norwegian-Greenland Sea, Proceedings of the Ocean Drilling Program,
Scientific Results, Vol. 151, College Station, TX (Ocean Drilling Program), 255–287, https://doi.org/10.2973/odp.proc.sr.151.1996,
1996.
Pross, J., Houben, A. J. P., van Simaeys, S., Williams, G. L., Kotthoff, U.,
Coccioni, R., Wilpshaar, M., and Brinkhuis, H.: Umbria-Marche revisited: A
refined magnetostratigraphic calibration of dinoflagellate cyst events for
the Oligocene of the Western Tethys, Rev. Palaeobot. Palyno.,
158, 213–235, https://doi.org/10.1016/j.revpalbo.2009.09.002, 2010.
Schiøler, P.: Dinoflagellate cysts and acritarchs from the Oligocene–Lower Miocene interval of the Alma-1X well, Danish North Sea, J. Micropalaeontol., 24, 1–37, https://doi.org/10.1144/jm.24.1.1, 2005.
Śliwińska, K. K.: Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well, J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, 2019.
Śliwińska, K. K. and Heilmann-Clausen, C.: Early Oligocene cooling
reflected by the dinoflagellate cyst Svalbardella cooksoniae, Palaeogeogr. Palaeocl., 305, 138–149, https://doi.org/10.1016/j.palaeo.2011.02.027, 2011.
Śliwińska, K. K., Clausen, O. R., and Heilmann-Clausen, C.: A
mid-Oligocene cooling (Oi-2b) reflected in the dinoflagellate record and in
depositional sequence architecture. An integrated study from the eastern
North Sea Basin, Mar. Petrol. Geol., 27, 1424–1430,
https://doi.org/10.1016/j.marpetgeo.2010.03.008, 2010.
Śliwińska, K. K., Abrahamsen, N., Beyer, C., Brünings-Hansen,
T., Thomsen, E., Ulleberg, K., and Heilmann-Clausen, C.: Bio- and
magnetostratigraphy of Rupelian–mid Chattian deposits from the Danish land
area, Rev. Palaeobot. Palyno., 172, 48–69,
https://doi.org/10.1016/j.revpalbo.2012.01.008, 2012.
Śliwińska, K. K., Heilmann-Clausen, C., and Thomsen, E.: Correlation
between the type Chattian in NW Europe and the Rupelian–Chattian candidate
GSSP in Italy, in: STRATI
2013, edited by: Rocha, R., Pais, J., Kullberg, J., and Finney, S., 283–286, Springer Geology, Springer, Cham., https://doi.org/10.1007/978-3-319-04364-7_57, 2014a.
Śliwińska, K. K., Schouten, S., and Dybkjaer, K.: Lower Eocene to
Lower Miocene stratigraphy and palaeoenvironment of ODP Site 643A, Norwegian
Sea, in: STRATI 2013, edited by: Rocha, R., Pais, J., Kullberg, J., and Finney, S.,
143–147, Springer Geology, Springer, Cham., https://doi.org/10.1007/978-3-319-04364-7_29, 2014b.
Śliwińska, K. K., Heilmann-Clausen, C., Schouten, S., Thomsen, E.,
and Van Simaeys, S.: The signature of the Middle Eocene Climatic Optimum
(MECO) in a hemipelagic, upper bathyal North Sea Basin sequence (the
Kysing-4 borehole, Danmark), in: Conference abstract, 12th International Conference on Paleocenography, p. 1, Utrecht, https://doi.org/10.13140/RG.2.2.27280.25604, 2016.
Strauss, C., Lund, J. J., and Lund-Christensen, J.: Miocene dinoflagellate
cyst biostratigraphy of the Nieder Ochtenhausen research borehole (NW
Germany), Geologisches Jahrbuch, Reihe A, 152, 395–447, 2001.
Thomsen, E., Abrahamsen, N., Heilmann-Clausen, C., King, C., and Nielsen, O.
B.: Middle Eocene to earliest Oligocene development in the eastern North Sea
Basin: Biostratigraphy, magnetostratigraphy and palaeoenvironment of the
Kysing-4 borehole, Denmark, Palaeogeogr. Palaeocl., 350–352, 212–235, https://doi.org/10.1016/j.palaeo.2012.06.034, 2012.
Ulleberg, K.: Foraminiferal zonation of the Danish Oligocene sediments,
B. Geol. Soc. Denmark, 36, 191–202, 1987.
Vandenberghe, N., Hilgen, F. J., Speijer, R. P., Ogg, J. G., Gradstein, F. M., Hammer, O., Hollis, C. J., and Hooker, J. J.: Chapter 28 – The Paleogene Period, in: The Geologic Time Scale, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. M., 855–921, Elsevier, https://doi.org/10.1016/B978-0-444-59425-9.00028-7, 2012.
Van Mourik, C. A. and Brinkhuis, H.: The Massignano Eocene–Oligocene golden
spike section revisited, Stratigraphy, 2, 13–30, 2005.
van Peer, T. E., Liebrand, D., Xuan, C., Lippert, P. C., Agnini, C., Blum,
N., Blum, P., Bohaty, S. M., Bown, P. R., Greenop, R., Kordesch, W. E. C.,
Leonhardt, D., Friedrich, O., and Wilson, P. A.: Data report: revised
composite depth scale and splice for IODP Site U1406, in: Proceedings of the
Integrated Ocean Drilling Program, 342, edited by: Norris, R. D.,
Wilson, P. A., Blum, P., and Expedition 342 Scientists, College Station, TX (Integrated
Ocean Drilling Program), https://doi.org/10.2204/iodp.proc.342.202.2017, 2017.
Van Simaeys, S., Brinkhuis, H., Pross, J., Williams, G. L., and Zachos, J.
C.: Arctic dinoflagellate migrations mark the strongest Oligocene
glaciations, Geology, 33, 709–712, https://doi.org/10.1130/G21634.1, 2005.
Williams, G. L. and Manum, S. B.: Oligocene–Early Miocene dinocyst
stratigraphy of Hole 985a (Norwegian Sea), in: Proceedings of the Ocean
Drilling Program, Scientific Results, Vol. 162, edited by: Raymo, M. E.,
Jansen, E., Blum, P., and Herbert, T. D., College Station, TX (Ocean Drilling Program), 99–109, https://doi.org/10.2973/odp.proc.sr.162.030.1999, 1999.
Wilson, G. J.: Observations on European Late Cretaceous
dinoflagellate cysts, in: Proceedings
Second Planktonic Conference Rome, 1970, edited by:
Farinacci, A.,
Edizioni Technoscienza, Rome, Vol. 2, 1259–1275, 1971.
Wilson, G. J.: A new species of Svalbardella Manum (dinophyceae) from the Eocene of New
Zealand, New Zeal. J. Geol. Geop., 20, 563–566,
https://doi.org/10.1080/00288306.1977.10427601, 1977.
Wrenn, J. H. and Hart, G. F.: Paleogene dinoflagellate cysts biostratigraphy
of Seymour Island, Antarctica, Geol. Soc. Am. Mem.,
169, 321–448, 1988.
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii...