Articles | Volume 43, issue 2
https://doi.org/10.5194/jm-43-475-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-475-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chitinozoan biostratigraphy through the Aeronian–Telychian boundary interval on Anticosti Island, Canada
Carolina Klock
CORRESPONDING AUTHOR
Department of Geology, Ghent University, Ghent, Belgium
André Desrochers
Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
Patrick I. McLaughlin
Illinois State Geological Survey, University of Illinois, Urbana–Champaign, Illinois 61790-4400, USA
Poul Emsbo
U.S. Geological Survey, Denver Federal Center, Denver, Colorado 80225, USA
Tim De Backer
Department of Geology, Ghent University, Ghent, Belgium
Fien M. Jonckheere
Department of Geology, Ghent University, Ghent, Belgium
Cristiana J. P. Esteves
Department of Geology, Ghent University, Ghent, Belgium
Thijs R. A. Vandenbroucke
Department of Geology, Ghent University, Ghent, Belgium
Related authors
No articles found.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Thijs R. A. Vandenbroucke, Sarah E. Gabbott, Florentin Paris, Richard J. Aldridge, and Johannes N. Theron
J. Micropalaeontol., 28, 53–66, https://doi.org/10.1144/jm.28.1.53, https://doi.org/10.1144/jm.28.1.53, 2009
Related subject area
Palynology
High Arctic late Paleocene and early Eocene dinoflagellate cysts
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach
Desmocysta hadra, a new Late Cretaceous dinoflagellate cyst species: stratigraphic range, palaeogeographic distribution and palaeoecology
New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes
Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast
Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts
Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India
A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica)
Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Manuel Vieira and Salih Mahdi
J. Micropalaeontol., 39, 155–167, https://doi.org/10.5194/jm-39-155-2020, https://doi.org/10.5194/jm-39-155-2020, 2020
Short summary
Short summary
This paper describes a new species of the genus Desmocysta from the Late Cretaceous in the Norwegian Sea. The short stratigraphic range for this new species makes it a good biostratigraphic marker. The available published data also indicate that this genus is restricted to higher latitudes in the Northern Hemisphere and is suggested to have preferred turbid waters and stressed marine environments.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Marcelo Augusto De Lira Mota, Guy Harrington, and Tom Dunkley Jones
J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, https://doi.org/10.5194/jm-39-1-2020, 2020
Short summary
Short summary
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain reveal more accurate age estimates for the critical Eocene–Oligocene transition (EOT), a global climate event marked by the rapid expansion of the first permanent Antarctic ice sheet 34 million years ago. These data suggest a coeval major increase in sedimentation rate. Future isotopic and palaeoecological work on this core can be more precisely integrated with other global records of the EOT.
Kasia K. Śliwińska
J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, https://doi.org/10.5194/jm-38-143-2019, 2019
Short summary
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser
J. Micropalaeontol., 38, 83–95, https://doi.org/10.5194/jm-38-83-2019, https://doi.org/10.5194/jm-38-83-2019, 2019
Short summary
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Sonal Khanolkar and Jyoti Sharma
J. Micropalaeontol., 38, 1–24, https://doi.org/10.5194/jm-38-1-2019, https://doi.org/10.5194/jm-38-1-2019, 2019
Short summary
Short summary
We carried out comparative analyses of multiple microfossil groups like foraminifera, dinoflagellates, pollen and spores from Early and Middle Eocene lignite mine sections from paleotropical sites of the Cambay, Kutch and Barmer basins of western India in order to record the changes in paleovegetation and paleodepositional conditions during the hot and humid climate.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Cited articles
Achab, A.: Biostratigraphie par les chitinozoaires, de l'Ordovicien Supérieur–Silurian Inférieur de l'île d'Anticosti. Résultats préliminaires, in: Field Meeting Anticosti-Gaspé – Subcommission on Silurian Stratigraphy, Ordovician – Silurian Boundary Working Group, edited by: Lespérance, P. J., Université de Montréal, Québec, 2, 143–157, 1981.
Achab, A., Asselin, E., Desrochers, A., Riva, and J. F., and Farley, C.: Chitinozoan biostratigraphy of a new Upper Ordovician stratigraphic framework for Anticosti Island, Canada, Geol. Soc. Am. Bull., 123, 186–205, https://doi.org/10.1130/B30131.1, 2011.
Achab, A., Esther, A., Desrochers, A., and Riva, J.F.: The end-Ordovician chitinozoan zones of Anticosti Island, Québec: definition and stratigraphic position, Rev. Palaeobot. Palynol., 198, 92–109, https://doi.org/10.1016/j.revpalbo.2012.07.019, 2013.
Barnes, C. R.: Stratigraphy and palaeontology of the Ordovician-Silurian boundary interval, Anticosti Island, Quebec, Bull. Br. Mus. Nat. Hist. Geol., 43, 195–219, 1988.
Barnes, C. R., Petryk, A. A., and Bolton, T. E.: Anticosti Island, Québec, in: Field Meeting Anticosti-Gaspé – Subcommission on Silurian Stratigraphy, Ordovician – Silurian Boundary Working Group, edited by: Lespérance, P. J., Université de Montréal, Québec, 1, 3–24, 1981.
Bengtson, P.: Open nomenclature, Palaeontology, 31, 223–227, 1988.
Bordet, E., Malo, M., and Kirkwood, D.: A structural study of western Anticosti Island, St. Lawrence platform, Quebec: a fracture analysis that integrates surface and subsurface structural data, Bull. Can. Petrol. Geol., 58, 36–55, https://doi.org/10.2113/gscpgbull.58.1.36, 2010.
Braun, M. G., Daoust, P., and Desrochers, A.: A sequential record of the Llandovery δ13Ccarb excursions paired with time-specific facies: Anticosti Island, eastern Canada, Palaeogeogr. Palaeocl., 578, 110566, https://doi.org/10.1016/j.palaeo.2021.110566, 2021.
Calner, M.: Silurian global events – at the tipping point of climate change, in: Mass Extinction, edited by: Elewa, A. M. T., Springer-Verlag Berlin, Heidelberg, Berlin, 21–58, https://doi.org/10.1007/978-3-540-75916-4, 2008.
Canadian Museum of History: Origin stories – Glooscap: https://www.historymuseum.ca/cmc/exhibitions/aborig/fp/fpz2f21e.html, last access: 18 December 2023.
Caputo, M. V. and dos Santos, R. O. B.: Stratigraphy and ages of four Early Silurian through Late Devonian, Early and Middle Mississippian glaciation events in the Parnaíba Basin and adjacent areas, NE Brazil, Earth Sci. Rev., 207, 103002, https://doi.org/10.1016/j.earscirev.2019.103002, 2020.
Clayer, F. and Desrochers, A.: The stratigraphic imprint of a mid-Telychian (Llandovery, early Silurian) glaciation on far-field shallow-water carbonates, Anticosti Island, Eastern Canada, Estonian J. Earth Sci., 63, 207–213, https://doi.org/10.3176/earth.2014.20, 2014.
Cocks, L. R. M. and Worsley, D.: Late Llandovery and early Wenlock stratigraphy and ecology in the Oslo Region, Norway. Bull. Brit. Mus., Geol., 49, 31–46, https://doi.org/10.5962/p.313804, 1993.
Copper, P. and Long, D. G. F.: Stratigraphic revision of the Jupiter Formation, Anticosti Island, Canada; a major reference section above the Ordovician-Silurian Boundary, Newsl. Stratigr., 23, 11–36, 1990.
Copper, P. and Jin, J.: Early Silurian (Aeronian) East Point Coral Patch Reefs of Anticosti Island, Eastern Canada: first Reef Recovery from the Ordovician/Silurian Mass Extinction in Eastern Laurentia, Geosciences, 2, 64–89, https://doi.org/10.3390/geosciences2020064, 2012.
Copper, P. and Jin, J.: The revised Lower Silurian (Rhuddanian) Becscie Formation, Anticosti Island, eastern Canada records the tropical marine faunal recovery from the end-Ordovician Mass Extinction, Newsl. Stratigr. 47, 61–83, https://doi.org/10.1127/0078-0421/2014/0040, 2014.
Copper, P. and Jin, J.S.: Tracking the early Silurian post-extinction faunal recovery in the Jupiter Formation of Anticosti Island, eastern Canada: A stratigraphic revision, Newsl. Stratigr., 48, 221–240, https://doi.org/10.1127/nos/2015/0061, 2015.
Copper, P., Long, D. G. F., and Jin, J.: The Early Silurian Gun River Formation of Anticosti Island, eastern Canada: a key section for the mid-Llandovery of North America, Newsl. Stratigr., 45, 263–280, https://doi.org/10.1127/0078-0421/2012/0024, 2012.
Cramer, B. D., Brett, C. E., Melchin, M. J., Männik, P., Kleffner, M. A., McLaughlin, P. I., Loydell, D. K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F. R., and Saltzman, M. R.: Revised chronostratigraphic correlation of the Silurian System of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy, Lethaia, 44, 185–202, https://doi.org/10.1111/j.1502-3931.2010.00234.x, 2011.
Cramer, F. H.: Microplankton from three Palaeozoic formations in the province of Leon, NW Spain, Leidse Geol. Meded., 30, 253–261, 1964.
Cramer, F. H.: Chitinozoans of a composite section of Upper Llandoverian to basal Lower Gedinnian sediments in northern Leon, Spain, Bull. Soc. Belge Géol. Paléont. Hydrol., 75, 69–129, 1967.
Da Costa, N. M.: Quitinozoários Silurianos do Igarapé da Rainha, Estado do Pará. Divisão de Geologia e Mineralogia, Departamento Nacional de Produção Minera, Boletim, 255, 1–101, 1971.
Davies, J., Waters, R., Molyneux, S., Williams, M., Zalasiewicz, J., Vandenbroucke, T., and Verniers, J.: A revised sedimentary and biostratigraphical architecture for the Type Llandovery area, Central Wales, Geol. Mag., 150, 300–332, https://doi.org/10.1017/S0016756812000337, 2013.
Desrochers, A.: Rocky shoreline deposits in the Lower Silurian (Upper Llandovery, Telychian) Chicotte Formation, Anticosti Island, Québec, Can. J. Earth Sci., 43, 1205–1214, https://doi.org/10.1139/e06-054, 2006.
Desrochers, A., Farley, C., Achab, A., Asselin, A., and Riva, J. F.: A far-field record of the end Ordovician glaciation: the Ellis Bay Formation, Anticosti Island, Eastern Canada, Palaeogeogr. Palaeocl., 296, 248–263, https://doi.org/10.1016/j.palaeo.2010.02.017, 2010.
Desrochers, A., Jin, J., and Dewing, K.: The Ordovician System of Canada: an extensive stratigraphic record of Laurentian shallow water platforms and deep marine basins, Geol. Soc. Lond., 533, 65–92, 2023.
De Weirdt, J., Vandenbroucke, T. R. A., Cocq, J., Russell, C., Davies, J. R., Melchin, M., and Zalasiewicz, J.: Chitinozoan biostratigraphy of the Rheidol Gorge Section, Central Wales, UK: a GSSP replacement candidate for the Rhuddanian–Aeronian boundary, Pap. Palaeontol., 6, 173–192, https://doi.org/10.1002/spp2.1260 2020.
Eisenack, A.: Neue Mikrofossilien des baltischen Silurs, I, PalZ., 13, 74–118, 1931.
Eisenack, A.: Chitinozoen, Hystrichosphaeren und andere Mikrofossilien aus dem Beyrichia-Kalk, Senckenb, Lethaea, 36, 157–188, 1955.
Eisenack, A.: Neotypen baltischer Silur: chitinozoen und neue arten, Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 108, 1–20, 1959.
Eisenack, A.: Neotypen baltischer Silur-Chitinozoen und neue Arten, Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 114, 291–316, 1962.
Eisenack, A.: Beitrage zur Chitinozoen-Forschun, Palaeontogr. Abt. A, 131, 137–198, 1972.
Ghavidel-Syooki, M. and Vecoli, M.: Latest Ordovician–early Silurian chitinozoans from the eastern Alborz Mountain Range, Kopet–Dagh region, northeastern Iran: biostratigraphy and palaeobiogeography, Rev. Palaeobot. Palynol., 145, 173–192, https://doi.org/10.1016/j.revpalbo.2006.10.003, 2007.
Grahn, Y., Pereira, E., and Bergamaschi, S.: Silurian and Lower Devonian Chitinozoan Biostratigraphy of the Paranaì Basin in Brazil and Paraguay, Palynology, 24, 147–176, https://doi.org/10.1080/01916122.2000.9989542, 2000.
Grahn, Y., Melo, J. H. G., and Steemans, P.: Contribution to the integrated chitinozoan and miospore biostratigraphy of the Serra Grande Group (Silurian – Lower Devonian) in the Parnaiìba Basin, northeast Brazil, Rev. Esp. Micropaleontol., 37, 183–204, 2005.
Gouldey, J. C., Saltzman, M. R., Young, S. A., and Kaljo, D.: Strontium and carbon isotope stratigraphy of the Llandovery (Early Silurian): implications for tectonics and weathering, Palaeogeogr. Palaeocl., 296, 264–275, https://doi.org/10.1016/j.palaeo.2010.05.035, 2010.
Jeppsson, L.: Silurian events: the theory and the conodonts, Prec. Estonian Acad. Sci., 42, 13–27, 1993.
Jia-Yu, R. and Johnson, M. E.: A stepped karst unconformity as an Early Silurian rocky shoreline in Guizhou Province (South China), Palaeogeogr. Palaeocl., 121, 115–129, https://doi.org/10.1016/0031-0182(95)00082-8, 1996.
Jin, J.: The early Silurian pentamerid brachiopod Costistricklandia canadensis (Billings, 1859) and its biostratigraphic and paleobiogeographic significance, J. Paleontol., 76, 638–647, 2002.
Jin, J. and Copper, P.: Late Ordovician and Early Silurian pentamerid brachiopods of Anticosti Island, Québec, Canada, Palaeontogr. Can., 18, 1–140, https://doi.org/10.1017/S0022336000030973, 2000.
Kaljo, D. and Martma, T.: Carbon isotopic composition of Llandovery rocks (East Baltic Silurian) with environmental interpretation, Proc. Estonian Acad. Sci. Geol., 49, 267–283, https://doi.org/10.3176/geol.2000.4.02, 2000.
Kaljo, D., Martma, T., Männik, P., and Viira, V.: Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity, Bull. Soc. Géol. Fr., 174, 59–66, https://doi.org/10.2113/174.1.59, 2003.
Laufeld, S.: Silurian Chitinozoa from Gotland, Fossils and Strata, 5, 1–130, 1974.
Long, D. G. F.: Tempestite frequency curves: a key to Late Ordovician and Early Silurian subsidence, sea-level change, and orbital forcing in the Anticosti foreland basin, Québec, Canada, Can. J. Earth Sci., 44, 413–431, https://doi.org/10.1139/e06-099, 2007.
Loydell, D. K., Nestor, V., and Männik, P.: Integrated biostratigraphy of the lower Silurian of the Kolka-54 core, Latvia, Geol. Mag., 147, 253–280, https://doi.org/10.1017/S0016756809990574, 2010.
McLaughlin, P. I., Emsbo, P., Desrochers, A., Bancroft, A., Brett, C. E., Riva, J. F., Premo, W., Neymark, L., Achab, A., Asselin, E., and Emmons, M.: Refining 2 km of Ordovician chronostratigraphy beneath Anticosti Island utilizing integrated chemostratigraphy, Can. J. Earth Sci., 53, 1–10, https://doi.org/10.1139/cjes-2015-0242, 2016.
McLaughlin, P. I., Emsbo, P., Brett, C. E., Bancroft, A. M., Desrochers, A., and Vandenbroucke, T. R. A.: The rise of pinnacle reefs: A step change in marine evolution triggered by perturbation of the global carbon cycle, Earth Planet. Sc. Lett., 515, 13–25, https://doi.org/10.1016/j.epsl.2019.02.039, 2019.
Melchin, M. J., Sadler, P. M., and Cramer, B. D.: The Silurian Period, in: Geologic Time Scale 2020, Vol. 2, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, 695–732, https://doi.org/10.1016/C2020-1-02369-3, 2020.
Melchin, M. J., Davies, J. R., Boom, A., De Weirdt, J., McIntyre, A. J., Russell, C., Vandenbroucke, T. R. A., and Zalasiewicz, J. A.: Integrated stratigraphical study of the Rhuddanian-Aeronian (Llandovery, Silurian) boundary succession in the Rheidol Gorge, Wales: A proposed Global Stratotype Section and Point for the base of the Aeronian Stage, Lethaia, 56, 1–23, https://doi.org/10.18261/let.56.1.8, 2023.
Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., Zahirovic, S., and Müller, R. D.: Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic, Earth Sci. Rev., 214, 103477, https://doi.org/10.1016/j.earscirev.2020.103477, 2021.
Mullins, G. L. and Loydell, D. K.: Integrated lower Silurian chitinozoan and graptolite biostratigraphy of Buttington Brick Pit, Wales. Geol. Mag., 139, 89–96, https://doi.org/10.1017/S001675680100591X, 2002.
Munnecke, A. and Männik, P.: New biostratigraphic and chemostratigraphic data from the Chicotte Formation (Llandovery, Anticosti Island, Laurentia) compared with the Viki core (Estonia, Baltica), Estonian J. Earth Sci., 58, 159–169, https://doi.org/10.3176/earth.2009.3.01, 2009.
Munnecke, A., Calner, M., Harper, D. A. T., and Servais, T.: Ordovician and Silurian Sea- water chemistry, sea level, and climate: a synopsis, Palaeogeogr. Palaeocl., 296, 389–413, https://doi.org/10.1016/j.palaeo.2010.08.001, 2010.
Nestor, V.: New Chitinozoan species from the Lower Llandoverian of Estonia, Eesti NSV Teaduste Akadeemia Toimetised, 29, 98–107, 1980a (in Russian with English translation).
Nestor, V.: Middle Llandoverian Chitinozoans from Estonia, Eesti NSV Teaduste Akadeemia Toimetised, 29, 136–42, 1980b (in Russian with English translation).
Nestor, V.: New Wenlockian species of Conochitina from Estonia, P. Est. Acad. Sci., 31, 105–110, 1982.
Nestor, V.: Silurian chitinozoans, in: Field Meeting, Estonia – An Excursion Guidebook, edited by: Kaljo, D., and Nestor, H., Institute of Geology, P. Est. Acad. Sci., Tallinn, 80–83, 1990.
Nestor, V.: Early Silurian Chitinozoans of Estonia and North Latvia, Academia, 4, 1–163, 1994.
Nestor, V.: A summary and revision of the East Baltic Silurian chitinozoan biozonation, Estonian J. Earth Sci., 61, 242–260, https://doi.org/10.3176/earth.2012.4.05, 2012.
Paris, F.: Les chitinozoaires dans le Paléozoïque du sud-ouest de l'Europe (cadre géologique-étude systématique-biostratigraphie), Bull. Soc. Géol. Minéral. Bretagne, 26, 1–496, 1981.
Paris, F. and A1-Hajri, S.: New chitinozoan species from Llandovery subsurface strata of Saudi Arabia, Rev. Micropaleontol., 38, 311–328, 1995.
Paris, F., Grahn, Y., Nestor, V., and Lakova, I.: A revised chitinozoan classification, J. Paleontol., 73, 549–70, https://doi.org/10.1017/S0022336000032388, 1999.
Pinet, N., Keating, P., Lavoie, L., Dietrich, J., Duchesne, M., and Brake, V.: Revisiting the Appalachian structural front and offshore Anticosti Basin (northern Gulf of St. Lawrence, Canada) by integrating old and new geophysical datasets, Mar. Petrol. Geol., 32, 50–62, https://doi.org/10.1016/j.marpetgeo.2011.12.004, 2012.
Pinet, N., Brake, V., and Lavoie, D.: Geometry and regional significance of joint sets in the Ordovician-Silurian Anticosti Basin: New insights from fracture mapping, Geological Survey of Canada, Open File 7752, 26 pp., https://doi.org/10.4095/295982, 2015.
Riva, J. F. and Petryk, A. A.: Graptolites from the Upper Ordovician and Lower Silurian of Anticosti Island and the Position of the Ordovician-Silurian Boundary, in: Field Meeting Anticosti-Gaspé – Subcommission on Silurian Stratigraphy, Ordovician–Silurian Boundary Working Group, edited by: Lespérance, P. J., Université de Montréal, Québec, 143–157, 1981.
Sami, T. and Desrochers, A.: Episodic sedimentation on an Early Silurian, storm-dominated carbonate ramp, Becscie and Merrimack Formations, Anticosti Island, Canada, Sedimentology, 39, 355–381, https://doi.org/10.1111/j.1365-3091.1992.tb02122.x, 1992.
Schallreuter, R.: Neue Chitinozoen aus ordovizischen Geschieben und Bemerkungen zur Gattung Illichitina, Paläontol. Abh., 1, 392–405, 1963.
Soufiane, A. and Achab, A.: Chitinozoan zonation of the Late Ordovician and the Early Silurian of the island of Anticosti, Quèbec, Canada. Rev. Palaeobot. Palynol., 109, 85–111, https://doi.org/10.1016/S0034-6667(99)00044-5, 2000.
Sutherland, S. J. E.: Ludlow chitinozoans from the type area and adjacent regions, Palaeontogr. Soc. Monogr., 148, 1–104, https://doi.org/10.1080/25761900.2022.12131775, 1994.
Taugourdeau, P.: Étude de quelques espèces critiques de Chitinozoaires de la région d'Edjete et complements a la faune locale, Rev. Micropaleontol., 6, 130–44, 1963.
Taugourdeau, P.: Les Chitinozoaires, techniques d'études, morphologie et classification, Mém. Soc. Géol. Fr. Nouv., 45, 1–64, 1966.
Umnova, N. I.: Structural types of the prosome and operculum in the Chitinozoa and their association with genera and species, Paleontol. J., 4, 393–406, 1976.
Vandenbroucke T., Verniers, J., and Clarkson, E. N. K.: A chitinozoan biostratigraphy of the Upper Ordovician and the lower Silurian strata of the Girvan area, Midland Valley, Scotland, Trans. Roy. Soc. Edinb. Earth Sci., 93, 111–134, https://doi.org/10.1017/S0263593300000365, 2003.
Verniers, J., Nestor, V., Paris, F., Dufka, P., Sutherland, S., and Van Grootel, G.: A global Chitinozoa biozonation for the Silurian, Geol. Mag., 132, 651–666, https://doi.org/10.1017/S0016756800018896, 1995.
Walasek, N., Loydell, D. K., Frýda, J., Männik, P., and Loveridge, R. F.: Integrated graptolite-conodont biostratigraphy and organic carbon chemostratigraphy of the Llandovery of Kallholn quarry, Dalarna, Sweden, Palaeogeogr. Palaeocl., 508, 1–16, https://doi.org/10.1016/j.palaeo.2018.08.003, 2018.
Zhang, S. and Barnes, C.: A new Llandovery (Early Silurian) conodont biozonation and conodonts from the Becscie, Merrimack, and Gun River formations, Anticosti Island, Quebec, J. Paleontol., 76, 1–46, https://doi.org/10.1666/0022-3360(2002)76[1:ANLESC]2.0.CO;2, 2002.
Zimmt, J. B., Holland, S. M., Desrochers, A., Jones, D. S., and Finnegan, S.: A high-resolution sequence stratigraphic framework for the eastern Ellis Bay Formation, Canada: A record of Hirnantian sea-level change, GSA Bull., 136, 3825–3849, https://doi.org/10.1130/B37190.1, 2024.
Short summary
Anticosti Island has a well-preserved rock succession throughout the Aeronian–Telychian boundary in the Llandovery Epoch, Silurian period, which includes two important biogeochemical events, the late Aeronian and the Valgu. This study suggests the position of this boundary in Anticosti based on the correlation of the island’s chitinozoan assemblages with the global occurrences, confirming both a remarkable preservation of upper Aeronian rocks and the record of the Valgu event.
Anticosti Island has a well-preserved rock succession throughout the Aeronian–Telychian boundary...