Articles | Volume 39, issue 1
https://doi.org/10.5194/jm-39-1-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-39-1-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast
Marcelo Augusto De Lira Mota
CORRESPONDING AUTHOR
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Birmingham, B15 2TT, UK
Guy Harrington
PetroStrat, Conwy Office, Tan-y-Graig, Parc Caer Seion, Conwy, LL32
8FA, UK
Tom Dunkley Jones
School of Geography, Earth and Environmental Sciences, University of
Birmingham, Birmingham, B15 2TT, UK
Related authors
No articles found.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Tom Dunkley Jones, Yvette L. Eley, William Thomson, Sarah E. Greene, Ilya Mandel, Kirsty Edgar, and James A. Bendle
Clim. Past, 16, 2599–2617, https://doi.org/10.5194/cp-16-2599-2020, https://doi.org/10.5194/cp-16-2599-2020, 2020
Short summary
Short summary
We explore the utiliity of the composition of fossil lipid biomarkers, which are commonly preserved in ancient marine sediments, in providing estimates of past ocean temperatures. The group of lipids concerned show compositional changes across the modern oceans that are correlated, to some extent, with local surface ocean temperatures. Here we present new machine learning approaches to improve our understanding of this temperature sensitivity and its application to reconstructing past climates.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Zainab Al Rawahi and Tom Dunkley Jones
J. Micropalaeontol., 38, 25–54, https://doi.org/10.5194/jm-38-25-2019, https://doi.org/10.5194/jm-38-25-2019, 2019
Short summary
Short summary
This research studies nannofossils (microscopic fossil remains of unicellular marine planktonic algae) recovered from the Late Cretaceous, pelagic shale Fiqa Formation of Oman. The study emphasises taxonomy and assemblage change application to understand changes in the past climate and environment during the time of deposition. This has been achieved by analysing rock samples under the microscope. The analysis of these fossils could be applied in future work for age determination.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Related subject area
Palynology
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach
Desmocysta hadra, a new Late Cretaceous dinoflagellate cyst species: stratigraphic range, palaeogeographic distribution and palaeoecology
New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes
Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts
Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India
A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica)
Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Manuel Vieira and Salih Mahdi
J. Micropalaeontol., 39, 155–167, https://doi.org/10.5194/jm-39-155-2020, https://doi.org/10.5194/jm-39-155-2020, 2020
Short summary
Short summary
This paper describes a new species of the genus Desmocysta from the Late Cretaceous in the Norwegian Sea. The short stratigraphic range for this new species makes it a good biostratigraphic marker. The available published data also indicate that this genus is restricted to higher latitudes in the Northern Hemisphere and is suggested to have preferred turbid waters and stressed marine environments.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Kasia K. Śliwińska
J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, https://doi.org/10.5194/jm-38-143-2019, 2019
Short summary
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser
J. Micropalaeontol., 38, 83–95, https://doi.org/10.5194/jm-38-83-2019, https://doi.org/10.5194/jm-38-83-2019, 2019
Short summary
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Sonal Khanolkar and Jyoti Sharma
J. Micropalaeontol., 38, 1–24, https://doi.org/10.5194/jm-38-1-2019, https://doi.org/10.5194/jm-38-1-2019, 2019
Short summary
Short summary
We carried out comparative analyses of multiple microfossil groups like foraminifera, dinoflagellates, pollen and spores from Early and Middle Eocene lignite mine sections from paleotropical sites of the Cambay, Kutch and Barmer basins of western India in order to record the changes in paleovegetation and paleodepositional conditions during the hot and humid climate.
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Cited articles
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H.,
Backman, J., and Rio, D.: Biozonation and biochronology of Paleogene
calcareous nannofossils from low and middle latitudes, Newsl.
Stratigr., 47, 131–181, https://doi.org/10.1127/0078-0421/2014/0042, 2014.
Aubry, M.-P.: Biostratigraphie du Paléogène épicontinental de
l'Europe du Nord-Ouest: Étude fondée sur les nannofossiles
calcaires, Université Claude Bernard-Lyon I, Département des
sciences de la terre, Vol. 1, 317 pp., 1983.
Aubry, M.-P.: Northwestern European Paleogene Magnetostratigraphy,
biostratigraphy, and paleogeography: Calcareous nannofossil evidence,
Geology, 13, 198–202, 1985.
Baum, G. R. and Vail, P. R. Sequence Stratigraphic Concepts Applied to Paleogene Outcrops, Gulf and Atlantic Basins, in: Sea Level Changes: An Integrated Approach, edited by: Wilgus, C. K., Hastings, B. S., Posamentier, H., Van Wagoner, J., Ross, C. A., and Kendall, C. G., Society of Economic Paleontologists and Mineralogists, Tulsa, 309–326, 1988.
Berggren, W. A. and Pearson, P. N.: A Revised Tropical To Subtropical
Paleogene Planktonic Foraminiferal Zonation, J. Foramin.l
Res., 35, 279–298, https://doi.org/10.2113/35.4.279, 2005.
Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M.-P.: A Revised
Cenozoic Geochronology and Chronostratigraphy, Geochronology Time Scales and Global Stratigraphic Correlation, SEPM Special Publication,
54, 129–212, 1995.
Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J., and Sangiorgi, F.: Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal, J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, 2018.
Bordiga, M., Henderiks, J., Tori, F., Monechi, S., Fenero, R., Legarda-Lisarri, A., and Thomas, E.: Microfossil evidence for trophic changes during the Eocene–Oligocene transition in the South Atlantic (ODP Site 1263, Walvis Ridge), Clim. Past, 11, 1249–1270, https://doi.org/10.5194/cp-11-1249-2015, 2015.
Bown, P. R. and Young, J.: Techniques, in: Calcareous Nannofossil
Biostratigraphy, edited by: Bown, P. R., British
Micropalaeontological Society Publications Series, Kluwer Academic, London,
16–28, 1998.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the
Priabonian type-area (Northeast Italy): biostratigraphy and
paleoenvironmental interpretation, Palaeogeogr. Palaeocl., 107, 121–163, https://doi.org/10.1016/0031-0182(94)90168-6, 1994.
Brinkhuis, H. and Biffi, U.: Dinoflagellate cyst stratigraphy of the
Eocene/Oligocene transition in central Italy, Mar. Micropaleontol.,
22, 131–183, https://doi.org/10.1016/0377-8398(93)90007-K, 1993.
Brinkhuis, H., Sengers, S., Sluijs, A., Warnaar, J., and Williams, G. L.:
Latest Cretaceous-Earliest Oligocene and Quaternary Dinoflagellate Cysts,
ODP site 1172, East Tasman Plateau, Proceedings of the Ocean Drilling
Program, Sci. Res., 189, 1–48, 2003.
Bujak, J. P. and Mudge, D. C.: A high-resolution North Sea Eocene dinocyst
zonation, J. Geol. Soc., 151, 449–462,
https://doi.org/10.1144/gsjgs.151.3.0449, 1994.
Bujak, J. P. and Williams, G. L.: Mesozoic and Cenozoic dinoflagellates,
Plankton Stratigraphy. Cambridge University Press, Cambridge,
847–965, 1985.
Burgess, R.: Analysis of the palynomorph assemblage through the
Eocene/Oligocene transition within the Mossy Grove core, Mississippi,
University of Birmingham, Master Dissertation,
88, 2015.
Bybell, L. M. and Poore, R. Z.: Reworked Hantkenina specimens at Little
Stave Creek, Alabama: Gulf Coast Association of Geological Societies
Transactions, AAPG Bull., 33, 253–256, 1983.
Costa, L. I. and Downie, C.: Cenozoic dinocyst stratigraphy of sites 403 to
406 (Rockall Plateau), IPOD, Leg 48, Initial Rep. Deep Sea, 48, 513–529, 1979.
Costa, L. I. and Manum, S. B.: The description of the interregional zonation
of the Paleogene (D1–D15) and the Miocene (D16–D20), Geologisches
Jahrbuch, Reihe A, 100, 321–330, 1988.
Costa, L. I., Downie, C., and Eaton, G. L.: Palynostratigraphy of some middle
Eocene sections from the Hampshire basin (England), Proceedings of the
Geologists' Association, 87, 273–284, 1976.
Cotton, L. J. and Pearson, P. N.: Larger benthic foraminifera from the
middle Eocene to Oligocene of Tanzania, Austrian J. Earth Sci.,
105, 189–199, 2012.
Coxall, H. K. and Pearson, P. N.: The Eocene-Oligocene transition, in: Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., The Micropalaeontological Society, Special Publications, The Geological Society, London, 351–387, 2007.
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J.:
Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation
in the Pacific Ocean, Nature, 433, 53–57,
https://doi.org/10.1038/nature03186.1, 2005.
Cramer, B. S., Miller, K. G., Barrett, P. J. and Wright, J. D.: Late
Cretaceous – Neogene trends in deep ocean temperature and continental ice
volume?: Reconciling records of benthic foraminiferal geochemistry (δ18O
and Mg∕Ca) with sea level history, 116, 1–23,
https://doi.org/10.1029/2011JC007255, 2011.
Cushing, E. M., Boswell, E. H., and Hosman, R. L.: General Geology of the Mississippi Embayment, US Geological Survey Professional Paper 448-B, 28, 1964.
DeConto, R. M. and Pollard, D.: Rapid Cenozoic glaciation of Antarctica
induced by declining atmospheric CO2, Nature, 421, 245–249,
https://doi.org/10.1038/nature01290, 2003.
DeConto, R. M., Pollard, D., Wilson, P. A., Pälike, H., Lear, C. H., and
Pagani, M.: Thresholds for Cenozoic bipolar glaciation, Nature, 455,
652–656, https://doi.org/10.1038/nature07337, 2008.
Dockery, D. T.: Lower Oligocene bivalvia of the Vicksburg group in
Mississippi, Mississippi Department of Natural Resources, Bureau Geol.,
261 pp., 1982.
Dockery III, D. T., Stover, C. W., Weathersby, P., Stover Jr., C. W., and
Ingram, S. L.: A continuous core through the undifferentiated Yazoo Clay
(late Eocene, Jackson Group) of central Mississippi, Mississippi Geology,
12, 21–27, 1991.
Dunkley Jones, T., Bown, P. R., Pearson, P. N., Wade, B. S., Coxall, H. K.,
and Lear, C. H.: Major shifts in calcareous phytoplankton assemblages
through the Eocene-Oligocene transition of Tanzania and their implications
for low-latitude primary production, Paleoceanography, 23, 1–14,
https://doi.org/10.1029/2008PA001640, 2008.
Dunkley Jones, T., Bown, P. R., and Pearson, P. N.: Exceptionally well
preserved upper Eocene to lower Oligocene calcareous nannofossils
(Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania, J. Syst. Palaeontol., 7, 359–411, https://doi.org/10.1017/S1477201909990010,
2009.
Duxbury, S. and Vieira, M.: A Stratigraphic Review of the Late Callovian to
Oxfordian Interval, Fisher Bank Basin Area (UK Sector, Central North Sea),
J. Petrol. Geol., 41, 47–65, https://doi.org/10.1111/jpg.12692, 2018.
Echols, R. J., Armentrout, J. M., Root, S. A., Fearn, L. B., Cooke, J. C.,
Rodgers, B. K., and Thompson, P. R.: Sequence stratigraphy of the
Eocene/Oligocene boundary interval: Southeastern Mississippi, in: From
Greenhouse to Ice House: The Marine Eocene–Oligocene Transition, edited by:
Prothero, D. R., Nesbitt, E., and Ivany, L., 189–222, 2003.
Egger, L. M., Śliwińska, K. K., van Peer, T. E., Liebrand, D.,
Lippert, P. C., Friedrich, O., Wilson, P. A., Norris, R. D., and Pross, J.:
Magnetostratigraphically-calibrated dinoflagellate cyst bioevents for the
uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP
Expedition 342, Paleogene Newfoundland sediment drifts), Rev.
Palaeobot. Palyno., 234, 159–185,
https://doi.org/10.1016/j.revpalbo.2016.08.002, 2016.
Eldrett, J. S. and Harding, I. C.: Palynological analyses of Eocene to
Oligocene sediments from DSDP Site 338, Outer Vøring Plateau, Mar.
Micropaleontol., 73, 226–240, https://doi.org/10.1016/j.marmicro.2009.10.004,
2009.
Eldrett, J. S., Harding, I. C., Firth, J. V., and Roberts, A. P.:
Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst
biostratigraphy from the Norwegian-Greenland Sea, Mar. Geol., 204,
91–127, https://doi.org/10.1016/S0025-3227(03)00357-8, 2004.
Fluegeman, R. H.: Preliminary paleontological report on the foraminifera of
the Mossy Grove core, Hinds County, Mississippi, Mississippi Geology, 17,
9–15, 1996.
Fluegeman, R. H., Grigsby, J. D., and Hurley, J. V: Eocene-Oligocene
greenhouse to icehouse transition on a subtropical clastic shelf; the
Jackson-Vicksburg Groups of the eastern Gulf Coastal Plain of the United
States, Special Paper – Geological Society of America, 452, 261–277,
https://doi.org/10.1130/2009.2452(17), 2009.
Friedrich, O., Norris, R. D., and Erbacher, J.: Evolution of middle to late
Cretaceous oceans-A 55 m.y. Record of Earth's temperature and carbon cycle,
Geology, 40, 107–110, https://doi.org/10.1130/G32701.1, 2012.
Gradstein, F. M., Kristiansen, I. L., Loemo, L., and Kaminski, M. A.:
Cenozoic foraminiferal and dinoflagellate cyst biostratigraphy of the
central North Sea, Micropaleontology, 38, 101–137, https://doi.org/10.2307/1485991,
1992.
Hansen, J. M.: Dinoflagellate stratigraphy and echinoid distribution in
Upper Maastrichtian and Danian deposits from Denmark, B.
Geol. Soc. Denmark, 26, 1–26, 1977.
Head, M. J. and Norris, G.: Palynology and Dinocyst Stratigraphy of the
Eocene and Oligocene in ODP Leg 105, Hole 647A, Labrador Sea, in: Proceedings
of the Ocean Drilling Program, Sci. Res., 105, 515–550,
1989.
Heilmann-Clausen, C. and Van Simaeys, S.: Dinoflagellate cysts from the
Middle Eocene to lowermost Oligocene succession in the Kysing Research
Borehole, central Danish Basin, Palynology, 29, 143–204, 2005.
Hosman, R. L.: Regional stratigraphy and subsurface geology of Cenozoic
deposits, Gulf Coastal Plain, South-central United States, US Geological Survey, Professional Paper 1416-G,
34 pp., 1996.
Houben, A. J. P., van Mourik, C. A., Montanari, A., Coccioni, R., and
Brinkhuis, H.: The Eocene-Oligocene transition: Changes in sea level,
temperature or both?, Palaeogeogr. Palaeocl.,
335/336, 75–83, https://doi.org/10.1016/j.palaeo.2011.04.008, 2012.
Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S.,
Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T.,
Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., Brinkhuis, H., and
Scientists, and Exp. 318 Scientists: Reorganization of Southern Ocean Plankton Ecosystem at
the Onset of Antarctic Glaciation, Science, 340, 341–344,
https://doi.org/10.1126/science.1223646, 2013.
Houben, A. J. P., Quaijtaal, W., Wade, B. S., Schouten, S., and Brinkhuis,
H.: Quantitative organic-walled dinoflagellate cyst stratigraphy across the
Eocene-Oligocene Transition in the Gulf of Mexico: A record of climate- and
sea level change during the onset of Antarctic glaciation, Newsl.
Stratigr., 52, 131–154, https://doi.org/10.1127/nos/2018/0455, 2018.
Jaramillo, C. A. and Oboh-Ikuenobe, F. E.: Sequence stratigraphic
interpretations from palynofacies, dinocyst and lithological data of upper
eocene-lower oligocene strata in southern Mississippi and Alabama, US Gulf
Coast, Palaeogeogr. Palaeocl., 145, 259–302,
https://doi.org/10.1016/S0031-0182(98)00126-6, 1999.
Kamikuri, S. and Wade, B. S.: Radiolarian Magnetobiochronology and faunal
turnover across the middle/late Eocene boundary at Ocean Drilling Program
Site 1052 in the western North Atlantic Ocean, Mar. Micropaleontol., 88,
41–53, 2012.
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V.,
Cramer, B. S., and Rosenthal, Y.: Stepwise transition from the Eocene
greenhouse to the Oligocene icehouse, Nat. Geosci., 1, 329–334,
https://doi.org/10.1038/ngeo179, 2008.
Kennett, J. P.: Cenozoic evolution of Antarctic glaciation, the
circum-Antarctic Ocean, and their impact on global paleoceanography, J. Geophys. Res., 82, 3843–3860, https://doi.org/10.1029/JC082i027p03843,
1977.
Kennett, J. P. and Shackleton, N. J.: Oxygen isotopic evidence for the
development of the psychrosphere 38 Myr ago, Nature, 260, 513–515,
1976.
Kothe, A.: Paleogene dinoflagellates from Northwest Germany: biostratigraphy
and paleoenvironments, Geologisches Jahrbuch, 118, 3–111, 1990.
Lear, C. H., Elderfield, H., and Wilson, P. A.: Cenozoic deep-sea
temperatures and global ice volumes from Mg∕Ca in benthic foraminiferal
calcite, Science, 287, 269–272, https://doi.org/10.1126/science.287.5451.269,
2000.
Lear, C. H., Rosenthal, Y., and Wright, J. D.: The closing of a seaway: Ocean
water Masses and global climate change, Earth Planet. Sc. Lett.,
210, 425–436, https://doi.org/10.1016/S0012-821X(03)00164-X, 2003.
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y.:
Cooling and ice growth across the Eocene-Oligocene transition, Geology,
36, 251–254, https://doi.org/10.1130/G24584A.1, 2008.
Liu, Z., Pagani, M., Zinniker, D., Deconto, R. M., Huber, M., Brinkhuis, H.,
Shah, S. R., Leckie, R. M., and Pearson, A.: Global Cooling During the
Eocene-Oligocene Climate Transition, Science, 970, 1187–1190,
2009.
Loutit, T. S., Hardenbol, J., Vail, P. R., and Baum, G. R.: Condensed sections: The key to age determination and correlation of continental margin sequences, in: Sea Level Changes – An Integrated Approach, edited by: Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. V., Ross, C. A., and Van Wagoner, J. C., SEPM Special Publication, 42, 183–213, 1988.
Mancini, E. A. and Tew, B. H.: Relationships of Paleogene stage and
planktonic foraminiferal zone boundaries to lithostratigraphic and
allostratigraphic contacts in the eastern Gulf Coastal Plain, J.
Foramin. Res., 21, 48–66, 1991.
Manum, S. B.: Dinocysts in Tertiary Norwegian-Greenland Sea sediments (Deep
Sea Drilling Project Leg 38), with observations on palynomorphs and
palynodebris in relation to environment, Initial Rep. Deep Sea, 38, 897–919, 1976.
Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K., and Scholze,
A.: Eocene to Miocene Palynology of the Norwegian Sea (ODP Leg 104), in:
Proceedings of the Ocean Drilling Program, 104, 61–74, 1989.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton
zonation, in: Proc. II Planktonic Conference, Roma 1970, Roma, Tecnoscienza,
2, 739–785, 1971.
Miller, K. G., Fairbanks, R. G., and Mountain, G. S.: Tertiary Oxygen Isotope
Synthesis, Sea Level History, and Continental Margin Erosion,
Paleoceanography, 2, 1–19, 1987.
Miller, K. G., Thompson, P. R., and Kent, D. V.: Integrated Late
Eocene-Oligocene Stratigraphy of the Alabama Coastal Plain: Correlation of
Hiatuses and Stratal Surfaces to Glacioeustatic Lowerings, Paleoceanography,
8, 313–331, https://doi.org/10.1029/93PA00203, 1993.
Miller, K. G., Browning, J. V, Aubry, M. P., Wade, B. S., Katz, M. E.,
Kulpecz, A. A., and Wright, J. D.: Eocene-Oligocene global climate and
sea-level changes: St. Stephens Quarry, Alabama, B. Geol.
Soc. Am., 120, 34–53, https://doi.org/10.1130/B26105.1, 2008.
Mohr, B. A. R.: Eocene and Oligocene sporomorphs and dinoflagellate cysts
from Leg 113 drill sites, Weddell Sea, Antarctica, in: Proceedings of the
Ocean Drilling Program, US
Government Printing Office College Station, Texas, Sci. Res., 113, 595–612,1990.
Moore, T. C., Kamikuri, S. ichi, Erhardt, A. M., Baldauf, J., Coxall, H. K.,
and Westerhold, T.: Radiolarian stratigraphy near the Eocene-Oligocene
boundary, Mar. Micropaleontol., 116, 50–62,
https://doi.org/10.1016/j.marmicro.2015.02.002, 2015.
Mudge, D. C. and Bujak, J. P.: Eocene stratigraphy of the North Sea basin,
Mar. Petrol. Geol., 11, 166–181, 1994.
Mudge, D. C. and Bujak, J. P.: An integrated stratigraphy for the Paleocene
and Eocene of the North Sea, Geological Society, London, Special
Publications, 101, 91–113, https://doi.org/10.1144/GSL.SP.1996.101.01.06, 1996.
Nocchi, M., Monechi, S., Coccioni, R., Madile, M., Monaco, P., Orlando, M.,
Parisi, G., and Premoli Silva, I.: The extinction of the Hantkeninidae as a
marker for recognizing the Eocene–Oligocene boundary: a proposal, The
Eocene–Oligocene Boundary in the Marche–Umbria Basin (Italy),
International Union of Geological Sciences Commission on Stratigraphy,
249–252, 1988.
Oboh-Ikuenobe, F. E. and Jaramillo, C. A.: Palynological Patterns in the
Uppermost Eocene to Lower Oligocene Sedimentary, in: From Greenhouse to
Icehouse: The Marine Eocene-Oligocene Transition, Columbia
University Press, p. 269, 2003.
Obradovich, J. D. and Dockery III, D. T.: Revisions to the geochronology of
the uppermost Yazoo Formation, central Mississippi, and a new estimate for
the age of the Eocene, Oligocene boundary: Journal of the Mississippi
Academy of Sciences, 41, p. 54, 1996.
Obradovich, J. D., Dockery III, D. T., and Swisher III, C. C.: 40Ar-39Ar ages of bentonite beds in the upper part of the Yazoo Formation (Upper Eocene), west-central Mississippi, Mississippi Geol., 14, 1–9, 1993.
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W.,
Krishnan, S., and DeConto, R. M.: The role of carbon dioxide during the onset
of antarctic glaciation, Science, 334, 1261–1264,
https://doi.org/10.1126/science.1203909, 2011.
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K.,
Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. S.: The
heartbeat of the Oligocene climate system (SOM), Science, 314,
1894–1898, https://doi.org/10.1126/science.1133822, 2006.
Pasley, M. A. and Hazel, J. E.: Revised sequence stratigraphic
interpretation of the Eocene-Oligocene boundary interval, Mississippi and
Alabama, Gulf Coast Basin, USA, J. Sediment. Res., 65, 160–169,
1995.
Pearson, P. N., McMillan, I. K., Wade, B. S., Jones, T. D., Coxall, H. K.,
Bown, P. R., and Lear, C. H.: Extinction and environmental change across the
Eocene-Oligocene boundary in Tanzania, Geology, 36, 179–182,
https://doi.org/10.1130/G24308A.1, 2008.
Pearson, P. N., Foster, G. L., and Wade, B. S.: Atmospheric carbon dioxide
through the Eocene–Oligocene climate transition, Nature, 461,
1110–1113, https://doi.org/10.1038/nature08447, 2009.
Pekar, S. F., Christie-Blick, N., Kominz, M. A., and Miller, K. G.:
Calibration between eustatic estimates from backstripping and oxygen
isotopic records for the Oligocene, Geology, 30, 903–906,
https://doi.org/10.1130/0091-7613(2002)030<0903:CBEEFB>2.0.CO;2,
2002.
Persico, D. and Villa, G.: Eocene-Oligocene calcareous nannofossils from
Maud Rise and Kerguelen Plateau (Antarctica): Paleoecological and
paleoceanographic implications, Mar. Micropaleontol., 52,
153–179, https://doi.org/10.1016/j.marmicro.2004.05.002, 2004.
Powell, A. J.: Dinoflagellate cysts of the Tertiary System, in: A
Stratigraphic Index of Dinoflagellate Cysts, edited by: Powell, A. J.,
155–251, Chapman & Hall, 1992.
Premoli Silva, I. and Jenkins, D. G.: Decision on the Eocene-Oligocene
boundary stratotype, Episodes, 16, 379–382, 1993.
Priddy, R. R.: Madison County Geology, Mississippi State Geological Survey, 88, 123 pp.,
1960.
Pross, J., Houben, A. J. P., van Simaeys, S., Williams, G. L., Kotthoff, U.,
Coccioni, R., Wilpshaar, M., and Brinkhuis, H.: Umbria-Marche revisited: A
refined Magnetostratigraphic calibration of dinoflagellate cyst events for
the Oligocene of the Western Tethys, Rev. Palaeobot. Palyno.,
158, 213–235, https://doi.org/10.1016/j.revpalbo.2009.09.002, 2010.
Prothero, D. R.: The Eocene-Oligocene Transition: Paradise Lost, Columbia
University Press, 291 pp., 1994.
