Articles | Volume 40, issue 2
https://doi.org/10.5194/jm-40-175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-40-175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach
Marine Palynology and Paleoceanography, Department of Earth Sciences,
Utrecht University, Utrecht, the Netherlands
Isabel Sauermilch
Marine Palynology and Paleoceanography, Department of Earth Sciences,
Utrecht University, Utrecht, the Netherlands
Suning Hou
Marine Palynology and Paleoceanography, Department of Earth Sciences,
Utrecht University, Utrecht, the Netherlands
Henk Brinkhuis
Marine Palynology and Paleoceanography, Department of Earth Sciences,
Utrecht University, Utrecht, the Netherlands
Royal Netherlands Institute for Sea Research (NIOZ), Texel, the
Netherlands
Francesca Sangiorgi
Marine Palynology and Paleoceanography, Department of Earth Sciences,
Utrecht University, Utrecht, the Netherlands
Peter K. Bijl
Marine Palynology and Paleoceanography, Department of Earth Sciences,
Utrecht University, Utrecht, the Netherlands
Related authors
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Mustafa Yücel Kaya, Henk Brinkhuis, Chiara Fioroni, Serdar Görkem Atasoy, Alexis Licht, Dirk Nürnberg, and Taylan Vural
Clim. Past, 21, 1405–1429, https://doi.org/10.5194/cp-21-1405-2025, https://doi.org/10.5194/cp-21-1405-2025, 2025
Short summary
Short summary
The Eocene–Oligocene Transition (EOT) marked global cooling and Antarctic glaciation, but its impact on marginal seas is less known. This study analyzes the Karaburun section in the eastern Paratethys, using biostratigraphy and geochemistry to reveal boreal water ingress due to Arctic–Atlantic gateway closure. Findings highlight the interplay of global and regional climate dynamics in shaping marginal marine environments.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Mark V. Elbertsen, Erik van Sebille, and Peter K. Bijl
Clim. Past, 21, 441–464, https://doi.org/10.5194/cp-21-441-2025, https://doi.org/10.5194/cp-21-441-2025, 2025
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris on the South Orkney Microcontinent. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Qianjiang Xing, David Munday, Andreas Klocker, Isabel Sauermilch, and Joanne Whittaker
Clim. Past, 18, 2669–2693, https://doi.org/10.5194/cp-18-2669-2022, https://doi.org/10.5194/cp-18-2669-2022, 2022
Short summary
Short summary
A high-resolution ocean model and realistic paleo-bathymetry are applied to obtain accurate simulation results. We firstly propose that the alignment of the maximum wind stress with a deep Tasmanian Gateway and Drake Passage is a trigger for the proto-Antarctic Circumpolar Current (proto-ACC) and the cooling of the Eocene Southern Ocean. We use zonal momentum budget analysis to explore the nature of the proto-ACC and the sensitivity of its transport through gateways to doubled wind stress.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Cited articles
Amoo, M., Salzmann, U., Pound, M. J., Thompson, N., and Bijl, P. K.: Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region controlled by changes in ocean currents and pCO2, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2021-131, in review, 2021.
Bijl, P. K., Pross, J., Warnaar, J., Stickley, C. E., Huber, M., Guerstein,
R., Houben, A. J., Sluijs, A., Visscher, H., and Brinkhuis, H.:
Environmental forcings of Paleogene Southern Ocean dinoflagellate
biogeography, Paleoceanography, 26, PA1202,
https://doi.org/10.1029/2009PA001905, 2011.
Bijl, P. K., Bendle, J. A., Bohaty, S. M., Pross, J., Schouten, S., Tauxe,
L., Stickley, C. E., McKay, R. M., Rohl, U., Olney, M., Sluijs, A., Escutia,
C., Brinkhuis, H., and Expedition 318 scientists: Eocene cooling linked to early flow
across the Tasmanian Gateway, P. Natl. Acad. Sci. USA, 110, 9645–9650,
https://doi.org/10.1073/pnas.1220872110, 2013.
Bijl, P. K., Houben, A. J., Hartman, J. D., Pross, J., Salabarnada, A.,
Escutia, C., and Sangiorgi, F.: Paleoceanography and ice sheet variability
offshore Wilkes Land, Antarctica-Part 2: Insights from Oligocene-Miocene
dinoflagellate cyst assemblages, Clim. Past, 14, 1015–1033,
https://doi.org/10.5194/cp-14-1015-2018, 2018.
Boreham, C., Blevin, J., Duddy, I., Newman, J., Liu, K., Middleton, H.,
Macphail, M., and Cook, A.: Exploring the potential for oil generation,
migration and accumulation in Cape Sorell–1, Sorell Basin, offshore West
Tasmania, APPEA J., 42, 405–435, https://doi.org/10.1071/AJ01022,
2002.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the
Priabonian type-area (Northeast Italy): biostratigraphy and
paleoenvironmental interpretation, Palaeogeogr. Palaeocl., 107, 121–163, https://doi.org/10.1016/0031-0182(94)90168-6,
1994.
Brinkhuis, H. and Biffi, U.: Dinoflagellate cyst stratigraphy of the
Eocene/Oligocene transition in central Italy, Mar. Micropaleontol., 22,
131–183, https://doi.org/10.1016/0377-8398(93)90007-K, 1993.
Brinkhuis, H., Munsterman, D., Sengers, S., Sluijs, A., Warnaar, J., and
Williams, G.: Late Eocene to Quaternary dinoflagellate cysts from ODP Site 1168, Off western Tasmania, Proceedings of the Ocean Drilling Program,
Scientific Results, 189, 1–36,
https://doi.org/10.2973/odp.proc.sr.189.105.2003, 2003.
Cande, S. C. and Stock, J. M.: Pacific–Antarctic–Australia motion and
the formation of the Macquarie Plate, Geophys. J. Int.,
157, 399–414, https://doi.org/10.1111/j.1365-246X.2004.02224.x, 2004.
Carter, R.: The mid-Oligocene Marshall Paraconformity, New Zealand:
coincidence with global eustatic sea-level fall or rise?, J.
Geol., 93, 359–371, https://doi.org/10.1086/628957, 1985.
Clowes, C. D., Hannah, M. J., Wilson, G. J., and Wrenn, J. H.: Marine
palynostratigraphy and new species from the Cape Roberts drill-holes,
Victoria land basin, Antarctica, Mar. Micropaleontol., 126, 65–84,
https://doi.org/10.1016/j.marmicro.2016.06.003, 2016.
Crouch, E., Mildenhall, D., and Neil, H.: Distribution of organic-walled
marine and terrestrial palynomorphs in surface sediments, offshore eastern
New Zealand, Mar. Geol., 270, 235–256,
https://doi.org/10.1016/j.earscirev.2019.102961, 2010.
Dale, B.: Dinoflagellate cyst ecology: modeling and geological applications,
Palynology: principles and applications, AASP Found., College Station,
Texas, USA, 1249–1275, 1996.
De Schepper, S. and Head, M. J.: New late Cenozoic acritarchs: evolution,
palaeoecology and correlation potential in high latitude oceans, J.
System. Palaeontol., 12, 493–519,
https://doi.org/10.1080/14772019.2013.783883, 2014.
De Schepper, S., Fischer, E. I., Groeneveld, J., Head, M. J., and
Matthiessen, J.: Deciphering the palaeoecology of Late Pliocene and Early
Pleistocene dinoflagellate cysts, Palaeogeogr. Palaeocl., 309, 17–32, https://doi.org/10.1016/j.palaeo.2011.04.020,
2011.
Egger, L. M., Bahr, A., Friedrich, O., Wilson, P. A., Norris, R. D., Van
Peer, T. E., Lippert, P. C., Liebrand, D., and Pross, J.: Sea-level and
surface-water change in the western North Atlantic across the
Oligocene–Miocene Transition: a palynological perspective from IODP Site
U1406 (Newfoundland margin), Mar. Micropaleontol., 139, 57–71,
https://doi.org/10.1016/j.marmicro.2017.11.003, 2018.
Evangelinos, D., Escutia, C., Etourneau, J., Hoem, F., Bijl, P., Boterblom,
W., van de Flierdt, T., Valero, L., Flores, J.-A., Rodriguez-Tovar, F. J.,
Jimenez-Espejo, F. J., Salabarnada, A., and López-Quirós, A.: Late
Oligocene-Miocene proto-Antarctic Circumpolar Current dynamics off the
Wilkes Land margin, East Antarctica, Glob. Planet. Change, 191,
103221, https://doi.org/10.1016/j.gloplacha.2020.103221, 2020.
Evitt, W. R.: A discussion and proposals concerning fossil dinoflagellates,
hystrichospheres, and acritarchs, I, P. Natl. Acad.
Sci. USA, 49, 158–164, 1963.
Exon, N. F., Kennett, J. P., Malone, M. J., and the Leg189 Shipboard Scientific Party: Leg 189 summary,
Proceedings of the Ocean Drilling Program Initial Reports, Ocean Drilling
Program, College Station, TX, USA, 2001a.
Exon, N. F., Kennett, J. P., Malone, M. J., and the Leg189 Shipboard Scientific Party: Site 1168. ,
Proceedings of the Ocean Drilling Program Initial Reports, Ocean Drilling
Program, College Station, TX, USA,, 2001b.
Exon, N. F., Kennett, J. P., and Malone, M. J.: Leg 189 synthesis:
Cretaceous–Holocene history of the Tasmanian gateway, Proceedings of the
ocean drilling program, Scientific Results, 189, 1–37,
https://doi.org/10.2973/odp.proc.sr.189.101.2004, 2004.
Fensome, R. A.: A classification of living and fossil dinoflagellates,
Micropaleontology, Special Publication, 7, 1–351, 1993.
Frieling, J. and Sluijs, A.: Towards quantitative environmental
reconstructions from ancient non-analogue microfossil assemblages:
Ecological preferences of Paleocene – Eocene dinoflagellates, Earth-Sci.
Rev., 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014,
2018.
Fulthorpe, C. S., Carter, R. M., Miller, K. G., and Wilson, J.: Marshall
Paraconformity: a mid-Oligocene record of inception of the Antarctic
circumpolar current and coeval glacio-eustatic lowstand?, Mar.
Petrol. Geol., 13, 61–77, https://doi.org/10.1016/0264-8172(95)00033-X,
1996.
Galeotti, S., DeConto, R., Naish, T., Stocchi, P., Florindo, F., Pagani, M.,
Barrett, P., Bohaty, S. M., Lanci, L., Pollard, D., Sandroni, S., Talarico,
F. M., and Zachos, J. C.: Antarctic Ice Sheet variability across the
Eocene-Oligocene boundary climate transition, Science, 352, 76–80,
https://doi.org/10.1126/science.aab0669, 2016.
Gallagher, S. J., Villa, G., Drysdale, R. N., Wade, B. S., Scher, H., Li,
Q., Wallace, M. W., and Holdgate, G. R.: A near-field sea level record of
East Antarctic Ice Sheet instability from 32 to 27 Myr, Paleoceanography,
28, 1–13, https://doi.org/10.1029/2012PA002326, 2013.
Gallagher, S. J., Wade, B., Qianyu, L., Holdgate, G. R., Bown, P.,
Korasidis, V. A., Scher, H., Houben, A. J., McGowran, B., and Allan, T.:
Eocene to Oligocene high paleolatitude neritic record of Oi-1 glaciation in
the Otway Basin southeast Australia, Glob. Planet. Change, 191,
103218, https://doi.org/10.1016/j.gloplacha.2020.103218, 2020.
Gillard, M., Autin, J., Manatschal, G., Sauter, D., Munschy, M., and
Schaming, M.: Tectonomagmatic evolution of the final stages of rifting along
the deep conjugate Australian-Antarctic magma-poor rifted margins:
Constraints from seismic observations, Tectonics, 34, 753–783,
https://doi.org/10.1002/2015TC003850, 2015.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic Time Scale 2012, The Geologic Time Scale, 2, 437–1144, 2012.
Greenwood, D. R. and Wing, S. L.: Eocene continental climates and
latitudinal temperature gradients, Geology, 23, 1044–1048, 1995.
Guerstein, G. R., Guler, M. V., Williams, G. L., Fensome, R. A., and Chiesa, J. O.: Middle Palaeogene dinoflagellate cysts from Tierra del Fuego, Argentina: biostratigraphy and palaeoenvironments, J. Micropalaeontol., 27, 75–94, https://doi.org/10.1144/jm.27.1.75, 2008.
Hannah, M., Wrenn, J., and Wilson, G.: Early Miocene and Quaternary marine
palynomorphs from Cape Roberts Project CRP-1, McMurdo Sound, Antarctica,
Terra Antartica, 5, 527–538, 1998.
Hannah, M., Wilson, G., and Wrenn, J.: Oligocene and miocene marine
palynomorphs from CRP-2/2A, Victoria Land Basin, Antarctica, Terra
Antartica, 7, 503–511, 2000.
Hannah, M. J.: The palynology of ODP site 1165, Prydz Bay, East Antarctica:
a record of Miocene glacial advance and retreat, Palaeogeogr.
Palaeocl., 231, 120–133,
https://doi.org/10.1016/j.palaeo.2005.07.029, 2006.
Harland, R. and Pudsey, C. J.: Dinoflagellate cysts from sediment traps
deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica, Mar.
Micropaleontol., 37, 77–99, 1999.
Hartman, J. D., Bijl, P. K., and Sangiorgi, F.: A review of the ecological
affinities of marine organic microfossils from a Holocene record offshore of
Adélie Land (East Antarctica), J. Micropalaeontol., 37,
445–497, https://doi.org/10.5194/jm-37-445-2018, 2018a.
Hartman, J. D., Sangiorgi, F., Salabarnada, A., Peterse, F., Houben, A. J. P., Schouten, S., Brinkhuis, H., Escutia, C., and Bijl, P. K.: Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions, Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, 2018b.
Head, M.: Modern dinoflagellate cysts and their biological affinities,
Palynology, 3, 1197–1248, 1996.
Hill, D. J., Haywood, A. M., Valdes, P. J., Francis, J. E., Lunt, D. J.,
Wade, B. S., and Bowman, V. C.: Paleogeographic controls on the onset of the
Antarctic circumpolar current, Geophys. Res. Lett., 40, 5199–5204,
https://doi.org/10.1002/grl.50941, 2013.
Hill, P., Meixner, A., Moore, A., and Exon, N.: Structure and development of
the west Tasmanian offshore sedimentary basins: results of recent marine and
aeromagnetic surveys, Austr. J. Earth Sci., 44, 579–596,
https://doi.org/10.1080/08120099708728338, 1997.
Hill, P. J. and Exon, N. F.: Tectonics and basin development of the offshore
Tasmanian area incorporating results from deep ocean drilling, Washington DC
American Geophysical Union, Geophysical Monograph Series, 151, 19–42,
https://doi.org/10.1029/151GM03, 2004.
Hochmuth, K., Gohl, K., Leitchenkov, G., Sauermilch, I., Whittaker, J. M.,
Uenzelmann-Neben, G., Davy, B., and De Santis, L.: The evolving
paleobathymetry of the circum-Antarctic Southern Ocean since 34 Ma – a key to
understanding past cryosphere-ocean developments, Geochem. Geophy.
Geosy., 11, e2020GC009122, https://doi.org/10.1029/2020GC009122, 2020.
Hoem, F. S., Valero, L., Evangelinos, D., Escutia, C., Duncan, B., McKay, R.
M., Brinkhuis, H., Sangiorgi, F., and Bijl, P. K.: Temperate Oligocene
surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica,
Clim. Past, 17, 1423–1442,
https://doi.org/10.5194/cp-17-1423-2021, 2021a.
Hoem, F. S., Sauermilch, I., Hou, S., Brinkhuis, H., Sangiorgi, F., and Bijl, P. K.: Late Eocene–early Miocene evolution of the southern Australian Subtropical Front: a marine palynological approach, Zenodo [data set], https://doi.org/10.5281/zenodo.5529715, 2021b.
Holdgate, G., Sluiter, I., and Taglieri, J.: Eocene-Oligocene coals of the
Gippsland and Australo-Antarctic basins–Paleoclimatic and paleogeographic
context and implications for the earliest Cenozoic glaciations,
Palaeogeogr. Palaeocl., 472, 236–255,
https://doi.org/10.1016/j.palaeo.2017.01.035, 2017.
Houben, A. J., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S.,
Stickley, C. E., Rohl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T.,
Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., Brinkhuis, H., and Expedition 318 scientists: Reorganization of
Southern Ocean plankton ecosystem at the onset of Antarctic glaciation,
Science, 340, 341–344, https://doi.org/10.1126/science.1223646, 2013.
Houben, A. J. P., Bijl, P. K., Sluijs, A., Schouten, S., and Brinkhuis, H.:
Late Eocene Southern Ocean Cooling and Invigoration of Circulation
Preconditioned Antarctica for Full-Scale Glaciation, Geochem.
Geophy. Geosy., 20, 2214–2234, https://doi.org/10.1029/2019gc008182,
2019.
Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A.,
Warnaar, J., Schellenberg, S. A., and Williams, G. L.: Eocene circulation of
the Southern Ocean: Was Antarctica kept warm by subtropical waters?,
Paleoceanography, 19, 4, https://doi.org/10.1029/2004PA001014, 2004.
Hutchinson, D. K., Coxall, H. K., Lunt, D. J., Steinthorsdottir, M., de
Boer, A. M., Baatsen, M., von der Heydt, A., Huber, M., Kennedy-Asser, A.
T., and Kunzmann, L.: The Eocene–Oligocene transition: a review of marine
and terrestrial proxy data, models and model–data comparisons, Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, 2021.
Lawver, L. A., Gahagan, L. M., and Coffin, M. F.: The development of
paleoseaways around Antarctica, Ant. Res. Ser., 56, 7–30, 1992.
Louwye, S., Foubert, A., Mertens, K., and Van Rooij, D.: Integrated
stratigraphy and palaeoecology of the Lower and Middle Miocene of the
Porcupine Basin, Geol. Mag., 145, 321–344,
https://doi.org/110.1017/S0016756807004244, 2008.
Marret, F., Bradley, L., de Vernal, A., Hardy, W., Kim, S.-Y., Mudie, P.,
Penaud, A., Pospelova, V., Price, A. M., Radi, T., and Rochon, A.: From
bi-polar to regional distribution of modern dinoflagellate cysts, an
overview of their biogeography, Mar. Micropaleontol., 159, 101753,
https://doi.org/10.1016/j.marmicro.2019.101753, 2020.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M.,
and Mueller, R. D.: Global plate boundary evolution and kinematics since the
late Paleozoic, Glob. Planet. Change, 146, 226–250,
https://doi.org/10.1016/j.gloplacha.2016.10.002, 2016.
McCarthy, A., Falloon, T., Sauermilch, I., Whittaker, J., Niida, K., and
Green, D.: Revisiting the Australian-Antarctic ocean-continent transition
zone using petrological and geophysical characterization of exhumed
subcontinental mantle, Geochem. Geophy. Geosy., 21,
e2020GC009040, https://doi.org/10.1029/2020GC009040, 2020.
McGowran, B., Holdgate, G., Li, Q., and Gallagher, S.: Cenozoic
stratigraphic succession in southeastern Australia, Austr. J.
Earth Sci., 51, 459–496,
https://doi.org/10.1111/j.1400-0952.2004.01078.x, 2004.
Mertens, K. N., Verhoeven, K., Verleye, T., Louwye, S., Amorim, A., Ribeiro,
S., Deaf, A. S., Harding, I. C., De Schepper, S., and González, C.:
Determining the absolute abundance of dinoflagellate cysts in recent marine
sediments: the Lycopodium marker-grain method put to the test, Rev. Palaeobot.
Palyno., 157, 238–252, https://doi.org/10.1016/j.revpalbo.2009.05.004, 2009.
Miller, J. M., Norvick, M. S., and Wilson, C. J.: Basement controls on
rifting and the associated formation of ocean transform faults – Cretaceous
continental extension of the southern margin of Australia, Tectonophysics,
359, 131–155, https://doi.org/10.1016/S0040-1951(02)00508-5, 2002.
Miller, K. G., Wright, J. D., and Fairbanks, R. G.: Unlocking the ice house:
Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion, J.
Geophys. Res.-Sol. Ea., 96, 6829–6848,
https://doi.org/10.1029/90JB02015, 1991.
Mudie, P.: Neogene and quaternary dinoflagellate cysts and acritarchs,
Second Symposium on Neogene Dinoflagellates, American Association of
Stratigraphic Palynologists, Dallas, USA, 347–390, 1992.
Mudie, P. J., Marret, F., Gurdebeke, P. R., Hartman, J. D., and Reid, P. C.:
Marine dinocysts, acritarchs and less well-known NPP: tintinnids, ostracod
and foraminiferal linings, copepod and worm remains, Geol. Soc.
Lond. Sp. Publ., 511, 159–232, https://doi.org/10.1144/SP511-2020-55,
2021.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams,
S., Pfaffelmoser, T., Seton, M., Russell, S. H., and Zahirovic, S.: GPlates:
building a virtual Earth through deep time, Geochem. Geophy.
Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Müntener, O., Manatschal, G., Desmurs, L., and Pettke, T.: Plagioclase
peridotites in ocean–continent transitions: refertilized mantle domains
generated by melt stagnation in the shallow mantle lithosphere, J.
Petrol., 51, 255–294, https://doi.org/10.1093/petrology/egp087, 2010.
Nelson, C. S. and Cooke, P. J.: History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic – a synthesis, New Zealand J. Geol. Geophys., 44, 535–553, https://doi.org/10.1080/00288306.2001.9514954, 2001.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673,
https://doi.org/10.1016/0967-0637(95)00021-w, 1995.
Palike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
heartbeat of the Oligocene climate system, Science, 314, 1894–1898,
https://doi.org/10.1126/science.1133822, 2006.
Parke, M., Boalch, G., Jowett, R., and Harbour, D.: The genus Pterosperma
(Prasinophyceae): species with a single equatorial ala, J.
Mar. Biol. Assoc. UK, 58, 239–276,
https://doi.org/10.1017/S0025315400024528, 1978.
Pascher, K. M., Hollis, C. J., Bohaty, S. M., Cortese, G., McKay, R. M.,
Seebeck, H., Suzuki, N., and Chiba, K.: Expansion and diversification of
high-latitude radiolarian assemblages in the late Eocene linked to a cooling
event in the southwest Pacific, Clim. Past, 11, 1599–1620,
https://doi.org/10.5194/cp-11-1599-2015, 2015.
Pekar, S. F., Christie-Blick, N., Kominz, M. A., and Miller, K. G.:
Calibration between eustatic estimates from backstripping and oxygen
isotopic records for the Oligocene, Geology, 30, 903–906,
https://doi.org/10.1130/0091-7613(2002)030<0903:CBEEFB>2.0.CO;2, 2002.
Pfuhl, H. A. and McCave, I. N.: Integrated age models for the early
Oligocene-early Miocene, sites 1168 and 1170–1172, Proc. ODP, Sci. Results,
189, 1–21, https://doi.org/10.2973/odp.proc.sr.189.108.2003, 2003.
Prebble, J., Raine, J., Barrett, P., and Hannah, M.: Vegetation and climate
from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by
the Cape Roberts Project, Victoria Land Basin, Antarctica, Palaeogeogr.
Palaeocl., 231, 41–57,
https://doi.org/10.1016/j.palaeo.2005.07.025, 2006.
Prebble, J. G., Crouch, E. M., Carter, L., Cortese, G., Bostock, H., and
Neil, H.: An expanded modern dinoflagellate cyst dataset for the Southwest
Pacific and Southern Hemisphere with environmental associations, Mar.
Micropaleontol., 101, 33–48,
https://doi.org/10.1016/j.marmicro.2013.04.004, 2013.
Pross, J. and Brinkhuis, H.: Organic-walled dinoflagellate cysts as
paleoenvironmental indicators in the Paleogene; a synopsis of concepts,
Palaont. Z., 79, 53–59,
https://doi.org/10.1007/BF03021753, 2005.
Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M.,
Schouten, S., Bendle, J. A., Röhl, U., Tauxe, L., and Raine, J. I.:
Persistent near-tropical warmth on the Antarctic continent during the early
Eocene epoch, Nature, 488, 73–77, https://doi.org/10.1038/nature11300, 2012.
Ridgway, K. and Condie, S.: The 5500-km-long boundary flow off western and
southern Australia, J. Geophys. Res.-Ocean., 109, C04017,
https://doi.org/10.1029/2003JC001921, 2004.
Röhl, U., Brinkhuis, H., Sluijs, A., and Fuller, M.: On the search for
the Paleocene/Eocene boundary in the Southern Ocean: exploring ODP Leg 189
Holes 1171D and 1172D, Tasman Sea, The Cenozoic Southern Ocean: Tectonics,
Sesimentation, and Climate Change Between Australia and Antarctica,
Geophys. Monogr. Ser., 151, 113–125, https://doi.org/10.1029/151GM08,
2004.
Salabarnada, A., Escutia, C., Röhl, U., Nelson, C. H., McKay, R.,
Jiménez-Espejo, F. J., Bijl, P. K., Hartman, J. D., Strother, S. L., and
Salzmann, U.: Paleoceanography and ice sheet variability offshore Wilkes
Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced
contourite sedimentation, Clim. Past, 14, 991–1014,
https://doi.org/10.5194/cp-14-991-2018, 2018.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S.,
McKay, R., Cody, R. D., Pross, J., van de Flierdt, T., Bohaty, S. M., Levy,
R., Williams, T., Escutia, C., and Brinkhuis, H.: Southern Ocean warming and
Wilkes Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9, 317–328,
https://doi.org/10.1038/s41467-017-02609-7, 2018.
Sauermilch, I., Whittaker, J. M., Bijl, P. K., Totterdell, J., and Jokat,
W.: Tectonic, oceanographic, and climatic controls on the
Cretaceous-Cenozoic sedimentary record of the Australian-Antarctic Basin,
J. Geophys. Res.-Sol. Ea., 124, 7699–7724,
https://doi.org/10.1029/2018JB016683, 2019a.
Sauermilch, I., Mateo, Z. R. P., and Boaga, J.: A comparative analysis of
time–depth relationships derived from scientific ocean drilling
expeditions, Mar. Geophys. Res., 40, 635–641,
https://doi.org/10.1007/s11001-019-09393-7, 2019b.
Sauermilch, I., Whittaker, J. M., Klocker, A., Munday, D. R., Hochmuth, K.,
LaCasce, J. H., and Bijl, P.: Gateway-driven Southern Ocean cooling – The
crucial role of ocean gyres, Nat. Commun., https://doi.org/10.1038/s41467-021-26658-1, 2021.
Scher, H. D., Whittaker, J. M., Williams, S. E., Latimer, J. C., Kordesch, W. E. C., and Delaney, M. L.: Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies, Nature, 523, 580, https://doi.org/10.1038/nature14598, 2015.
Schreck, M. and Matthiessen, J.: Batiacasphaera micropapillata:
Palaeobiogeographic distribution and palaeoecological implications of a
critical Neogene species complex, Biological and Geological Perspectives of
Dinoflagellates, The Micropalaeontological Society, Sp. Publ.
Geol. Soc. Lond., 5, 301–314, 2013.
Sijp, W. P., Anna, S., Dijkstra, H. A., Flögel, S., Douglas, P. M., and
Bijl, P. K.: The role of ocean gateways on cooling climate on long time
scales, Glob. Planet. Change, 119, 1–22,
https://doi.org/10.1016/j.gloplacha.2014.04.004, 2014.
Sijp, W. P., Heydt, A. S., and Bijl, P. K.: Model simulations of early
westward flow across the Tasman Gateway during the early Eocene, Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, 2016.
Sluijs, A., Brinkhuis, H., Stickley, C., Warnaar, J., Williams, G., and
Fuller, M.: Dinoflagellate cysts from the Eocene/Oligocene transition in the
Southern Ocean; results from ODP Leg 189, Proceedings of the Ocean Drilling
Program, Scientific Results, 189, 1–42,
https://doi.org/10.2973/odp.proc.sr.189.104.2003, 2003.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse;
organic-walled dinoflagellate cysts as paleoenvironmental indicators in the
Paleogene, Earth-Sci. Rev., 68, 281–315,
https://doi.org/10.1016/j.earscirev.2004.06.001, 2005.
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl,
U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G. L.:
Timing and nature of the deepening of the Tasmanian Gateway,
Paleoceanography, 19, PA4027, https://doi.org/10.1029/2004pa001022, 2004a.
Stickley, C. E, Brinkhuis, H., McGonigal, K., Chaproniere, G., Fuller, M.,
Kelly, D., Nürnberg, D., Pfuhl, H., Schellenberg, S., and Schönfeld,
J.: Late Cretaceous–Quaternary biomagnetostratigraphy of ODP Sites 1168,
1170, 1171, and 1172, Tasmanian Gateway, Proceedings of the Ocean Drilling
Program, Scientific Results, 189, 1–57,
https://doi.org/10.2973/odp.proc.sr.189.111.2004, 2004b.
Stover, L., Brinkhuis, H., Damassa, S., De Verteuil, L., Helby, R., Monteil,
E., Partridge, A., Powell, A., Riding, J., and Smelror, M.:
Mesozoic-Tertiary dinoflagellates, acritarchs and prasinophytes, Palynology, 2, 641–750, 1996.
van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A
Paleolatitude Calculator for Paleoclimate Studies, PLoS One, 10, e0126946,
https://doi.org/10.1371/journal.pone.0126946, 2015.
van Simaeys, S., Brinkhuis, H., Pross, J. r., Williams, G. L., and Zachos,
J. C.: Arctic dinoflagellate migrations mark the strongest Oligocene
glaciations, Geology, 33, 709–712, https://doi.org/10.1130/G21634.1, 2005.
Wall, D. and Dale, B.: “Living fossils” in western Atlantic plankton,
Nature, 211, 1025–1026, 1966.
Wall, D., Dale, B., Lohmann, G., and Smith, W. K.: The environmental and
climatic distribution of dinoflagellate cysts in modern marine sediments
from regions in the North and South Atlantic Oceans and adjacent seas,
Mar. Micropaleontol., 2, 121–200, 1977.
Warny, S., Wrenn, J. H., Bart, P. J., and Askin, R.: Palynology of the
NBP03–01A transect in the Northern Basin, western Ross Sea, Antarctica: A
late Pliocene record, Palynology, 30, 151–182,
https://doi.org/10.1080/01916122.2006.9989624, 2006.
Warny, S., Kymes, C. M., Askin, R. A., Krajewski, K. P., and Bart, P. J.:
Remnants of Antarctic vegetation on King George Island during the early
Miocene Melville glaciation, Palynology, 40, 66–82,
https://doi.org/10.1080/01916122.2014.999954, 2016.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt,
J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital
bathymetric model of the world's oceans, Earth Space Sci., 2,
331–345, https://doi.org/10.1002/2015EA000107, 2015.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Palike, H., Rohl, U.,
Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Whittaker, J. M., Williams, S. E., and Müller, R. D.: Revised tectonic
evolution of the Eastern Indian Ocean, Geochem. Geophy. Geosy.,
14, 1891–1909, https://doi.org/10.1002/ggge.20120, 2013.
Williams, G. L., Fensome, R. A., and Macrae, R.: The Lentin and Williams
index of fossil dinoflagellates 2017 Edition, American Association of
Stratigraphic Palynologists Foundation
(AASP), Contributions Series Number 48, Dallas, Texas, USA, 2017.
Williams, S. E., Whittaker, J. M., Halpin, J. A., and Müller, R. D.:
Australian-Antarctic breakup and seafloor spreading: Balancing geological
and geophysical constraints, Earth-Sci. Rev., 188, 41–58,
https://doi.org/10.1016/j.earscirev.2018.10.011, 2019.
Wrenn, J. H. and Beckman, S. W.: Maceral, total organic carbon, and
palynological analyses of ross ice shelf project site j9 cores, Science,
216, 187–189, https://doi.org/10.1126/science.216.4542.187, 1982.
Young, J. R., Bown P. R., and Lees J. A.: mikrotax website. International
Nannoplankton Association, available at:
https://www.mikrotax.org (last access: 19 Juni 2019), 2017.
Zachos, J. C., Stott, L. D., and Lohmann, K. C.: Evolution of early Cenozoic
marine temperatures, Paleoceanography, 9, 353–387,
https://doi.org/10.1029/93PA03266, 1994.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I.,
Emeis, K. C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W.,
Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and
Wakeham, S. G.: Selective preservation of organic matter in marine
environments; processes and impact on the sedimentary record,
Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S.,
Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L.,
Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt,
J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix,
L., Lu, S. H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J.,
Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T.,
Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L.,
Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern
dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot.
Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic...