Articles | Volume 40, issue 2
https://doi.org/10.5194/jm-40-75-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-40-75-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Novel heterococcolithophores, holococcolithophores and life cycle combinations from the families Syracosphaeraceae and Papposphaeraceae and the genus Florisphaera
Sabine Keuter
The Interuniversity Institute for Marine Sciences in Eilat, POB 469,
88103 Eilat, Israel
Dept. of Ecology, Evolution and Behavior – Alexander Silberman
Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem,
Israel
Jeremy R. Young
CORRESPONDING AUTHOR
Department of Earth Sciences, University College London, Gower
Street, London WC1E 6BT, UK
Gil Koplovitz
The Interuniversity Institute for Marine Sciences in Eilat, POB 469,
88103 Eilat, Israel
Adriana Zingone
Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
Miguel J. Frada
CORRESPONDING AUTHOR
The Interuniversity Institute for Marine Sciences in Eilat, POB 469,
88103 Eilat, Israel
Dept. of Ecology, Evolution and Behavior – Alexander Silberman
Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem,
Israel
Related authors
No articles found.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Sudeep Kanungo, Paul R. Bown, Jeremy R. Young, and Andrew S. Gale
J. Micropalaeontol., 37, 231–247, https://doi.org/10.5194/jm-37-231-2018, https://doi.org/10.5194/jm-37-231-2018, 2018
Short summary
Short summary
This paper documents a regional warming event in the Albian of the Anglo-Paris Basin and its palaeoclimatic and palaeoceanographic implications. This multi-proxy study utilizes three independent datasets to confirm the warming event that lasted ~ 500 kyr around the middle–upper Albian boundary. The research involved a field study of the Gault Clay (UK) with an in-depth analysis of nannofossils, bulk sediment carbon and oxygen isotopes, and an investigation of ammonites from the formation.
S. A. Krueger-Hadfield, C. Balestreri, J. Schroeder, A. Highfield, P. Helaouët, J. Allum, R. Moate, K. T. Lohbeck, P. I. Miller, U. Riebesell, T. B. H. Reusch, R. E. M. Rickaby, J. Young, G. Hallegraeff, C. Brownlee, and D. C. Schroeder
Biogeosciences, 11, 5215–5234, https://doi.org/10.5194/bg-11-5215-2014, https://doi.org/10.5194/bg-11-5215-2014, 2014
J. R. Young, A. J. Poulton, and T. Tyrrell
Biogeosciences, 11, 4771–4782, https://doi.org/10.5194/bg-11-4771-2014, https://doi.org/10.5194/bg-11-4771-2014, 2014
A. J. Poulton, M. C. Stinchcombe, E. P. Achterberg, D. C. E. Bakker, C. Dumousseaud, H. E. Lawson, G. A. Lee, S. Richier, D. J. Suggett, and J. R. Young
Biogeosciences, 11, 3919–3940, https://doi.org/10.5194/bg-11-3919-2014, https://doi.org/10.5194/bg-11-3919-2014, 2014
Related subject area
Taxonomy
Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach
Yemao Hou, Mario Canul-Ku, Xindong Cui, Rogelio Hasimoto-Beltran, and Min Zhu
J. Micropalaeontol., 40, 163–173, https://doi.org/10.5194/jm-40-163-2021, https://doi.org/10.5194/jm-40-163-2021, 2021
Short summary
Short summary
In this study, we constructed an open dataset, which contains computed tomography (CT) data on nearly 500 vertebrate microfossils. We propose a semantic segmentation method for CT fish microfossil data based on deep learning (DL). We expect that our proposed method could be applied to CT data on other fossils with good performance. We also believe the fast-accumulating CT data on vertebrate microfossils might become a source of information-rich datasets for deep learning.
Cited articles
Agbali, A.: Investigations of the ecology of calcareous nannoplankton and
nannofossils in the north-east Gulf of Mexico to help establish a baseline
for environmental impact studies, PhD thesis, Florida State University,
2014.
Andruleit, H. and Young, J. R.: Kataspinifera baumannii: a new genus and species of deep photic coccolithophores resembling the non-calcifying haptophyte Chrysochromulina, J. Micropalaeontol., 29, 135–147, https://doi.org/10.1144/0262-821X10-006, 2010.
Avrahami, Y. and Frada, M. J.: Detection of phagotrophy in the marine
phytoplankton group of the coccolithophores (Calcihaptophycidae, Haptophyta)
during nutrient-replete and phosphate-limited growth, J. Phycol., 56,
1103–1108, https://doi.org/10.1111/jpy.12997, 2020.
Billard, C.: Life cycles, in The Haptophyte Algae. Systematics Assoc. Spec.,
Vol. 51, edited by: Green, J. C. and Leadbeater, B. S., 167–186,
Clarendon Press, Oxford, 1994.
Borsetti, A. and Cati, F.: Il nannoplancton calcareo vivente nel Tirreno
Centro-meridionale, parte II., Giorn. Geol., 40, 209–240, 1976.
Bown, P., Lees, J., and Young, J.: Coccolithophores, Bown, P.R. Lees, J.A.
Young, J. R. Calcareous nannoplankton evolution and diversity through time,
Thierstein, H. R. Young, J. R., Coccolithophores from molecular processes to
global impact, Springer Verlag, Berlin, Germarny, 83 pp.,
https://doi.org/10.1007/978-3-662-06278-4_18, 2004.
Broecker, W. and Clark, E.: Ratio of coccolith CaCO3 to foraminifera
CaCO3 in late Holocene deep sea sediments, Paleoceanography, 24, PA3205,
https://doi.org/10.1029/2009PA001731, 2009.
Carrada, G. C., Hopkins, T. S., Bonaduce, G., Ianora, A., Marino, D.,
Modigh, M., Ribera, D. M., and di Scotto, C. B.: Variability in the
hydrographic and biological features of the Gulf of Naples, Mar. Ecol.,
1, 105–120, https://doi.org/10.1111/j.1439-0485.1980.tb00213.x, 1980.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature,
326, 655–661, https://doi.org/10.1038/326655a0, 1987.
Cianelli, D., D'Alelio, D., Uttieri, M., Sarno, D., Zingone, A., Zambianchi,
E., and Ribera d'Alcalà, M.: Disentangling physical and biological
drivers of phytoplankton dynamics in a coastal system, Sci. Rep.-UK, 7,
15868, https://doi.org/10.1038/s41598-017-15880-x, 2017.
Cortés, M. Y. and Bollmann, J.: A new combination coccosphere of the
heterococcolith species Coronosphaera mediterranea and the holococcolith species Calyptrolithophora hasleana, Eur. J. Phycol.,
37, 145–146, https://doi.org/10.1017/S0967026201003523, 2002.
Cros, L. and Fortuño, J. M.: Atlas of Northwestern Mediterranean Coccolithophores, Sci. Mar., 66, 1–182, https://doi.org/10.3989/scimar.2002.66s11, 2002.
Cros, L. and Estrada, M.: Holo-heterococcolithophore life cycles: ecological
implications, Mar. Ecol.-Prog. Ser., 492, 57–68,
https://doi.org/10.3354/meps10473, 2013.
Cros, L., Kleijne, A., Zeltner, A., Billard, C., and Young, J. R.: New
examples of holococcolith – heterococcolith combination coccospheres and
their implications for coccolithophorid biology, Mar. Micropaleontol., 39,
1–34, https://doi.org/10.1016/S0377-8398(00)00010-4, 2000.
de Vries, J., Monteiro, F., Wheeler, G., Poulton, A., Godrijan, J., Cerino, F., Malinverno, E., Langer, G., and Brownlee, C.: Haplo-diplontic life cycle expands coccolithophore niche, Biogeosciences, 18, 1161–1184, https://doi.org/10.5194/bg-18-1161-2021, 2021.
Dunkley Jones, T. D., Bown, P. R., and Pearson, P. N.: Exceptionally well
preserved upper Eocene to lower Oligocene calcareous nannofossils
(Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania, J.
Syst. Palaeontol., 7, 359–411,
https://doi.org/10.1017/S1477201909990010, 2009.
Frada, M., Percopo, I., Young, J., Zingone, A., de Vargas, C., and Probert,
I.: First observations of heterococcolithophore-holococcolithophore life
cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae,
Haptophyta), Mar. Micropaleontol., 71, 20–27,
https://doi.org/10.1016/j.marmicro.2009.01.001, 2009.
Frada, M. J., Bendif, E. M., Keuter, S., and Probert, I.: The private life of
coccolithophores, Perspect. Phycol., 6, 11–30,
https://doi.org/10.1127/pip/2018/0083, 2019.
Franklin, D., Steinke, M., Young, J., Probert, I., and Malin, G.:
Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and
dimethylsulphide (DMS) in 10 species of coccolithophore, Mar. Ecol.-Prog.
Ser., 410, 13–23, https://doi.org/10.3354/meps08596, 2010.
Geisen, M., Billard, C., Broerse, A. T. C., Cros, L., Probert, I., and Young,
J. R.: Life-cycle associations involving pairs of holococcolithophorid
species: intraspecific variation or cryptic speciation?, Eur. J. Phycol.,
37, 531–550, https://doi.org/10.1017/S0967026202003852, 2002.
Genin, A., Lazar, B., and Brenner, S.: Vertical mixing and coral death in the
Red Sea following the eruption of Mount Pinatubo, Nature, 377,
507–510, https://doi.org/10.1038/377507a0, 1995.
Godrijan, J., Drapeau, D., and Balch, W. M.: Mixotrophic uptake of organic
compounds by coccolithophores, Limnol. Oceanogr., 65, 1410–1421,
https://doi.org/10.1002/lno.11396, 2020.
Hagino, K. and Young, J. R.: Biology and Paleontology of Coccolithophores
(Haptophytes), in: Marine Protists, edited by: Ohtsuka, S., Suzaki, T.,
Horiguchi, T., Suzuki, N., and Not, F., Springer, Tokyo, 311–330,
https://doi.org/10.1007/978-4-431-55130-0_12, 2015.
Houdan, A., Billard, C., Marie, D., Not, F., Sáez, A. G., Young, J. R.,
and Probert, I.: Holococcolithophore-heterococcolithophore (Haptophyta) life
cycles: Flow cytometric analysis of relative ploidy levels, Syst.
Biodivers., 1, 453–465, https://doi.org/10.1017/S1477200003001270, 2004.
Jordan, R. W.: Cocccolithophorid communities in the northeast Atlantic, PhD
Thesis, University of Surrey, England, 350 pp., 1988.
Jordan, R. W. and Young, J. R.: Proposed changes to the classification system
of living coccolithophorids, Int. Nannoplankton. Assoc. Newslett., 12, 15–18,
1990.
Kamptner, E.: Die Coccolithineen der Südwestküste von Istrien, Ann.
des Naturhistorischen Museums Wien, 54–149, 1941.
Karatsolis, B.-T., Dimiza, M., and Triantaphyllou, M.: Verification of the
Coronosphaera mediterranea – “Zygosphaera hellenica” life-cycle association, J. Nannoplankt. Res., 34, 45–46, 2014.
Keuter, S., Young, J. R., and Frada, M. J.: Life cycle association of the
coccolithophore Syracosphaera gaarderae comb. nov. (ex Alveosphaera bimurata): Taxonomy, ecology and evolutionary
implications, Mar. Micropaleontol., 148, 58–64,
https://doi.org/10.1016/j.marmicro.2019.03.007, 2019.
Kleijne, A.: Holococcolithophorids from the Indian Ocean, Red Sea,
Mediterranean Sea and North Atlantic Ocean, Mar. Micropaleontol., 17,
1–76, https://doi.org/10.1016/0377-8398(91)90023-Y, 1991.
Kleijne, A. and Cros, L.: Ten new extant species of the coccolithophore
Syracosphaera and a revised classification scheme for the genus, Micropaleontology,
55, 425–462, 2009.
Lecal-Schlauder, J.: Recherches morphologiques et biologiques sur les
Coccolithophorides Nord-Africains, Ann. l'Institut Océanographique,
Monaco Paris, 26, 255–362, 1951.
Lindell, D. and Post, A. F.: Ultraphytoplankton succession is triggered by
deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea, Limnol. Oceanogr.,
40, 1130–1141, https://doi.org/10.4319/lo.1995.40.6.1130, 1995.
Lohmann, H.: Die Coccolithophoridae, eine Monographie der Coccolithen
bildenden Flagellaten, zugleich ein Beitrag zur Kenntnis des
Mittelmeerauftriebs, Arch. Protistenkd., 1, 89–165, 1902.
Mackey, K. R. M., Rivlin, T., Grossman, A. R., Post, A. F., and Paytan, A.:
Picophytoplankton responses to changing nutrient and light regimes during a
bloom, Mar. Biol., 156, 1531–1546,
https://doi.org/10.1007/s00227-009-1185-2, 2009.
Manton, I. and Oates, K.: Fine-structural observations on Papposphaera Tangen from the
Southern Hemisphere and on Pappomonas gen. nov. from South Africa and Greenland, Br.
Phycol. J., 10, 93–109, https://doi.org/10.1080/00071617500650091, 1975.
Manton, I. and Oates, K.: Nannoplankton from the Galapagos Islands: Two
genera of spectacular coccolithophorids (Ophiaster and Calciopappus), with special emphasis on
unmineralized periplast components, Philos. T. Roy. Soc. Lond.,
300, 435–462, 1983.
McGrane, P. B.: Extant coccolithophores in Irish shelf waters of the
northeast Atlantic, PhD thesis, Galway University, 2007.
Medlin, L. K., Sáez, A. G., and Young, J. R.: A molecular clock for
coccolithophores and implications for selectivity of phytoplankton
extinctions across the K/T boundary, Mar. Micropaleontol., 67, 69–86,
https://doi.org/10.1016/j.marmicro.2007.08.007, 2008.
Milliman, J. D.: Production and accumulation of calcium carbonate in the
ocean: Budget of a nonsteady state, Global Biogeochem. Cy., 7,
927–957, https://doi.org/10.1029/93GB02524, 1993.
Molfino, B. and McIntyre, A.: Precessional forcing of nutricline dynamics in
the equatorial Atlantic, Science, 249, 766–769,
https://doi.org/10.1126/science.249.4970.766, 1990.
Norris, R.: Indian Ocean Nannoplankton. II. Holococcolithophorids
(Calyptrosphaeraceae, Prymnesiophyceae) with a review of extant genera, J.
Phycol., 21, 619–641, https://doi.org/10.1111/j.0022-3646.1985.00619.x
1985.
Okada, H. and Honjo, S.: The distribution of oceanic coccolithophorids in
the Pacific, Deep-Sea Res. Oceanogr. Abstr., 20, 355–374,
https://doi.org/10.1016/0011-7471(73)90059-4, 1973.
Okada, H. and McIntyre, A.: Seasonal distribution of modern coccolithophores
in the western North Atlantic Ocean, Mar. Biol., 54, 319–328,
https://doi.org/10.1007/BF00395438, 1979.
Perch-Nielsen, K.: New Tertiary calcareous nannofossils from the South
Atlantic, Eclogae Geol. Helv., 73, 1–7, 1980.
Poulton, A. J., Adey, T. R., Balch, W. M., and Holligan, P. M.: Relating
coccolithophore calcification rates to phytoplankton community dynamics:
Regional differences and implications for carbon export, Deep-Sea Res. Pt.
II, 54, 538–557,
https://doi.org/10.1016/j.dsr2.2006.12.003, 2007.
Poulton, A. J., Holligan, P. M., Charalampopoulou, A., and Adey, T. R.:
Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: New
perspectives from the Atlantic meridional transect (AMT) programme, Prog.
Oceanogr., 158, 150–170, https://doi.org/10.1016/j.pocean.2017.01.003, 2017.
Quinn, P. S., Cortés, M. Y., and Bollmann, J.: Morphological variation in
the deep ocean-dwelling coccolithophore Florisphaera profunda (Haptophyta), Eur. J. Phycol.,
40, 123–133, https://doi.org/10.1080/09670260400024667, 2005.
Ribera d'Alcalà, M., Conversano, F., Corato, F., Licandro, P., Mangoni,
O., Marino, D., Mazzocchi, M. G., Modigh, M., Montresor, M., Nardella, M.,
Saggiomo, V., Sarno, D., and Zingone, A.: Seasonal patterns in plankton
communities in pluriannual time series at a coastal Mediterranean site (Gulf
of Naples): An attempt to discern recurrences and trends, Sci. Mar., 68,
65–83, https://doi.org/10.3989/scimar.2004.68s165, 2004.
Šupraha, L., Ljubečić, Z., Mihanović, H., and Henderiks, J.: Coccolithophore life-cycle dynamics in a coastal Mediterranean ecosystem: Seasonality and species-specific patterns, J. Plankton Res., 38, 1178–1193, https://doi.org/10.1093/plankt/fbw061, 2016.
Tangen, K.: Papposphaera lepida, gen. nov., n. sp., a new marine coccolithophorid from
Norwegian coastal waters, Nor. J. Bot., 19, 171–178, 1972.
Thomsen, H. A. and Egge, J. K.: Papposphaera heldalii sp. nov. (Haptophyta, Papposphaeraceae)
from Svalbard, Acta Protozool., 55, 27–32, https://doi.org/10.4467/16890027AP.16.004.4045, 2016.
Thomsen, H. A. and Østergaard, J.: Coccolithophorids in Polar Waters:
Pappomonas spp. Revisited, Acta Protozool., 53, 235–256,
https://doi.org/10.4467/16890027AP.14.022.1997, 2014.
Thomsen, H. A. and Østergaard, J. B.: Coccolithophorids in Polar Waters:
Trigonaspis spp. Revisited, Acta Protozool., 54, 419–436, 2015.
Thomsen, H. A. and Østergaard, J. B.: Papposphaera iugifera nov. sp. from West Greenland,
Svalbard, and the Baltic Sea, Rev. Micropaléontol., 59, 71–79,
https://doi.org/10.1016/j.revmic.2015.09.001, 2016.
Thomsen, H. A., Buck, K. R., Coale, S. L., Garrison, D. L., and Gowing, M.
M.: Nanoplanktonic coccolithophorids (Prymnesiophyceae, Haptophyceae) from
the Weddell Sea, Antarctica, Nord. J. Bot., 8, 419–436, 1988.
Thomsen, H. A., Østergaard, J., and Hansen, L. E: Heteromorphic life
histories in Arctic coccolithophorids (Prymnesiophyceae), J. Phycol., 27,
634–642, https://doi.org/10.1111/j.0022-3646.1991.00634.x, 1991.
Thomsen, H. A., Østergaard, J. B., and Heldal, M.: Coccolithophorids in
Polar Waters: Wigwamma spp. Revisited, Acta Protozool., 52, 237–256, https://doi.org/10.4467/16890027AP.13.021.1118, 2013.
Thomsen, H. A., Østergaard, J. B., and Cros, L.: Ventimolina stellata gen. et sp. nov.
(Haptophyta, Papposphaeraceae) from warm water regions, Acta Protozool.,
54, 275–281, https://doi.org/10.4467/16890027AP.15.022.3536, 2015.
Thomsen, H. A., Østergaard, J. B., and Heldal, M.: Coccolithophores in
Polar Waters: Papposphaera sagittifera HET and HOL Revisited, Acta Protozool., 55, 33–50, https://doi.org/10.4467/16890027AP.16.005.4046, 2016a.
Thomsen, H. A., Heldal, M., and Østergaard, J. B.: Coccolithophores in
Polar Waters: Papposphaera arctica HET and HOL revisited, Micropaleontology, 61, 419–427,
2016b.
Thomsen, H. A., Heldal, M., and Østergaard, J. B.: Coccolithophores in
Polar Waters: Papposphaera sarion HET and HOL revisited, Micropaleontology, 61, 429–438,
2016c.
Thomsen, H. A., Cros, L., Malinverno, E., Østergaard, J. B., Cortés, M. Y., Geisen, M., and Young, J. R.: Formonsella pyramidosa (Haptophyta, Papposphaeraceae): a new weakly calcified coccolithophore genus from warm-water regions, J. Micropalaeontol., 35, 125–132, https://doi.org/10.1144/jmpaleo2015-013, 2016d.
Triantaphyllou, M. V., Karatsolis, B.-T., Dimiza, M. D., Malinverno, E.,
Cerino, F., Psarra, S., Jordan, R. W., and Young, J. R.: Coccolithophore
combination coccospheres from the NE Mediterranean Sea: new evidence and
taxonomic revisions, Micropaleontology, 61, 457–472, 2016.
Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D.
L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May,
T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J., and Smith, G. F.
(Eds.): International Code of Nomenclature for algae, fungi, and plants
(Shenzhen Code) adopted by the Nineteenth International Botanical Congress
Shenzhen, China, July 2017, Regnum Vegetabile 159, Koeltz
Botanical Books, Glashütten, https://doi.org/10.12705/Code.2018, 2018.
Winter, A., Reiss, Z., and Luz, B.: Distribution of living coccolithophore
assemblages in the Gulf of Elat ('Aqaba), Mar. Micropaleontol., 4,
197–223, https://doi.org/10.1016/0377-8398(79)90017-3, 1979.
Yang, T.-N., Wei, K.-Y., and Gong, G. C.: Distribution of coccolithophorids
and coccoliths in surface ocean off north-eastern Taiwan, Bot. Bull. Acad.
Sin. Taipei, 42, 287–302, 2001.
Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A.,
Jordan, R. W., Kleijne, A., van Niel, B. E., Romein, A. J. T., and Von Salis,
K.: Guidelines for coccolith and calcareous nannofossil terminology,
Palaeontology, 40, 875–912, 1997.
Young, J. R., Davis, S. A., Bown, P. R., and Mann, S.: Coccolith
ultrastructure and biomineralisation, J. Struct. Biol., 126, 195–215,
https://doi.org/10.1006/JSBI.1999.4132, 1999.
Young, J. R., Geisen, M., Cros, L., Kleijne, A, Sprengel, C., Probert, I.,
and Østergaard, J.: A guide to extant coccolithophore taxonomy,
Nannoplankt. Res., Special Issue 1, 2003.
Young, J. R., Geisen, M., and Probert, I.: A review of selected aspects of
coccolithophore biology with implications for paleobiodiversity estimation,
Micropaleontology, 51, 267–288, 2005.
Young, J. R., Andruleit, H., and Probert, I.: Coccolith function and
morphogenesis: insights from appendage-bearing coccolithophores of the
family Syracosphaeraceae (Haptophyta), J. Phycol., 45, 213–226,
https://doi.org/10.1111/j.1529-8817.2008.00643.x, 2009.
Young, J. R., Henriksen, K., and Probert, I.: Structure and morphogenesis of the coccoliths of the CODENET species, edited by: Thierstein, H. R. and Young, J. R., Coccolithophores – From molecular processes to global impact, Springer, Berlin, 191–216, 2004.
Young, J. R., Bown, P. R., Cros, L., Hagino, K., and Jordan, R. W.:
Syracosphaera azureaplaneta sp. nov. and revision of Syracosphaera corolla Lecal, 1966 Hagino, J. Nannoplankt. Res.,
38, 1–6, 2018.
Young, J. R., Bown, P. R., and Lees, J. A.: Nannotax3 Website, International
Nannoplankton Association, available at: https://www.mikrotax.org/Nannotax3, last access: 23 July 2021.
Zarubin, M., Lindemann, Y., and Genin, A.: The dispersion-confinement
mechanism: Phytoplankton dynamics and the spring bloom in a deeply-mixing
subtropical sea, Prog. Oceanogr., 155, 13–27,
https://doi.org/10.1016/j.pocean.2017.05.005, 2017.
Zingone, A., Dubroca, L., Iudicone, D., Margiotta, F., Corato, F., Ribera
d'Alcalà, M., Saggiomo, V., and Sarno, D.: Coastal phytoplankton do not
rest in winter, Estuarie. Coast., 33, 342–361,
https://doi.org/10.1007/s12237-009-9157-9, 2010.
Zingone, A., D'Alelio, D., Mazzocchi, M. G., Montresor, M., Sarno, D., and
LTER-MC Team: Time series and beyond: multifaceted plankton research at a
marine Mediterranean LTER site, Nat. Conserv., 34, 273,
https://doi.org/10.3897/natureconservation.34.30789, 2019.
Ziveri, P., de Bernardi, B., Baumann, K.-H., Stoll, H. M., and Mortyn, P. G.:
Sinking of coccolith carbonate and potential contribution to organic carbon
ballasting in the deep ocean, Deep-Sea Res. Pt. II,
54, 659–675, https://doi.org/10.1016/j.dsr2.2007.01.006, 2007.
Short summary
Coccolithophores are an important group of phytoplankton that produce intricate skeletons of calcium carbonate. They contribute to the base of the marine food web and are important drivers of the global carbon cycle. Here, we describe novel coccolithophores and novel life cycle combinations detected by electron microscopy in samples collected in the Red Sea and the western Mediterranean. Our study advances our understanding of coccolithophore diversity and life cycle complexity.
Coccolithophores are an important group of phytoplankton that produce intricate skeletons of...