Quaijtaal, W. and Brinkhuis, H.: Pentadinium alabamensis: A new, unusual
dinoflagellate from the early Oligocene of the Gulf Coast, Alabama, USA,
Rev. Palaeobot. Palyno., 175, 47–54,
https://doi.org/10.1016/j.revpalbo.2012.03.002, 2012.
Raup, D. M. and Sepkoski, J. J.: Mass extinctions in the Marine fossil
record, Science, 215, 1501–1503, 1982.
Scher, H. D., Bohaty, S. M., Zachos, J. C., and Delaney, M. L.: Two-stepping
into the icehouse?: East Antarctic weathering during progressive ice-sheet
expansion at the Eocene – Oligocene transition, Geology, 39, 383–386,
https://doi.org/10.1130/G31726.1, 2011.
Śliwińska, K. K., Abrahamsen, N., Beyer, C., Brünings-Hansen,
T., Thomsen, E., Ulleberg, K., and Heilmann-Clausen, C.: Bio-and
magnetostratigraphy of Rupelian–mid Chattian deposits from the Danish land
area, Rev. Palaeobot. Palyno., 172, 48–69, 2012.
Stickley, C. E., Brinkhuis, H., McGonigal, K. L., Chaproniere, G. C. H.,
Fuller, M., Kelly, D. C., Nürnberg, D., Pfuhl, H. A., Schellenberg, S.
A., Schoenfeld, J., Suzuki, N., Touchard, Y., Wei, W., Williams, G. L.,
Lara, J., and Stant, S. A.: Late Cretaceous-Quaternary Biomagnetostratigraphy
of ODP Sites 1168, 1170, 1171, and 1172, Tasmanian Gateway, Proceedings of
the Ocean Drilling Program, Sci. Res., 189, 1–57, 2004.
Stover, L. E. and Williams, G. L.: Morphology and stratigraphy of the the
Paleogene dinoflagellate genus Areosphaeridium Eaton, 1971, in: Proc. 7th
Int. Palynol. Conf., Brisbane (Abstracts), p. 157, 1988.
Stover, L. E., Brinkhuis, H., Damassa, S. P., De Verteuil, L., Helby, R. J.,
Monteil, E., Partridge, A. D., Powell, A. J., Riding, J. B., and Smelror, M.:
Mesozoic-Tertiary dinoflagellates, acritarchs and prasinophytes, Palynology:
principles and applications, 2, 641–750, 1996.
Tew, B. H.: Sequence stratigraphy, lithofacies relationships, and
paleogeography of Oligocene strata in southeastern Mississippi and
southwestern Alabama, Geological Survey of Alabama, Stratigraphy and
Paleontology Division, 146, 73 pp., 1992.
Tew, B. H. and Mancini, E. A.: An Integrated Stratigraphic Method for
Paleogeographic Reconstruction: Examples from the Jackson and Vicksburg
Groups of the Eastern Gulf Coastal Plain, Palaios, 10, 133–153,
https://doi.org/10.2307/3515179, 1995.
Thomsen, E., Abrahamsen, N., Heilmann-Clausen, C., King, C., and Nielsen, O.
B.: Middle Eocene to earliest Oligocene development in the eastern North Sea
Basin: Biostratigraphy, Magnetostratigraphy and palaeoenvironment of the
Kysing-4 borehole, Denmark, Palaeogeogr. Palaeocl., 350–352, 212–235, https://doi.org/10.1016/j.palaeo.2012.06.034, 2012.
Van Mourik, C. A. and Brinkhuis, H.: The Massignano Eocene-Oligocene golden
spike section revisited, Stratigraphy, 2, 13–29, 2005.
Van Mourik, C. A., Brinkhuis, H., and Williams, G. L.: Mid- to Late Eocene
organic-walled dinoflagellate cysts from ODP Leg 171B, offshore Florida,
Geological Society, London, Special Publications, 183, 225–251,
https://doi.org/10.1144/GSL.SP.2001.183.01.11, 2001.
Vieira, M., Mahdi, S., and Osterloff, P.: New Early Paleocene (Danian)
dinoflagellate cyst species from the Ormen Lange Field, Møre Basin,
Norwegian Continental Shelf, Palynology, 42, 180–198,
https://doi.org/10.1080/01916122.2017.1314390, 2018.
