Articles | Volume 43, issue 2
https://doi.org/10.5194/jm-43-349-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-349-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Pliocene to recent depositional processes on the Sabrina Coast (East Antarctica): the diatom contribution
Raffaella Tolotti
CORRESPONDING AUTHOR
DISTAV, University of Genoa, 16132 Genoa, Italy
National Institute of Oceanography and Applied Geophysics (OGS), Borgo Grotta Gigante 42/C, 34010 Sgonico, Trieste, Italy
Amy Leventer
Colgate University, Hamilton, NY 13346, USA
Federica Donda
National Institute of Oceanography and Applied Geophysics (OGS), Borgo Grotta Gigante 42/C, 34010 Sgonico, Trieste, Italy
Leanne Armand
Research School of Earth Sciences, Australian National University (ANU), Canberra, ACT 2601, Australia
deceased
Taryn Noble
University of Tasmania, Hobart, TAS 7005, Australia
Phil O'Brien
Macquarie University, Sydney, NSW 2109, Australia
Xiang Zhao
Research School of Earth Sciences, Australian National University (ANU), Canberra, ACT 2601, Australia
David Heslop
Research School of Earth Sciences, Australian National University (ANU), Canberra, ACT 2601, Australia
Alix Post
Geoscience Australia, Canberra, ACT 2601, Australia
Roberto Romeo
National Institute of Oceanography and Applied Geophysics (OGS), Borgo Grotta Gigante 42/C, 34010 Sgonico, Trieste, Italy
Andrea Caburlotto
National Institute of Oceanography and Applied Geophysics (OGS), Borgo Grotta Gigante 42/C, 34010 Sgonico, Trieste, Italy
Diego Cotterle
National Institute of Oceanography and Applied Geophysics (OGS), Borgo Grotta Gigante 42/C, 34010 Sgonico, Trieste, Italy
Nicola Corradi
DISTAV, University of Genoa, 16132 Genoa, Italy
Related authors
No articles found.
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Maria-Elena Vorrath, Juliane Müller, Paola Cárdenas, Thomas Opel, Sebastian Mieruch, Oliver Esper, Lester Lembke-Jene, Johan Etourneau, Andrea Vieth-Hillebrand, Niko Lahajnar, Carina B. Lange, Amy Leventer, Dimitris Evangelinos, Carlota Escutia, and Gesine Mollenhauer
Clim. Past, 19, 1061–1079, https://doi.org/10.5194/cp-19-1061-2023, https://doi.org/10.5194/cp-19-1061-2023, 2023
Short summary
Short summary
Sea ice is important to stabilize the ice sheet in Antarctica. To understand how the global climate and sea ice were related in the past we looked at ancient molecules (IPSO25) from sea-ice algae and other species whose dead cells accumulated on the ocean floor over time. With chemical analyses we could reconstruct the history of sea ice and ocean temperatures of the past 14 000 years. We found out that sea ice became less as the ocean warmed, and more phytoplankton grew towards today's level.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022, https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Short summary
Despite its importance in the global climate, our knowledge of Antarctic sea-ice changes throughout the last glacial–interglacial cycle is extremely limited. As part of the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) Working Group, we review marine- and ice-core-based sea-ice proxies to provide insights into their applicability and limitations. By compiling published records, we provide information on Antarctic sea-ice dynamics over the past 130 000 years.
Jacob Jones, Karen E. Kohfeld, Helen Bostock, Xavier Crosta, Melanie Liston, Gavin Dunbar, Zanna Chase, Amy Leventer, Harris Anderson, and Geraldine Jacobsen
Clim. Past, 18, 465–483, https://doi.org/10.5194/cp-18-465-2022, https://doi.org/10.5194/cp-18-465-2022, 2022
Short summary
Short summary
We provide new winter sea ice and summer sea surface temperature estimates for marine core TAN1302-96 (59° S, 157° E) in the Southern Ocean. We find that sea ice was not consolidated over the core site until ~65 ka and therefore believe that sea ice may not have been a major contributor to early glacial CO2 drawdown. Sea ice does appear to have coincided with Antarctic Intermediate Water production and subduction, suggesting it may have influenced intermediate ocean circulation changes.
Manuel Bensi, Vedrana Kovačević, Federica Donda, Philip Edward O'Brien, Linda Armbrecht, and Leanne Kay Armand
Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, https://doi.org/10.5194/essd-14-65-2022, 2022
Short summary
Short summary
The Totten Glacier (Sabrina Coast, East Antarctica) has undergone significant retreat in recent years, underlining its sensitivity to climate change and its potential contribution to global sea-level rise. The melting process is strongly influenced by ocean dynamics and the spatial distribution of water masses appears to be linked to the complex morpho-bathymetry of the area, supporting the hypothesis that downwelling processes contribute to shaping the architecture of the continental margin.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Alexandra L. Post, Emrys Phillips, Christopher J. Carson, and Jodie Smith
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-8, https://doi.org/10.5194/tc-2021-8, 2021
Manuscript not accepted for further review
Short summary
Short summary
The seafloor is one of the best places to look for evidence of past response of the Antarctic ice sheet to environmental change. This work uses extremely high resolution bathymetry to interpret features imprinted onto the seafloor during last retreat of the Law Dome ice sheet. Seafloor features reveal the influence of pre-existing conditions, such as the underlying topography and the existence of sediment or bedrock, providing context to understand how ice sheets may respond to future change.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Related subject area
Stratigraphy
Bio-sequence stratigraphy of the Neogene: an example from El-Wastani gas field, onshore Nile Delta, Egypt
Astronomical calibration of late middle Eocene radiolarian bioevents from ODP Site 1260 (equatorial Atlantic, Leg 207) and refinement of the global tropical radiolarian biozonation
Liberating microfossils from indurated carbonates: comparison of three disaggregation methods
New composite bio- and isotope stratigraphies spanning the Middle Eocene Climatic Optimum at tropical ODP Site 865 in the Pacific Ocean
Dinocyst and acritarch biostratigraphy of the Late Pliocene to Early Pleistocene at Integrated Ocean Drilling Program Site U1307 in the Labrador Sea
Identification of the Paleocene–Eocene boundary in coastal strata in the Otway Basin, Victoria, Australia
Ramadan M. El-Kahawy, Nabil Aboul-Ela, Ahmed N. El-Barkooky, and Walid G. Kassab
J. Micropalaeontol., 42, 147–169, https://doi.org/10.5194/jm-42-147-2023, https://doi.org/10.5194/jm-42-147-2023, 2023
Short summary
Short summary
In this biostratigraphic study of the Middle Miocene–Early Pliocene sequence in the El-Wastani gas field, Egypt, microscopic inspection of the samples enabled the designation of six foraminiferal zones and subzones. Seven stratigraphic sequences have been identified based on the foraminiferal and calcareous nannofossil diversity. Depositional sequences and sequence boundaries are recognized by the integration between the seismic data, biostratigraphic zones, and wireline logs (gamma rays).
Mathias Meunier and Taniel Danelian
J. Micropalaeontol., 41, 1–27, https://doi.org/10.5194/jm-41-1-2022, https://doi.org/10.5194/jm-41-1-2022, 2022
Short summary
Short summary
This study presents the biostratigraphic analysis of radiolaria (siliceous zooplankton) from a section of middle Eocene age located in the equatorial Atlantic. Our study allows the refinement of the age of 71 radiolarian bioevents. Based on a comparison with previously reported ages in the equatorial Pacific and northwestern Atlantic, we establish the synchronicity of several bioevents between the two oceans. Some of these synchronous bioevents were used to define seven new subzones.
Charlotte Beasley, Daniel B. Parvaz, Laura Cotton, and Kate Littler
J. Micropalaeontol., 39, 169–181, https://doi.org/10.5194/jm-39-169-2020, https://doi.org/10.5194/jm-39-169-2020, 2020
Short summary
Short summary
We compared three methods of breaking apart well-cemented carbonate rocks in order to obtain liberated fossiliferous material. The first two methods are
traditionaland the third is novel to this field. The novel technique (fragmentation using electric pulses, SELFRAG) proved to be the most efficient and effective at liberating microfossil material from surrounding rock. We suggest best practice for using this technique and further materials in which it could prove successful in future.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Aurélie Marcelle Renée Aubry, Stijn De Schepper, and Anne de Vernal
J. Micropalaeontol., 39, 41–60, https://doi.org/10.5194/jm-39-41-2020, https://doi.org/10.5194/jm-39-41-2020, 2020
Short summary
Short summary
We used organic-walled microfossils to better define the Plio–Pleistocene transition (2.56 Ma) that is associated with the intensification of the Northern Hemisphere glaciation. The disappearance of species around 2.75 Ma reflects an ecological response accompanying the Greenland ice sheet growth.
A strong regionalism marks the Labrador Sea and suggests cooler conditions than elsewhere in the North Atlantic, although our zone boundaries are contemporaneous with the eastern North Atlantic.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Cited articles
Abrantes, F., Gil, I., Lopes, C., and Castro, M.: Quantitative diatom analyses – a faster cleaning procedure, Deep-Sea Res. Pt. I, 52, 189–198, https://doi.org/10.1016/j.dsr.2004.05.012, 2005.
Aitken, A. R. A., Roberts J. L., van Ommen, T. D., Young, D. A., Golledge, N. R., Greenbaum, J. S., Blankenship, D. D., and Siegert, M. J.: Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion, Nature, 533, 385–389, https://doi.org/10.1038/nature17447, 2016.
Aitken, A. R. A., Li, L., Kulessa, B., Schroeder, D., Jordan, T. A., Whittaker, J. M., Anandakrishnan, S., Dawson, E. J., Wiens, D. A., Eisen, O., and Siegert, M. J.: Antarctic sedimentary basins and their influence on ice-sheet dynamics, Rev. Geophys., 61, e2021RG000767, https://doi.org/10.1029/2021RG000767, 2023.
Alves, T. M.: Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review, Mar. Petrol. Geol., 67, 262–285, https://doi.org/10.1016/j.marpetgeo.2015.05.010, 2015.
Amblas, D. and Dowdeswell, J. A.: Physiographic influences on dense shelf-water cascading down the Antarctic continental slope, Earth-Sci. Rev., 185, 887–900, https://doi.org/10.1016/j.earscirev.2018.07.014, 2018.
Amblas, D., Ceramicola, S., Gerber, T. P., Canals, M., Chiocci, F. L., Dowdeswell, J. A., Harris, P. T., Huvenne, V. A. I., Lai, S. Y. J., Lastras, G., Lo Iacono, C., Micallef, A., Mountjoy, J. J., Paull, C. K., Puig, P., and Sanchez-Vidal, A.: Submarine canyons and gullies, in: Submarine Geomorphology, edited by: Micallef, A., Krastel, S., and Savini, A., Springer Geology, ISBN 978-3-319-57851-4, 251–272, https://doi.org/10.1007/978-3-319-57852-1_14, 2017.
Akiba, F., Hiramatsu, C., and Yanagisawa, Y.: A Cenozoic Diatom Genus Cavitatus Williams; an Emended Description and Two New Biostratigraphically Useful Species, C. lanceolatus and C. rectus from Japan, Bull. Natn. Sci. Mus., Tohyo, Ser. C, 19, 11–39, 1993.
Allen, C., Peakall, J., Hodgson, D. M., Bradbury, W., and Booth, A. D.: Latitudinal changes in submarine channel-levee system evolution, architecture and flow processes, Front. Earth Sci., 10, 976852, https://doi.org/10.3389/feart.2022.976852, 2022.
Armand, L. K. and Zielinski, U.: Diatom species of the Genus Rhizosolenia from Southern Ocean sediments: distribution and taxonomic notes, Diatom Res., 16, 259–294, 2001.
Armand, L. K., Crosta, X., Romero, O., and Pichon, J. J.: The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Palaeogeogr. Palaeocl., 223, 93–126, https://doi.org/10.1016/j.palaeo.2005.02.015, 2005.
Armand, L., Ferry, A., and Leventer, A.: Advances in palaeo sea ice estimation, in: Sea Ice, 3rd Edn., edited by: Thomas, D. N., John Wiley and Sons, Ltd., ISBN 9781118778388, 2017.
Armand, L. K., O'Brien, P. E., and On-board Scientific Party: Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, 14th January–5th March 2017, Res. School of Earth Sciences, College of Science, Australian National University, Canberra, https://doi.org/10.4225/13/5acea64c48693, 2018.
Barde, M. F.: Les Diatomées des sédiments actuels et du Quaternairesupérieur de l'Atlantique nord-oriental, Intérêt hydrologique et climatique, Bulletin dell'Institut de Géologie du Bassin de l'Aquitaine, 29, 85–111, 1981.
Barron, J. A., Fourtanier, E., and Bohaty, S. M.: Oligocene and earliest Miocene diatom biostratigraphy of ODP Leg 199 Site 1220, equatorial Pacific, in: Proc. ODP, edited by: Wilson, P. A., Lyle, M., Janecek, T. R., and Firth, J. V., Sci. Results, 199, 1–25, 2004.
Bart, P. J. and Iwai, M.: The overdeepening hypothesis: How erosional modification of the marine-scape during the early Pliocene altered glacial dynamics on the Antarctic Peninsula's Pacific margin, Palaeogeogr. Palaeocl., 335–336, 42–51, https://doi.org/10.1016/j.palaeo.2011.06.010, 2012.
Beltran, C., Golledge, N. R., Ohneiser, C., Kowalewski, D. E., Sicre, M. A., Hageman, K. J., Smith, R., Wilson, G. S., and Mainié, F.: Southern Ocean temperature records and ice-sheet models demonstrate rapid Antarctic ice sheet retreat under low atmospheric CO2 during Marine Isotope Stage 31, Quaternary Sci. Rev., 228, 106069, https://doi.org/10.1016/j.quascirev.2019.106069, 2020.
Bensi, M., Kovačević, V., Donda, F., O'Brien, P. E., Armbrecht, L., and Armand, L. K.: Water masses distribution offshore the Sabrina Coast (East Antarctica), Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, 2022.
Berger, A. and Loutre, M. F.: Insolation Values for the Climate of the Last 10 Million Years, Quaternary Sci. Rev., 1, 297–317, https://doi.org/10.1016/0277-3791(91)90033-Q, 1991.
Beszteri, B., Allen, C., Almandoz, G. O., Armand, L., Bárcena, M. A, Cantzler, H., Crosta, X., Esper, O., Jordan, R. W, Kauer, G., Klaas, C., Kloster, M., Leventer, A., Pike, J., and Rigual Hernandez, A. S.: Quantitative comparison of taxa and taxonconcepts in the diatom Genus Fragilariopsis: a case study on using slide scanning, multiexpert image annotation, and image analysis in taxonomy, J. Phycol., 54, 703–719, https://doi.org/10.1111/jpy.12767, 2018.
Blum, J. D. and Erel, Y.: isotope systematics of a granitic soil chronosequence: The importance of biotite weathering, Geochim. Cosmochim. Ac., 61, 3193–3204, https://doi.org/10.1016/S0016-7037(97)00148-8, 1997.
Blott, S. J. and Pye, K.: Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments, Earth Surf. Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Bodén, P.: Reproducibility in the random settling method for quantitativediatom analysis, Micropaleontology, 37, 313–319, 1991.
Bohaty, S. M., Wise Jr., S. W., Duncan, R. A., Moore, C. L., and Wallace, P. J.: Neogene diatom biostratigraphy, tephra stratigraphy, and chronology of ODP Hole 1138A, Kerguelen Plateau, in: Proc. ODP Sci. Results, edited by: Frey, F. A., Coffin, M. F., Wallace, P. J., and Quilty, P. G., 183, 1–53, http://www-odp.tamu.edu/publications/ (last access: 31 August 2024), 2003.
Colleoni, F., De Santis, L., Siddoway, C. S., Bergamasco, A., Golledge, N. R., Lohmann, G., Passchier S., and Siegert M. J.: Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces, Nat. Commun., 9, 2289, https://doi.org/10.1038/s41467-018-04583-0, 2018.
Close, D. I.: Slope and fan deposition in deep-water turbidite systems, East Antarctica, Mar. Geol., 274, 21–31, https://doi.org/10.1016/j.margeo.2010.03.002, 2010.
Close, D. I., Stagg, H. M. J., and O'Brien, P. E.: Seismic stratigraphy and sediment distribution on the Wilkes Land and Terre Adélie margins, East Antarctica, Mar. Geol., 239, 33–57, https://doi.org/10.1016/j.margeo.2006.12.010, 2007.
Close, D. I., Watts, A. B., and Stagg, H. M. J.: A marine geophysical study of the Wilkes Land rifted continental margin, Antarctica, Geophys. J. Int., 177, 430–450, https://doi.org/10.1111/j.1365-246X.2008.04066.x, 2009.
Cody, R. D., Levy, R. H., Harwood, D. M., and Sadler, P. M.: Thinking out-side the zone: High-resolution quantitative diatom biochronology for theAntarctic Neogene, Palaeogeogr. Palaeocl., 260, 92–121, https://doi.org/10.1016/j.palaeo.2007.08.020, 2008.
Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim, B. K., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Lopez Galindo, A., Patterson, M. O., Sangiorgi, F., Pierce, E. L., Brinkhuis, H., and IODP Expedition 318 Scientists: Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth, Nat. Geosci., 6, 765–769, https://doi.org/10.1038/NGEO1889, 2013.
Cortese, G. and Gersonde, R.: Plio/Pleistocene changes in the main biogenic silica carrier in the Southern Ocean, Atlantic Sector, Mar. Geol., 252, 100–110, https://doi.org/10.1016/j.margeo.2008.03.015, 2008.
Cortese, G., Abelmann, A., and Gersonde, R.: The last five glacial-interglacial transitions: A high-resolution 450,000-year record from the subantarctic Atlantic, Paleoceanography, 22, PA4203, https://doi.org/10.1029/2007PA001457, 2007.
Crampton, J. S., Cody, R. D., Levy, R., Harwood, D., McKay, R., and Naish, T. R.: Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years, P. Natl. Acad. Sci. USA, 113, 6868–6873, https://doi.org/10.1073/pnas.1600318113, 2016.
Creac'h, L., Noble, T. L., Chase, Z., Charlier, B. L. A., Townsend, A. T., Perez-Tribouillier, H., and Dietz, C.: Unradiogenic reactive phase controls the εNd of authigenic phosphates in East Antarctic margin sediment, Geochim. Cosmochim. Ac., 344, 190–206, https://doi.org/10.1016/j.gca.2023.01.001, 2023.
Crosta, X., Romero, O., Armand, L. K., and Pichon, J. J.: The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeogr. Palaeocl., 223, 66–92, https://doi.org/10.1016/j.palaeo.2005.03.028, 2005.
Crosta, X., Shukla, S. K., Ther, O., Ikehara, M., Yamane, M., and Yokoyama, Y.: Last Abundant Appearance Datum of Hemidiscus karstenii driven by climate change, Mar. Micropal., 157, 101861, https://doi.org/10.1016/j.marmicro.2020.101861, 2020.
CSIRO, Marine National Facility, Armand, L., O'Brien, P., Leventer, A., Domack, E., Donda, F., De Santis, L., Escutia Dotti, C., Post, A., and Opdyke, B.: RV Investigator Voyage IN2017_V01 End of Voyage (EOV) Archive, v1, CSIRO, Data Collection [data set], https://doi.org/10.25919/5b7cf37d8ba76, 2017.
Di Roberto, A., Colizza, E., Del Carlo, P., Petrelli, M., Finocchiaro, F., and Kuhn, G.: First marine cryptotephra in Antarctica found in sediments of the western Ross Sea correlates with englacial tephras and climate records, Sci. Rep., 9, 10628, https://doi.org/10.1038/s41598-019-47188-3, 2019.
Di Roberto, A., Scateni, B., Di Vincenzo, G., Petrelli, M., Fisauli, G., Barker, S. J., Del Carlo, P., Colleoni, F., Kulhanek, D. K., McKay, R., De Santis, L., and the IODP Expedition 374 Scientific Party: Tephrochronology and provenance of an early Pleistocene (Calabrian) tephra from IODP Expedition 374 Site U1524, Ross Sea (Antarctica), Geochem. Geophy. Geosy., 22, e2021GC009739, https://doi.org/10.1029/2021GC009739, 2021.
Donda, F., Brancolini, G., O'Brien, P. E., De Santis, L., and Escutia, C.: Sedimentary processes in the Wilkes Land margin: a record of the Cenozoic East Antarctic Ice Sheet evolution, J. Geol. Soc. Lond., 164, 243–256, 2007.
Donda, F., O'Brien, P. E., De Santis, L., Rebesco, M., and Brancolini, G.: Mass wasting processes in the Western Wilkes Land margin: Possible implications for East Antarctic glacial history, Palaeogeogr. Palaeocl., 260, 77–91, https://doi.org/10.1016/j.palaeo.2007.08.008, 2008.
Donda, F., Leitchenkov, G., Brancolini, G., Romeo, R., De Santis, L., Escutia, C., O'Brien, P., Armand, L., Caburlotto, A., and Cotterle, D.: The influence of Totten Glacier on the Late Cenozoic sedimentary record, Ant. Sci., 32, 288–300, https://doi.org/10.1017/S0954102020000188, 2020.
Donda, F., Romeo, R., Leitchenkov, G., Gei, D., Rosenthal, Y., Leventer, A., Lodolo, E., Noble, T. L., Post, A., O'Brien, P. E., Opdyke, B. N., and Olivo, E.: Evidence of the evolution of the East Antarctic Ice Sheet on the continental slope and rise sedimentary record: Insights from the Sabrina Coast, East Antarctica, Geol. Soc. Am. Bull., 135, 2868–2879, https://doi.org/10.1130/B36674.1, 2023.
Donda, F., Rebesco, M., Kovacevic, V., Silvano, A., Bensi, M., De Santis, L., Rosenthal, Y., Torricella, F., Baradello, L., Gei, D., Leventer, A., Post, A., Leitchenkov, G., Noble, T., Zgur, F., Cova, A., O’Brien, P., and Romeo, R.: Footprint of sustained poleward warm water flow within East Antarctic submarine Canyons, Nat. Commun., 15, 6028, https://doi.org/10.1038/s41467-024-50160-z, 2024.
Dowsett, H., Dolan, A., Rowley, D., Moucha, R., Forte, A. M., Mitrovica, J. X., Pound, M., Salzmann, U., Robinson, M., Chandler, M., Foley, K., and Haywood, A.: The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction, Clim. Past, 12, 1519–1538, https://doi.org/10.5194/cp-12-1519-2016, 2016.
Donges, J. F., Donner, R. V., Trauth, M. H., Marwan, N., Schellnhuber, H. J., and Kurths, J.: Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, P. Natl. Acad. Sci. USA, 108, 20422–20427, https://doi.org/10.1073/pnas.1117052108, 2011.
Dortmans, B., Langford, W. F., and Willms, A. R.: An energy balance model for paleoclimate transitions, Clim. Past, 15, 493–520, https://doi.org/10.5194/cp-15-493-2019, 2019.
Duffy, M. L., Tibbett, E. J., Smith, C., Warny, S., Feakins, S. J., Escarguel, G., Askin, R., Leventer, A., and Shevenell, A. E.: Snapshots of pre-glacial paleoenvironmental conditions along the Sabrina Coast, East Antarctica: new palynological and biomarker evidence, Geobios, 70, 1–16, https://doi.org/10.1016/j.geobios.2021.09.001, 2022.
Dumitru, O. A., Austermann, J., Polyak, V. J., Fornós, J. J., Asmerom, Y., Ginés, J., Ginés, A., and Onac, B. P.: Constraints on global mean sea level during Pliocene warmth, Nature, 574, 233–236, https://doi.org/10.1038/s41586-019-1543-2, 2019.
Egli, R.: Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments, Stud. Geophys. Geod., 48, 391–446, https://doi.org/10.1023/B:SGEG.0000020839.45304.6d, 2004.
Egli, R., Florindo, F., and Roberts, A. P.: Introduction to 'Magnetic iron minerals in sediments and their relation to geologic processes, climate, and the geomagnetic field', Global Planet. Change, 110, 259–263, https://doi.org/10.1016/j.gloplacha.2013.10.009, 2013.
Escutia, C., Bárcena, M. A., Lucchi, R. G., Romero, O., Ballegeer, A. M., Gonzalez, J. J., and Harwood, D. M.: Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins, Global Planet. Change, 69, 170–184, https://doi.org/10.1016/j.gloplacha.2009.09.003, 2009.
Escutia, C., Brinkhuis, H., Klaus, A., and the IODP Expedition 318 Scientists: IODP Expedition 318: From Greenhouse to Icehouse at the Wilkes Land Antarctic Margin, Sci. Dril., 12, 15–23, https://doi.org/10.2204/iodp.sd.12.02.2011, 2011.
Fernandez, R., Gulick, S., Domack, E., Montelli, A., Leventer, A., Shevenell, A., Frederick, B., and the NBP1402 Science Party: Past ice stream and ice sheet changes on the continental shelf off the Sabrina Coast, East Antarctica, Geomorphology, 317, 10–22, https://doi.org/10.1016/j.geomorph.2018.05.020, 2018.
Florindo, F., Siegert, M., De Santis, L., and Naish, T. R.: Antarctic Climate Evolution, 2nd Edn., edited by: Florindo F., Siegert, M., De Santis, L., and Naish, T., Elsevier, 806, ISBN 978-0-12-819109-5, 2022.
Fraser, A. D., Massom, R. A., Michael, K. A., Galton-Fenzi, B. K., and Lieser, J. L.: East Antarctic Landfast Sea Ice Distribution and Variability, 2000–08, J. Climate, 25, 1137–1156, https://doi.org/10.1175/JCLI-D-10-05032.1, 2012.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Gales, J. A., McKay, R. M., De Santis, L., Rebesco, M., Laberg, J. S., Shevenell, A. E., Harwood, D., Leckie, R. M., Kulhanek D. K., King, M., Patterson, M., Lucchi, R. G., Kim, S., Kim, S., Dodd, J., Seidenstein, J., Prunella, C., Ferrante, G. M., and IODP Expedition 374 Scientists: Climate-controlled submarine landslides on the Antarctic continental margin, Nat. Commun., 14, 2714, https://doi.org/10.1038/s41467-023-38240-y, 2023.
Gardner, M.: Toward a Complete Kinematic Description of Hydraulic Plucking of Fractured Rock, PhD Thesis, in: J. Hydraul. Eng., ASCE, ISSN 0733-9429, 149, 7, 04023015, https://doi.org/10.1061/JHEND8.HYENG-13193, 2023.
Gatter, R., Clare, M. A., Kuhlmann, J., and Huhn, K.: Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation, Earth-Sci. Rev., 223, 103845, https://doi.org/10.1016/j.earscirev.2021.103845, 2021.
Gersonde, R. and Burckle, L. H.: Neogene Diatom Biostratigraphy of ODP Leg 113, Weddell Sea (Antarctic Ocean), in: Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Barker, P. F., Kennett, J. P., O'Connell, S., and Pisias, N. G., 113, 761–789, ISSN 0884-5891, 1990.
Gersonde, R. and Bárcena, M. A.: Revision of the upper Pliocene-Pleistocene diatom biostratigraphy for the Northern belt of the Southern Ocean, Micropaleontology, 44, 84–98, 1998.
Giuliani, S., Capotondi, L., Maffioli, P., Langone, L., Giglio, F., Yam, R., Frignani, M., and Ravaioli, M.: Paleoenvironmental changes in the Pacific sector of the Southern Ocean (Antarctica) during the past 2.6 Ma, Global Planet. Change, 77, 34–48, https://doi.org/10.1016/j.gloplacha.2011.02.008, 2011.
Golynsky, A.V., Ivanov, S.V., Kazankov, A. J., Jokat, W., Masolov, V.N., von Frese, R.R.B. and the ADMAP Working Group: New continental margin magnetic anomalies of East Antarctica, Tectonophysics, 585, 172–184, https://doi.org/10.1016/j.tecto.2012.06.043, 2013.
Grant, G. R.: Pliocene-Pleistocene orbital cyclostratigraphy and glacial evolution of the East Antarctic Ice Sheet from continental rise IODP site U1361, Wilkes Land margin, East Antarctica, M. S. In Geology, Victoria University, Wellington, New Zealand, 143 pp., 2012.
Grant, G. R., Naish, T. R., Dunbar, G. B., Stocchi, P., Kominz, M. A., Kamp, P. J. J., Tapia, C. A., McKay, R. M., Levy, R. H., and Patterson, M. O.: The amplitude and origin of sea-level variability during the Pliocene epoch, Nature, 574, 237–241, https://doi.org/10.1038/s41586-019-1619-z, 2019.
Grant, G. R., Williams, J. H. T., Naeher, S., Seki, O., McClymont, E. L., Patterson, M. O., Haywood, A. M., Behrens, E., Yamamoto, M., and Johnson, K.: Amplified surface warming in the south-west Pacific during the mid-Pliocene (3.3–3.0 Ma) and future implications, Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, 2023.
Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A., and van Wijk, E.: Wind causes Totten Ice Shelf melt and acceleration, Sci. Adv., 3, https://doi.org/10.1126/sciadv.1701681, 2017.
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts, J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., and van Ommen, T. D.: Ocean access to a cavity beneath Totten Glacier in East Antarctica, Nat. Geosci., 8, 294–298, https://doi.org/10.1038/ngeo2388, 2015.
Grigorov, I., Rigual-Hernandez, A. S., Honjo, S., Kemp, A. E. S., and Armand, L. K.: Settling fluxes of diatoms to the interior of the Antarctic circumpolar current along 170° W, Deep-Sea Res. Pt. I, 93, 1–13, https://doi.org/10.1016/j.dsr.2014.07.008, 2014.
Grützner, J., Hillenbrand, C. D., and Rebesco, M.: Terrigenous flux and biogenic silica deposition at the Antarctic continental rise during the late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage, Global Planet. Change, 45, 131–149, hdl:10013/epic.33012.d001, 2005.
Gulick, S. P. S., Shevenell, A. E., Montelli, A., Fernandez, R., Smith, C., Warny, S., Bohaty, S. M., Sjunneskog, C., Leventer, A., Frederick, B., and Blankenship, D. D.: Initiation and long-term instability of the East Antarctic Ice Sheet, Nature, 552, 225–232, https://doi.org/10.1038/nature25026, 2017.
Guyodo, Y., Acton, G. D., Brachfeld, S., and Channell, J. E. T.: A sedimentary paleomagnetic record of the Matuyama chron from the Western Antarctic margin (ODP Site 1101), Earth Planet. Sc. Lett., 191, 61–74, 2001.
Ha, S., Colizza, E., Torricella, F., Langone, L., Giglio F., Kuhn, G., Macrì, P., and Khim, B. K.: Glaciomarine sediment deposition on the continental slope and rise of the central Ross Sea since the Last Glacial Maximum, Mar. Geol., 445, 106752, https://doi.org/10.1016/j.margeo.2022.106752, 2022.
Haneda, Y., Okada, M., Suganuma, Y., and Kitamura, T.: A full sequence of the Matuyama–Brunhes geomagnetic reversal in the Chiba composite section, Central Japan, Prog. Earth Planet. Sci., 7, 44, https://doi.org/10.1186/s40645-020-00354-y, 2020.
Hayakawa, H., Shibuya, K., Aoyama, Y., Nogi, Y., and Doi, K.: Ocean bottom pressure variability in the Antarctic Divergence Zone off Lützow-Holm Bay, East Antarctica, Deep-Sea Res. Pt. I, 60, 22–31, https://doi.org/10.1016/j.dsr.2011.09.005, 2012.
Harwood, D. M. and Bohaty, S. M.: Early Oligocene Siliceous Microfossil Biostratigraphy of Cape Roberts Project Core CRP-3, Victoria Land Basin, Antarctica, Terra Antartica, 8, 315–338, 2001.
Head, M. J., Zalasiewicz, J., Bertini, A., and Zhou, L.: The Mid-Brunhes Event: a second stage for the Middle Pleistocene Subseries?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6900, https://doi.org/10.5194/egusphere-egu21-6900, 2021.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J. F., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal BP), simulated data for IntCal20, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.914500, 2020.
Hernández-Molina, F. J., Wåhlin, A., Bruno, M., Ercilla, G., Llave, E., Serra, N., Rosón, G., Puig, P., Rebesco, M., Van Rooij, D., Roque, D., González-Pola, C., Sánchez, F., Gómez, M., Preu, B., Schwenk, T., Hanebuth, T. J. J., Sánchez Leal, R. F., García-Lafuente, J., Brackenridge, R. E., Juan, C., Stow, D. A. V., and Sánchez-González, J. M.: Oceanographic processes and morphosedimentary products along the Iberian margins: A new multidisciplinary approach, Mar. Geol., 378, 127–156, https://doi.org/10.1016/j.margeo.2015.12.008, 2016.
Heslop, D. and Roberts, A. P.: Analyzing paleomagnetic data: To anchor or not to anchor?, J. Geophys. Res.-Sol. Ea., 121, 7742–7753, https://doi.org/10.1002/2016JB013387, 2016.
Heywood, K. J., Schmidtko, S., Heuzé, C., Kaiser, J., Jickells, T. D., Queste, B. Y., Stevens, D. P., Wadley, M., Thompson, A. F., Fielding, S., Guihen, D., Creed, E., Ridley, J. K., and Smith, W.: Ocean processes at the Antarctic continental slope, Philos. T. R. Soc. A, 372, 20130047, https://doi.org/10.1098/rsta.2013.0047, 2014.
Hillenbrand, C. D. and Fütterer, D. K.: Neogene to Quaternary deposition of opal on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095, 1096, and 1101, in: Proc. ODP Sci. Results, Vol. 178, edited by: Barker, P. F., Camerlenghi, A., Acton, G. D., and Ramsay, A. T. S., Ocean Drilling Program, College Station, TX, 1–33, https://pdfs.semanticscholar.org/1a2c/5284d4d9a09b1d37bc527ca65f88c9a49eea.pdf (last access: 31 August 2024), 2001.
Hillenbrand, C. D., Kuhn, G., and Frederichs, T.: Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?, Quaternary Sci. Rev., 28, 1147–1159, https://doi.org/10.1016/j.quascirev.2008.12.010, 2009.
Hirano, D., Mizobata, K., Sasaki, H., Murase, H., Tamura, T., and Aoki, S.: Poleward eddy-induced warm water transport across a shelf break off Totten Ice Shelf: East Antarctica, Nat. Commun., 2, 1–8, https://doi.org/10.1038/s43247-021-00217-4, 2021.
Hirano, D., Tamura, T., Kusahara, K., Fujii, M. K., Yamazaki, K., Nakayama, Y., Ono, K., Itaki, T., Aoyama, Y., Simizu, D., Mizobata, K., Ohshima, K. I., Nogi, Y., Rintoul, S. R., van Wijk, E., Greenbaum, J. S., Blankenship, D. D., Saito, K., and Aoki, S.: On-shelf circulation of warm water toward the Totten Ice Shelf in East Antarctica, Nat Commun., 14, 4955, https://doi.org/10.1038/s41467-023-39764-z, 2023.
Hodell, D. A. and Venz-Curtis, K. A.: Late Neogene history of deepwater ventilation in the Southern Ocean, Geochem. Geophy. Geosy., 7, Q09001, https://doi.org/10.1029/2005GC001211, 2006.
Holder, L., Duffy, M., Opdyke, B., Leventer, A., Post, A., O'Brien, P., and Armand, L. K.: Controls since the mid-Pleistocene transition on sedimentation and primary productivity downslope of Totten Glacier, East Antarctica, Paleoceanogr. Paleocl., 35, e2020PA003981, https://doi.org/10.1029/2020PA003981, 2020.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Ishino, S. and Suto, I.: Late Pliocene sea-ice expansion and its influence on diatom species turnover in the Southern Ocean, Mar. Micropaleontol., 160, 101895, https://doi.org/10.1016/j.marmicro.2020.101895, 2020.
Jacobs, S. S.: On the nature and significance of the Antarctic Slope Front, Mar. Chem., 35, 9–24, 1991.
Jansen, J. H., Kuijpers, A., and Troelstra, S. R.: A Mid-Brunhes Climatic Event: Long-Term Changes in Global Athmosphere and Ocean Circulation, Science, 232, 619–622, 1986.
Jimenez-Espejo, F. J., Presti, M., Kuhn, G., Mckay, R., Crosta, X., Escutia, C., Lucchi, R. G., Tolotti, R., Yoshimura, T., Ortega Huertas, M., Macrì, P., Caburlotto, A., and De Santis, L.: Late Pleistocene oceanographic and depositional variations along the Wilkes Land margin (East Antarctica) reconstructed with geochemical proxies in deep-sea sediments, Global Planet. Change, 184, 103045, https://doi.org/10.1016/j.gloplacha.2019.103045, 2020.
Jordan, R. W. and Stickley, C. E.: Diatoms as indicators of paleoceanographic events, in: The Diatoms: Applications for the Environmental and Earth Sciences, edited by: Smol, J. P. and Stoermer, E. F., Cambridge University Press, II, 667, ISBN-13 978-0-521-50996-1, 2010.
Justino, F., Lindemann, D., Kucharski, F., Wilson, A., Bromwich, D., and Stordal, F.: Oceanic response to changes in the WAIS and astronomical forcing during the MIS31 superinterglacial, Clim. Past, 13, 1081–1095, https://doi.org/10.5194/cp-13-1081-2017, 2017.
Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E., and van den Broeke, M. R.: Observed thinning of Totten Glacier is linked to coastal polynya variability, Nat. Commun., 4, 2857, https://doi.org/10.1038/ncomms3857, 2013.
Khokhlov, A. and Hulot, G.: Principal component analysis of palaeomagnetic directions: converting a Maximum Angular Deviation (MAD) into an α95 angle, Geophys. J. Int., 204, 274–291, https://doi.org/10.1093/gji/ggv451, 2016.
Kirschvink, J. L.: The Least Squares Line and Plane Analysis of Palaeomagnetic Data, Geophys. J. Int., 62, 699–718, https://doi.org/10.1111/j.1365-246X.1980.tb02601.x, 1980.
Konfirst, M. A., Scherer, R. P., Hillenbrand, C. D., and Kuhn, G.: A marine diatom record from the Amundsen Sea – Insights into oceanographic and climatic response to the Mid-Pleistocene Transition in the West Antarctic sector of the Southern Ocean, Mar. Micropaleontol., 92–93, 40–51, https://doi.org/10.1016/j.marmicro.2012.05.001, 2012.
Laake, A. and Wolfe, Z.: Geohazards in Green Canyon, Gulf of Mexico Challenges and mapping technology based on seismic data, Abstract, AAPG Annual Conference & Exhibition, Denver, CO, 2015.
Laake, A. and Hernandez-Molina, J.: Contourites – A Paleovelocity Meter from Geologic Analogues Created from 3D Seismic Data, Conference Paper, 84th EAGE Annual Conference & Exhibition, Vienna, Austria, 5 pp., https://doi.org/10.3997/2214-4609.202310255, 2023.
Larter, R. D., Hogan, K. A., and Dowdeswell, J. A.: Large sediment drifts on the upper continental rise west of Antarctic Peninsula, in: Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, edited by: Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K., and Hogan, K. A., Geol. Soc., London, Memoirs, 46, 401–402, https://doi.org/10.1144/M46.132, 2016.
Legrain, E., Parrenin, F., and Capron, E.: A gradual change is more likely to have caused the Mid-Pleistocene Transition than an abrupt event, Com. Earth Environ., 4, 90, https://doi.org/10.1038/s43247-023-00754-0, 2023.
Leventer, A.: Quantitative Diatom data collected from the 2017 RV Investigator voyage, IN2017_V01, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/5cad45a7cb140, 2022.
Li, X., Rignot, E., Morlighem, M., Mouginot, J., and Scheuchl, B.: Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013, Geophys. Res. Lett., 42, 8049–8056, https://doi.org/10.1002/2015GL065701, 2015.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Liu, C., Wang, Z., Cheng, C., Xia, R., Li, B., and Xie, Z.: Modeling modified Circumpolar Deep Water intrusions onto the Prydz Bay continental shelf, East Antarctica, J. Geophys. Res.-Oceans, 122, 5198–5217, https://doi.org/10.1002/2016JC012336, 2017.
Lougheed, B. C. and Obrochta, S. P.: MatCal: Open Source Bayesian 14C Age Calibration in MatLab, Journal of Open Research Software, 4, e42, https://doi.org/10.5334/jors.130, 2016.
Lucchi, R. G. and Rebesco, M.: Glacial contourites on the Antarctic Peninsula margin: insight for palaeoenvironmental and palaeoclimatic conditions, in: Economic and Palaeoceanographic Significance of Contourite Deposits, edited by: Viana, A. R. and Rebesco, M., Geological Society, London, Special Publications, 276, 111–127, ISBN 978-1-86239-226-7, 2007.
Mahood, A. D. and Barron, J. A.: Late Pliocene diatoms in a diatomite from Prydz Bay, East Antarctica, USGS Staff, Published Research, 265, https://digitalcommons.unl.edu/usgsstaffpub/265 (last access: 31 August 2024), 1996.
Macrì, P., Sagnotti, L., Dinarès-Turell, J., and Caburlotto, A.: A composite record of Late Pleistocene relative geomagnetic paleointensity from the Wilkes Land Basin (Antarctica), Physics of the Earth and Planetary Interiors, 151, 223–242, https://doi.org/10.1016/j.pepi.2005.03.004, 2005.
Massom, R., Reid, P., Stammerjohn, S., Raymond, B., Fraser, A., and Ushio, S.: Change and Variability in East Antarctic Sea Ice Seasonality, 1979/80–2009/10, PLOS ONE, 8, e64756, https://doi.org/10.1371/journal.pone.0064756, 2013.
Massom, R. A. and Stammerjohn, S. E.: Antarctic sea ice change and variability e Physical and ecological implications, Polar Sci., 4, 149–186, https://doi.org/10.1016/j.polar.2010.05.001, 2010.
McCave, I. N. and Andrews, J. T.: Distinguishing current effects in sediments delivered to the ocean by ice, Principles, methods and examples, Quaternary Sci. Rev., 212, 92–107, 2019.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy. Geosy., 7, 10, https://doi.org/10.1029/2006GC001284, 2006.
McCave, I. N., Crowhurst, S. C., Kuhn, G., Hillenbrand, C. D., and Meredith, M. P.: Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene, Nat. Geosci., 7, 113–116, https://doi.org/10.1038/ngeo2037, 2014.
McCave, I. N., Thornalley, D. J. R., and Hall, I. R.: Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the “Mud Current Meter”, Deep-Sea Res. Pt. I, 127, 1–12, https://doi.org/10.1016/j.dsr.2017.07.003, 2017.
McCormack, F. S., Roberts, J. L., Kulessa, B., Aitken, A., Dow, C. F., Bird, L., Galton-Fenzi, B. K., Hochmuth, K., Jones, R. S., Mackintosh, A. N., and McArthur, K.: Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica, The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, 2023.
McKay, R., Naish, T., Carter, L., Riesselman, C., Dunbar, R., Sjunneskog, C., Winter, D., Sangiorgi, F., Warren, C., Pagani, M., Schouten, S., Willmott, V., Levy, R., DeConto, R., and Powell, R. D.: Antarctic and Southern Ocean influences on Late Pliocene global cooling, P. Natl. Acad. Sci. USA, 109, 6423–6428, https://doi.org/10.1073/pnas.1112248109, 2012.
McKay, R. M., Escutia, C., De Santis, L., Donda, F., Duncan, B., Gohl, K., Gulick, S., Hernández-Molina, J., Hillenbrand, C. D., Hochmuth, K., Kim, S., Kuhn, G., Larter, R., Leitchenkov, G., Levy, R. H., Naish, T. R., O'Brien, P., Pérez, L. F., Shevenell, A. E., and Williams, T.: Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies, in: Antarctic Climate Evolution, 2nd Edn., edited by: Florindo, F., Siegert, M., De Santis, L., and Naish, T., Elsevier Ed., ISBN 978-0-12-819109-5, 2022.
Mohajerani, Y., Velicogna, I., and Rignot, E.: Mass loss of Totten and Moscow University glaciers, East Antarctica, using regionally optimized GRACE mascons, Geophys. Res. Lett., 45, 7010–7018, https://doi.org/10.1029/2018GL078173, 2018.
Montelli, A., Gulick, S., Fernandez-Vasquez, R., Frederick, B., Shevenell, A., Leventer, A., and Blankenship, D.: Seismic stratigraphy of the Sabrina Coast shelf, East Antarctica: history of early dynamic glaciations, GSA Bull., 132, 545–561, https://doi.org/10.1130/B35100.1, 2020.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nature Geosc., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mudelsee, M. and Schulz, M.: The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka, Earth Planet. Sc. Lett., 151, 117–123, 1997.
Naish, T., Carter, L., Wolff, E., Pollard, D., and Powell, R.: Late Pliocene–Pleistocene Antarctic Climate Variability at Orbital and Suborbital Scale: Ice Sheet, Ocean and Atmospheric Interactions, in: Developments in Earth & Environmental Sciences, edited by: Florindo, F. and Siegert, M., Elsevier Ed., https://doi.org/10.1016/S1571-9197(08)00011-6, 2009.
Nitsche, F. O., Porter, D., Williams, G., Cougnon, E. A., Fraser, A. D., Correia, R., and Guerrero, R.: Bathymetric control of warm ocean water access along the East Antarctic Margin, Geophys. Res. Lett., 44, 8936–8944, https://doi.org/10.1002/2017GL074433, 2017.
Nitsche, F. O., Porter, D., Williams, G., Cougnon, E. A., Fraser, A. D., Correia, R., and Guerrero, R.: Bathymetric control of warm ocean water access along the East Antarctic Margin, Geophys. Res. Lett., 44, 8936–8944, https://doi.org/10.1002/2017GL074433, 2018.
O'Brien, P., Pérez, L. F., Shevenell, A. E., Williams, T.: Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies, in: Antarctic Climate Evolution, 2nd Edn., edited by: Florindo, F., Siegert, M., De Santis, L., and Naish, T., Elsevier Ed., ISBN 978-0-12-819109-5, 2022.
O'Brien, P. E., Post, A. L., Edwards, S., Martin, T., Caburlotto, A., Donda, F., Leitchenkov, G., Romeo, R., Duffy, M., Evangelinos, D., Holder, L., Leventer, A., López-Quirós, A., Opdyke, B. N., and Armand, L. K.: Continental slope and rise geomorphology seaward of the Totten Glacier, East Antarctica (112° E–122° E), Mar. Geol., 427, https://doi.org/10.1016/j.margeo.2020.106221, 2020.
Ogg, J. G.: Geomagnetic Polarity Time Scale, in: Geologic Time Scale, 1, Elsevier, Amsterdam, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., 159–192, https://doi.org/10.1016/B978-0-12-824360-2.00005-X, 2020.
Orsi, A. H. and Webb, C. J.: Impact of sea ice production off Sabrina Coast, east Antarctica, Geophy. Res. Lett., 49, e2021GL095613, https://doi.org/10.1029/2021GL095613, 2022.
Passchier, S.: Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica, Paleoceanography, 26, PA4204, https://doi.org/10.1029/2010PA002061, 2011.
Peck, V. L., Weber, M. E., Raymo, M. E., Williams, T., Armbrecht, L. H., Bailey, I., Brachfeld, S. A., Cardillo, F. G., Du, Z., Fauth, G., García, M., Glüder, A., Guitard, M. E., Gutjahr, M., Hemming, S. R., Hernández-Almeida, I., Hoem, F. S., Hwang, J.-H., Iizuka, M., Kato, Y., Kenlee, B., Martos, Y. M., O'Connell, S., Pérez, L. F., Reilly, B. T., Ronge, T. A., Seki, O., Tauxe, L., Tripathi, S., Warnock, J. P., and Zheng, X.: Site U1535, in: Iceberg Alley and Subantarctic Ice and Ocean Dynamics, edited by: Weber, M. E., Raymo, M. E., Peck, V. L., Williams, T., and the Expedition 382 Scientists, Proc. of the Int. Ocean Discovery Program, 382, College Station, TX, https://doi.org/10.14379/iodp.proc.382.104.2021, 2021.
Pelle, T., Morlighem, M., and Roberts, J. L.: Aurora Basin, the weak underbelly of East Antarctica, Geophys. Res. Lett., 47, e2019GL086821, https://doi.org/10.1029/2019GL086821, 2020.
Peña-Molino, B., McCartney, M. S., and Rintoul, S. R.: Direct observations of the Antarctic Slope Current transport at 113° E, J. Geophys. Res.-Oceans, 121, 7390–7407, https://doi.org/10.1002/2015JC011594, 2016.
Pinkernell, S. and Beszteri, B.: Potential effects of climate change on the distribution range of the main silicate sinker of the Southern Ocean, Ecol. Evol., 4, 3147–3161, https://epic.awi.de/id/eprint/35830/ (last access: 31 August 2024), 2014.
Pompilio, M., Kyle, P., Wilch, T., Dunbar, N., and ANDRILL-MIS Project Science Team: The volcanic record in the ANDRILL McMurdo Ice Shelf AND-1B drill core, in: 10th International Symposium on Antarctic Sciences, U.S., Geological Survey and The National Academies, USGS OF-2007-1047, Extended Abstract 199, 26 August–1 September 2007, Santa Barbara CA, ISBN 978-0-309-11854-5, 2007.
Post, A.: Interactions of the Totten Glacier through multiple glacial cycles, http://dbforms.ga.gov.au/pls/www/npm.mars.search, last access: 3 September 2024.
Post, A. L., Lavoie, C., Domack, E. W., Leventer, A., Shevenell, A., Fraser, A. D., and NBP 14-02 Science Team: Environmental drivers of benthic communities and habitat heterogeneity on an East Antarctic shelf, Ant. Sci., 29, 17–32, https://doi.org/10.1017/S0954102016000468, 2017.
Post, A. L., O'Brien, P. E., Edwards, S., Carroll, A. G., Malakoff, K., and Armand, L. K.: Upper slope processes and seafloor ecosystems on the Sabrina continental slope, East Antarctica, Mar. Geol., 422, 106091, https://doi.org/10.1016/j.margeo.2019.106091, 2020.
Potapova, M., Veselá, J., Smith, C., Minerovic, A., and Aycock, L.: Diatom New Taxon File at the Academy of Natural Sciences (DNTF-ANS), Academy of Natural Sciences [data set], http://dh.ansp.org/dntf (last access: 31 August 2024), 2023.
Prentice, M., Pittari, A., Lowe, D. J., Kilgour, G., Kamp, P. J. J., and Namaliu, M.: Linking proximal ignimbrites and coeval distal tephra deposits to establish a record of voluminous Early Quaternary (2.4–1.9 Ma) volcanism of the Tauranga Volcanic Centre, New Zealand, J. Volcanol. Geoth. Res., 429, 107595, https://doi.org/10.1016/j.jvolgeores.2022.107595, 2022.
Presti, M., Barbara, L., Denis, D., Schmidt, S., De Santis, L., and Crosta, X.: Sediment delivery and depositional patterns off Adélie Land (East Antarctica) in relation to late Quaternary climatic cycles, Mar. Geol., 284, 96–113, https://doi.org/10.1016/j.margeo.2011.03.012, 2011.
R Core Team: R: language and environment for statistical computing, R Fondation for Statistical Computing, Wien, Austria, https://www.R-project.org/ (last access: 31 August 2024), 2021.
Rebesco, M. and Camerlenghi, A.: Late Pliocene margin development and mega debris flow deposits on the Antarctic continental margins: Evidence of the onset of the modern Antarctic Ice Sheet?, Palaeogeogr. Palaeocl., 260, 149–167, https://doi.org/10.1016/j.palaeo.2007.08.009, 2008.
Rebesco, M., Pudsey, C. J., Canals, M., Camerlenghi, A., Barker, P. F., Estrada, F., and Giorgetti, A.: Sediment drifts and deep-sea channel systems, Antarctic Peninsula Pacific Margin, Geol. Soc. Lond. Mem., 22, 353–371, https://doi.org/10.1144/GSL.MEM.2002.022.01.25, 2002.
Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., and Wåhlin, A.: Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations, Mar. Geol., 352, 111–154, https://doi.org/10.1016/j.margeo.2014.03.011, 2014.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeked, M., van Wessemd, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Rintoul, S. R.: On the Origin and Influence of Adélie Land Bottom Water, in: Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, edited by: Jacobs, S. S. and Weiss, R. F., https://doi.org/10.1029/AR075p0151, 1985.
Rintoul, S. R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M., Greenbaum, J. S., and Blankenship, D. D.: Ocean heat drives rapid basal melt of the Totten Ice Shelf, Sci. Adv., 2, 1–5, https://doi.org/10.1126/sciadv.1601610, 2016.
Roberts, J. L., Warner, R. C., Young, D., Wright, A., van Ommen, T. D., Blankenship, D. D., Siegert, M., Young, N. W., Tabacco, I. E., Forieri, A., Passerini, A., Zirizzotti, A., and Frezzotti, M.: Refined broad-scale sub-glacial morphology of Aurora Subglacial Basin, East Antarctica derived by an ice-dynamics-based interpolation scheme, The Cryosphere, 5, 551–560, https://doi.org/10.5194/tc-5-551-2011, 2011.
Rodriguez, S., Hernández-Molina, F. J., Larter, R. D., Rebesco, M., Hillenbrand, C.-D., Lucchi, R. G., and Rodríguez-Tovar, F. J.: Sedimentary model for mixed depositional systems along the Pacific margin of the Antarctic Peninsula: Decoding the interplay of deep-water processes, Mar. Geol., 445, 106754, https://doi.org/10.1016/j.margeo.2022.106754, 2022.
Sadatzki, H., Opdyke, B., Menviel, L., Leventer, A., Hope, J. M., Brocks, J. J., Fallon, S., Post, A. L., O'Brien, P. E., Grant, K., and Armand, L.: Early sea ice decline off East Antarctica at the last glacial-interglacial climate transition. Sci. Adv., 9, eadh9513, https://doi.org/10.1126/sciadv.adh9513, 2023.
Salabarnada, A., Escutia, C., Röhl, U., Nelson, C. H., McKay, R., Jiménez-Espejo, F. J., Bijl, P. K., Hartman, J. D., Strother, S. L., Salzmann, U., Evangelinos, D., López-Quirós, A., Flores, J. A., Sangiorgi, F., Ikehara, M., and Brinkhuis, H.: Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation, Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, 2018.
Saxby, J., Rust, A., Beckett, F., Cashman, K., and Rodger, H.: Estimating the 3D shape of volcanic ash to better understandsedimentation processes and improve atmospheric dispersion modelling, Earth Planet. Sc. Lett., 534, 116075, https://doi.org/10.1016/j.epsl.2020.116075, 2020.
Scherer, R., DeConto, R., Pollard, D., and Alley, R. B.: Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat, Nat. Commun., 7, 12957, https://doi.org/10.1038/ncomms12957, 2016.
Scherer, R. P., Gladenkov, A. Y., and Barron, J. A.: Methods and Applications of Cenozoic Marine Diatom Biostratigraphy, in: Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms, Paleontol. Soc. Short Course, Paleontol. Society Papers, 13, 61–83, edited by: Starratt, S., https://doi.org/10.1017/S1089332600001467, 2007.
Schrader, H. and Gersonde, R.: Diatoms and silicoflagellates, in: Microplaeontological counting methods and techniques – an excercise on an eight metres section of the lower Pliocene of Capo Rossello, Sicily, edited by: Zachariasse, W. J. et al., OCLC, 604485615, Utrecht Micropal. Bull., 17, 129–176, 1978.
Shen, Q., Wang, H., Shum, C. K., Jiang, L., Hsu, H. T., and Dong, J.: Recent high-resolution Antarctic ice velocity maps reveal increate mass loss in Wilkes Land, East Antarctica, Nat. Sci. Rep., 8, 4477, https://doi.org/10.1038/s41598-018-22765-0, 2018.
Shukla, S. K. and Romero, O. E.: Glacial valve size variation of the Southern Ocean diatom Fragilariopsis kerguelensis preserved in the Benguela Upwelling System, southeastern Atlantic, Palaeogeogr. Palaeocl., 499, 112–122, https://doi.org/10.1016/j.palaeo.2018.03.023, 2018.
Siegert, M. J., Barrett, P., DeConto, R., Dunbar, R., O'Cofaigh, C., Passchier, S., and Naish, T.: Review Recent advances in understanding Antarctic climate evolution, Antarct. Sci., 20, 313–325, https://doi.org/10.1017/S0954102008000941, 2008.
Siegert, M. J., Bentley, M. J., Atkinson, A., Bracegirdle, T. J., Convey, P., Davies, B., Downie, R., Hogg, A. E., Holmes, C., Hughes, K. A., Meredith, M. P., Ross, N., Rumble, J., and Wilkinson, J.: Antarctic extreme events, Front. Environ. Sci., 11, 1229283, https://doi.org/10.3389/fenvs.2023.1229283, 2023.
Silvano, A., Rintoul, S. R., and Herraiz-Borreguero, L.: Ocean-ice shelf interaction in East Antarctica, Oceanography, 29, 130–143, https://doi.org/10.5670/oceanog.2016.105, 2016.
Silvano, A., Rintoul, S. R., Peña-Molino, B., and Williams, G. D.: Distribution of water masses and meltwater on the continental shelf near the Totten and Moscow University ice shelves, J. Geophys. Res.-Oceans, 122, 2050–2068, https://doi.org/10.1002/2016JC012115, 2017.
Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., van Wijk, E., Aoki, S., Tamura, T., and Williams, G. D.: Freshening by glacial meltwater enhance melting of ice shelves and reduces formation of Antarctic Bottom Water, Sci. Adv., 4, eaap9467, https://doi.org/10.1126/sciadv.aap9467, 2018.
Sjunneskog, C., Riesselman, C., Winter D., and Scherer. R.: Fragilariopsis diatom evolution in Pliocene and Pleistocene Antarctic shelf sediments, Micropaleontology, 58, 273–289, 2012.
Skinner, L. C., Muschitiello, F., and Scrivner, A. E.: Marine reservoir age variability over the last deglaciation: implications for marine carbon cycling and prospects for regional radiocarbon calibrations, Paleoceanogr. Paleocl., 34, 1807–1815, https://doi.org/10.1029/2019PA003667, 2019.
Smethie, W. and Jacobs, S.: Circulation and melting under the Ross Ice Shelf: estimates from evolving CFC, salinity and temperature fields in the Ross Sea, Deep-Sea Res. Pt. II, 52, 959–978, https://doi.org/10.1016/j.dsr.2004.11.016, 2005.
Smith, J. A., Graham, A. G. C., Post, A. L., Hillenbrand, C. D., Bart, P. J., and Powell, R. D.: The marine geological imprint of Antarctic ice shelves, Nat. Commun., 10, 5635, https://doi.org/10.1038/s41467-019-13496-5, 2019.
Stow, D. and Smillie, Z.: Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites, Geosciences, 10, 68, https://doi.org/10.3390/geosciences10020068, 2020.
Tachikawa, K., Rapuc, W., Dubois-Dauphin, Q., Guihou, A., and Skonieczny, C.: Reconstruction of ocean circulation based on Neodymium isotopic composition – Potential Limitations and Application to the Mid-Pleistocene Transition, Oceanography, 33, 80–87, https://doi.org/10.5670/oceanog.2020.205, 2020.
Taylor-Silva, B. I. and Riesselman, C. R.: Polar Frontal Migration in the Warm Late Pliocene: Diatom Evidence from the Wilkes Land Margin, East Antarctica, Paleoceanogr. Paleocl., 33, 76–92, https://doi.org/10.1002/2017PA003225, 2018.
Tangunan, D., Berke, M. A., Cartagena-Sierra, A., Flores, J. A., Gruetzner, J., Jiménez-Espejo, F., LeVay, L. J., Baumann, K. H., Romero, O., Saavedra-Pellitero, M., Coenen, J. J., Starr, A., Hemming, S. R., Hall, I. R., and Expedition 361 Science Party: Strong glacial-interglacial variability in upper ocean hydrodynamics, biogeochemistry, and productivity in the southern Indian Ocean, Comm. Earth Environ., 2, 80, https://doi.org/10.1038/s43247-021-00148-0, 2021.
Tauxe, L. and Kent, D. V.: A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient field dipolar?, in: Timescales of the Paleomagnetic Field, Geoph. Monograph Series, 145, 101–115, American Geophysical Union, https://doi.org/10.1029/145GM08, 2004.
Tauxe, L., Banerjee, S. K., Butler, R. F., and van der Voo, R.: Essentials of paleomagnetism, University of California Press, 489 pp., ISBN 978-0520260313, 2010.
Tauxe, L., Stickley C. E., Sugisaki, S., Bijl, P. K., Bohaty, S. M., Brinkhuis, H., Escutia, C., Flores, J. A., Houben, A. J. P., Iwai, M. Jiménez-Espejo, F. McKay, R., Passchier, S., Pross, J., Riesselman, C. R., Röhl, U., Sangiorgi, F., Welsh, K., Klaus, A., Fehr, A., Bendle, J. A. P., Dunbar, R., Gonzàlez, J., Hayden, T., Katsuki, K., Olney, M. P., Pekar, S. F., Shrivastava, P. K., van de Flierdt, T., Williams, T., and Yamane, M.: Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: Constraints for paleoceanographic reconstruction, Paleoceanography, 27, PA2214, https://doi.org/10.1029/2012PA002308, 2012.
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The Antarctic Slope Current in a Changing Climate, Rev. Geophys., 56, 741–770, https://doi.org/10.1029/2018RG000624, 2018.
Tolotti, R. and Leventer, A.: Diatom data from voyage 1 of the Investigator, 2017 – PC03 analysis, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/3f8v-tq32, 2022.
Tolotti, R., Bárcena, M. A., Macrì, P., Caburlotto, A., Bonci, M. C., De Santis, L., Donda, F., Corradi, N., and Crosta, X.: Wilkes Land Late Pleistocene Diatom Age Model: from Bio-Events to Quantitative Biostratigraphy, Revue de Micropaleontologìe, 61, 81–96, https://doi.org/10.1016/j.revmic.2018.05.001, 2018.
Tolotti, R., Duffy, M., Isabel, D., Kendall, M., Donda, F., Romeo, R., Geletti, R., Caburlotto, A., Armand, L., O'Brien, P., Leventer, A., De Santis, L., and Corradi, N.: Sabrina Coast (East Antarctica) depositional processes highlighted through stratigraphic and paleoenvironmental diatom analysis, Geophys. Res. Abstr., EGU2019-16970, EGU General Assembly 2019, Vienna, Austria, 2019.
Touchard, Y. and Rochette, P.: Determining tephra fall deposit thickness in sedimentary record from magnetic susceptibility curve: Example of four Ethiopian tephras, Geochem. Geophy. Geosy., 5, Q01009, https://doi.org/10.1029/2003GC000628, 2004.
Urlaub, M., Talling, P. J., Zervos, A., and Masson, D.: What causes large submarine landslides on low gradient (<2°) continental slopes with slow (∼ 0.15 m/kyr) sediment accumulation?, J. Geophys. Res.-Sol. Ea., 120, 6722–6739, https://doi.org/10.1002/2015JB012347, 2015.
Urlaub, M., Geersen, J., Krastel, S., and Schwenk, T.: Diatom ooze: Crucial for the generation of submarine mega-slides?, Geology, 46, 331–334, https://doi.org/10.1130/G39892.1, 2018.
van der Bilt, W., Cederstrøm, J. M., Støren, E., Berben, S., and Rutledal, S.: Rapid Tephra Identification in Geological Archives with Computed Tomography: Experimental Results and Natural Applications, Front. Earth Sci., 8, 622386, https://doi.org/10.3389/feart.2020.622386, 2021.
Volpi, V., Camerlenghi, A., Hillenbrand, C. D., Rebesco, M., and Ivaldi, R.: Effects of biogenic silica on sediment compaction and slope stability on the Pacific margin of the Antarctic Peninsula, Basin Res., 15, 339–363, http://hdl.handle.net/10013/epic.19737 (last access: 31 August 2024), 2003.
Warnock, J. and Scherer, R.: A revised method for determining the absolute abundance of diatoms, J. Paleolimnol., 53, 157–163, https://doi.org/10.1007/s10933-014-9808-0, 2015.
Wakatsuchi, M., Ohshima, K. I., Hishida, M., and Naganobu, M.: Observations of a street of cyclonic eddies in the Indian Ocean sector of the Antarctic Divergence, J. Geophys. Res.-Oceans, 99, 20417–20426, https://doi.org/10.1029/94JC01478, 1994.
Whitehead, J. M., Quilty, P. G., McKelvey, B. C., and O'Brien, P. E.: A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica, Antarct. Sci., 18, 83–99, https://doi.org/10.1017/S0954102006000083, 2006.
Whiting, M. and Schrader, H.: Actinocyclus ingens Rattray: Reinvestigation of a Polymorphic Species, Micropaleontology, 31, 68–75, https://doi.org/10.2307/1485582, 1985.
Whitworth, T., Orsi, A., Kim, S. J., Nowlin, W., and Locarnini, R.: Water masses and mixing near the Antarctic Slope Front, in: Ocean, Ice, and atmosphere: Interactions at the Antarctic continental margin, edited by: Stanley, S., Jacobs, R., and Weiss, F., American Geophysical Union, Antarctic Research Series, 1–27, https://doi.org/10.1029/AR075, 1998.
Wiemer, G. and Kopf, A.: Altered marine tephra deposits as potential slope failure planes?, Geo-Mar. Lett., 35, 305–314, https://doi.org/10.1007/s00367-015-0408-4, 2015.
Williams, G., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K. I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R., Harcourt, R., and Hindell, M.: The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay, Nat. Commun., 7, 12577, https://doi.org/10.1038/ncomms12577, 2016.
Williams, G. D., Meijers, A. J. S., Poole, A., Mathiot, P., Tamura, T., and Klocker, A.: Late winter oceanography off the Sabrina and BANZARE coast (117–128° E), East Antarctica, Deep-Sea Res. Pt. II, 58, 1194–1210, https://doi.org/10.1016/j.dsr2.2010.10.035, 2011.
Wilson, D. J., van de Flierdt, T., McKay, R. M., and Naish, T. R.: Pleistocene Antarctic climate variability: ice sheet, ocean and climate interactions, in: Antarctic Climate Evolution, 2nd Edn., edited by: Florindo, F., Siegert, M., De Santis, L., and Naish, T., Elsevier, ISBN 978-0-12-819109-5, 2022.
Winckler, G., Lamy, F., Alvarez Zarikian, C. A., Arz, H. W., Basak, C., Brombacher, A., Esper, O. M., Farmer, J. R., Gottschalk, J., Herbert, L. C., Iwasaki, S., Lawson, V. J., Lembke-Jene, L., Lo, L., Malinverno, E., Michel, E., Middleton, J. L., Moretti, S., Moy, C. M., Ravelo, A. C., Riesselman, C. R., Saavedra-Pellitero, M., Seo, I., Singh, R. K., Smith, R. A., Souza, A. L., Stoner, J. S., Venancio, I. M., Wan, S., Zhao, X., and Foucher McColl, N.: Site U1541, in: Dynamics of the Pacific Antarctic Circumpolar Current, edited by: Lamy, F., Winckler, G., Alvarez Zarikian, C. A., and the Expedition 383 Scientists, Proceedings of the Inter. Ocean Discovery Program, 383, College Station, TX, https://doi.org/10.14379/iodp.proc.383.105.2021, 2021.
Winter, D., Sjunneskog, C., Scherer, R., Maffoli, P., Riesselman, C., and Harwood, D.: Pliocene-Pleistocene diatom biostratigraphy of nearshore Antarctica from the AND-1B drillcore, McMurdo Sound, Global Planet. Change, 96–97, 59–74, https://doi.org/10.1016/j.gloplacha.2010.04.004, 2012.
Witkowski, J., Bohaty, S. M., Edgar, K. M., and Harwood, D. M.: Rapid fluctuations in mid-latitude siliceous plankton production during the Middle Eocene Climatic Optimum (ODP Site 1051, Western North Atlantic), Mar. Micropaleontol., 106, 110–129, https://doi.org/10.1016/j.marmicro.2014.01.001, 2014.
Wu, L., Wilson, D. J., Wang, R., Yin, X., Chen, Z., Xiao, W., and Huang, M.: Evaluating ratio from XRF scanning as an indicator of Grain-Size variations of glaciomarine sediments in the Southern Ocean, Geochem. Geophy. Geosy., 21, e2020GC009350, https://doi.org/10.1029/2020GC009350, 2020.
Xiaoling, T., Fengyin, L., Liming, H., Reed, A. H., Furukawa, Y., and Guoping, Z.: Evaluation of the particle sizes of four clay minerals, Appl. Clay Sci., 135, 313–324, https://doi.org/10.1016/j.clay.2016.10.012, 2017.
Xuan, C., Jin, Y., Sugisaki, S., Satoguchi, Y., and Nagahashi, Y.: Integrated Pliocene-Pleistocene magnetostratigraphy and tephrostratigraphy of deep-sea sediments at IODP Site U1424 (Yamato Basin, Japan Sea), Prog. Earth Planet. Sci., 7, 60, https://doi.org/10.1186/s40645-020-00373-9, 2020.
Yanagisawa, Y. and Akiba F.: Taxonomy and phylogeny of the tree marine diatom genera, Crucidenticula, Denticulopsis and Neodenticula, Bull. Geol. Surv. Japan, 41, 197–301, 1990.
Yin, Q. Z. and Berger, A.: Interglacial analogues of the Holocene and its natural near future, Quaternary Sci. Rev., 120, 28–46, https://doi.org/10.1016/j.quascirev.2015.04.008, 2015.
Young, D. A., Wright, A. P., Roberts, J. L., Warner, R. C., Young, N. W., Greenbaum, J. S., Schroeder, D. M., Holt, J. W., Sugden, D. E., Blankenship, D. D., Van Ommen, T. D., and Seigert, M. J.: A dynamic early East Antarctic Ice Sheet suggested by ice covered fjord landscapes, Nature, 474, 72–75, https://doi.org/10.1038/nature10114, 2011.
Yuming, L., Xingxing, L., and Youbin, S.: QGrain: An ope-source and easy-to-use software for the comprehensive analysis of grain size distributions, Sediment. Geol., 423, 105980, https://doi.org/10.1016/j.sedgeo.2021.105980, 2021.
Zhang, Z., Nisancioglu, K., and Ninnemann, U.: Increased ventilation of Antarctic deep water during the warm mid-Pliocene, Nat. Commun., 4, 1499, https://doi.org/10.1038/ncomms2521, 2013.
Zielinski, U. and Gersonde, R.: Plio-Pleistocene diatom biostratigraphy from ODP Leg 177, Atlantic sector of the Southern Ocean, Mar. Micropaleontol., 45, 225–268, https://doi.org/10.1016/S0377-8398(02)00031-2, 2002.
Zijderveld, J. D. A.: A. C. demagnetization in rocks: Analysis of results, in: Methods in Paleomagnetism, edited by: Collinson, D. W., Creer, K. M., and Runcorn, S. K., Elsevier, 254–286, https://doi.org/10.1016/B978-1-4832-2894-5.50049-5, 1967.
Short summary
New tephra layer and microsiliceous assemblages are identified. Sediment records are contextualized for the Sabrina Coast continental rise chronological and paleoclimatic context. Some in-depth studies on margin instabilities, tephrochronology, and biostratigraphic/paleoenvironmental and sedimentary evolution are suggested. We performed this study to implement knowledge on the Antarctic biochronostratigraphy and microsiliceous sedimentation and benefited from international-level collaboration.
New tephra layer and microsiliceous assemblages are identified. Sediment records are...