Villa, G., Fioroni, C., Pea, L., Bohaty, S., and Persico, D.: Middle
Eocene-late Oligocene climate variability: Calcareous nannofossil response
at Kerguelen Plateau, Site 748, Mar. Micropaleontol., 69, 173–192,
https://doi.org/10.1016/j.marmicro.2008.07.006, 2008.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and
revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and
calibration to the geomagnetic polarity and astronomical time scale,
Earth-Sci. Rev., 104, 111–142,
https://doi.org/10.1016/j.earscirev.2010.09.003, 2011.
Wade, B. S., Houben, A. J. P., Quaijtaal, W., Schouten, S., Rosenthal, Y.,
Miller, K. G., Katz, M. E., Wright, J. D., and Brinkhuis, H.: Multiproxy
record of abrupt sea-surface cooling across the Eocene-Oligocene transition
in the Gulf of Mexico, Geology, 40, 159–162, https://doi.org/10.1130/G32577.1, 2012.
Westerhold, T., Röhl, U., Pälike, H., Wilkens, R., Wilson, P. A., and Acton, G.: Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene, Clim. Past, 10, 955–973, https://doi.org/10.5194/cp-10-955-2014, 2014.
Williams, G. L.: Dinoflagellate and spore stratigraphy of the
Mesozoic-Cenozoic, offshore eastern Canada, Geological Survey of Canada,
Paper 74–30, 3, 107–161, 1975.
Williams, G. L.: Dinocysts: their classification, biostratigraphy and
palaeoecology, Oceanic Micropalaeontology, Academic Press, London, 2,
1231–1325, 1977.
Williams, G. L.: Morphology and stratigraphic ranges of selected
Mesozoic-Cenozoic dinoflagellate taxa in the Northern Hemisphere, Geol.
Surv. Can. Pap., 92, 137 pp., 1993.
Williams, G. L. and Bujak, J. P.: Mesozoic and Cenozoic Dinoflagellates, in:
Plankton Stratigraphy: Vol. 2, Radiolaria, Diatoms, Silicoflagellates,
Dinoflagellates and Ichthyoliths, edited by: Bolli, H. M., Saunders, J. B., and
Perch-Nielsen, K., Cambridge Earth Science Series, 847–964, 1985.
Williams, G. L. and Manum, S. B.: Oligocene – early Miocene dinocyst
stratigraphy of Hole 985A (Norwegian Sea), Proceedings of the Ocean Drilling
Program, Sci. Res., 162, 99–109, 1999.
Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A., and Weegink,
J. W.: Southern Ocean and global dinoflagellate cyst events compared: index
events for the Late Cretaceous–Neogene, in Proceedings of the Ocean
Drilling Program, Sci. Res., 189, 1–98, 2004.
Williams, G. L., Fensome, R. A., and Macrae, R. A.: The Lentin and Williams
Index of Fossil Dinoflagellates 2017 Edition Aasp Contributions Series
Number 48, American Association of Stratigraphic Palynologists Contributions
Series, 48, 1–1097, 2017.
Wilpshaar, M., Santarelli, A., Brinkhuis, H., and Visscher, H.:
Dinoflagellate cysts and mid-Oligocene chronostratigraphy in the central
Mediterranean region, J. Geol. Soc., 153, 553–561,
https://doi.org/10.1144/gsjgs.153.4.0553, 1996.
Wilson, G. J.: Paleocene and Eocene dinoflagellate cysts from Waipawa,
Hawkes Bay, New Zealand, New Zealand Geological Survey, 57, 96 pp., 1988.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends,
Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science,
292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Quinn, T. M., and Salamy, K. A.: High-resolution (10 4
years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene
climate transition, Paleoceanography, 11, 251–266,
https://doi.org/10.1029/96PA00571, 1996.
Zachos, J. C., Opdyke, B. N., Quinn, T. M., Jones, C. E., and Halliday, A.
N.: Early cenozoic glaciation, antarctic weathering, and seawater 87Srr 86Sr: is there a link?, Chem. Geol., 161, 165–180, 1999.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature,
451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Short summary
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain reveal more accurate age estimates for the critical Eocene–Oligocene transition (EOT), a global climate event marked by the rapid expansion of the first permanent Antarctic ice sheet 34 million years ago. These data suggest a coeval major increase in sedimentation rate. Future isotopic and palaeoecological work on this core can be more precisely integrated with other global records of the EOT.
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain...