Articles | Volume 43, issue 2
https://doi.org/10.5194/jm-43-269-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-269-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Direct link between iceberg melt and diatom productivity demonstrated in Mid-Pliocene Amundsen Sea interglacial sediments
Heather Furlong
CORRESPONDING AUTHOR
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL, 60115, USA
Reed Paul Scherer
Department of Earth, Atmosphere and Environment, Northern Illinois University, DeKalb, IL, 60115, USA
Related authors
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Sarah U. Neuhaus, Slawek M. Tulaczyk, Nathan D. Stansell, Jason J. Coenen, Reed P. Scherer, Jill A. Mikucki, and Ross D. Powell
The Cryosphere, 15, 4655–4673, https://doi.org/10.5194/tc-15-4655-2021, https://doi.org/10.5194/tc-15-4655-2021, 2021
Short summary
Short summary
We estimate the timing of post-LGM grounding line retreat and readvance in the Ross Sea sector of Antarctica. Our analyses indicate that the grounding line retreated over our field sites within the past 5000 years (coinciding with a warming climate) and readvanced roughly 1000 years ago (coinciding with a cooling climate). Based on these results, we propose that the Siple Coast grounding line motions in the middle to late Holocene were driven by relatively modest changes in regional climate.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Related subject area
Siliceous microfossils
Two new clavate Fragilariopsis and one new Rouxia diatom species with biostratigraphic and paleoenvironmental applications for the Pliocene-Pleistocene, East Antarctica
Diatom and radiolarian biostratigraphy in the Pliocene sequence of ODP Site 697 (Jane Basin, Atlantic sector of the Southern Ocean)
Progress in the taxonomy of Late Cretaceous high-latitude radiolarians: insights from the Horton River area, Northwest Territories, Canada
Radiolarian assemblages related to the ocean–ice interaction around the East Antarctic coast
Artificial intelligence applied to the classification of eight middle Eocene species of the genus Podocyrtis (polycystine radiolaria)
An assessment of diatom assemblages in the Sea of Okhotsk as a proxy for sea-ice cover
Skeletal architecture of middle Cambrian spicular radiolarians revealed using micro-CT
Species of the diatom taxa Aulacodiscus and Trinacria with biostratigraphic utility in Palaeogene and Neogene North Sea sediments
Grace Duke, Josie Frazer, Briar Taylor-Silva, and Christina Riesselman
J. Micropalaeontol., 43, 139–163, https://doi.org/10.5194/jm-43-139-2024, https://doi.org/10.5194/jm-43-139-2024, 2024
Short summary
Short summary
Diatoms are dust-sized algae commonly found in the upper 100 m of the Southern Ocean. In this paper, we describe three new species found in sediments west of the Ross Sea, East Antarctica, aged about 3--2 Ma: Fragilariopsis clava, Fragilariopsis armandae, and Rouxia raggattensis. These species may be useful for determining the age of sediments and past environmental conditions at other locations around the Southern Ocean.
Yuji Kato, Iván Hernández-Almeida, and Lara F. Pérez
J. Micropalaeontol., 43, 93–119, https://doi.org/10.5194/jm-43-93-2024, https://doi.org/10.5194/jm-43-93-2024, 2024
Short summary
Short summary
In this study, we propose an age framework for an interval of 4.8–3.1 million years ago, using fossil records of marine plankton such as diatoms and radiolarians derived from a sediment core collected in the Southern Ocean. Specifically, a total of 19 bioevents (i.e., extinction/appearance events of selected age marker species) were detected, and their precise ages were calculated. The updated biostratigraphy will contribute to future paleoceanographic work in the Southern Ocean.
Juan F. Diaz, Noritoshi Suzuki, Jennifer M. Galloway, and Manuel Bringué
J. Micropalaeontol., 43, 69–80, https://doi.org/10.5194/jm-43-69-2024, https://doi.org/10.5194/jm-43-69-2024, 2024
Short summary
Short summary
In this study, we describe one new genus and three new species of radiolarians from Upper Cretaceous strata of the northern mainland coast of Arctic Canada. This is one of the few Cretaceous radiolarian assemblages recovered from the interior of North America and high northern latitudes and serves as a foundation for future Cretaceous radiolarian research in Arctic regions. Taxonomic descriptions were based on external and internal features observed using a scanning electron microscope.
Mutsumi Iizuka, Takuya Itaki, Osamu Seki, Ryosuke Makabe, Motoha Ojima, and Shigeru Aoki
J. Micropalaeontol., 43, 37–53, https://doi.org/10.5194/jm-43-37-2024, https://doi.org/10.5194/jm-43-37-2024, 2024
Short summary
Short summary
Radiolarian fossils are valuable tools for understanding water mass distribution. However, they have not been used in the high-latitude Southern Ocean due to unclear radiolarian assemblages. Our study identifies four assemblages related to water masses and ice edge environments in the high-latitude Southern Ocean, offering insights for water mass reconstruction in this region.
Veronica Carlsson, Taniel Danelian, Pierre Boulet, Philippe Devienne, Aurelien Laforge, and Johan Renaudie
J. Micropalaeontol., 41, 165–182, https://doi.org/10.5194/jm-41-165-2022, https://doi.org/10.5194/jm-41-165-2022, 2022
Short summary
Short summary
This study evaluates the use of automatic classification using AI on eight closely related radiolarian species of the genus Podocyrtis based on MobileNet CNN. Species belonging to Podocyrtis are useful for middle Eocene biostratigraphy. Numerous images of Podocyrtis species from the tropical Atlantic Ocean were used to train and validate the CNN. An overall accuracy of about 91 % was obtained. Additional Podocyrtis specimens from other ocean realms were used to test the predictive model.
Hiroki Nakamura, Yusuke Okazaki, Susumu Konno, and Takeshi Nakatsuka
J. Micropalaeontol., 39, 77–92, https://doi.org/10.5194/jm-39-77-2020, https://doi.org/10.5194/jm-39-77-2020, 2020
Short summary
Short summary
Diatom assemblages in seasonally sea-ice-covered areas of the Sea of Okhotsk, a marginal sea of the western North Pacific, were investigated. We have selected diatom taxa relating to sea-ice coverage by comparing diatom assemblages in sea-ice, sinking-particle, and surface-sediment samples. The results of the study provide fundamental information for the reconstruction of past sea-ice cover based on ice-algal diatoms in sediments in the Sea of Okhotsk and the North Pacific.
Jiani Sheng, Sarah Kachovich, and Jonathan C. Aitchison
J. Micropalaeontol., 39, 61–76, https://doi.org/10.5194/jm-39-61-2020, https://doi.org/10.5194/jm-39-61-2020, 2020
Short summary
Short summary
To better understand radiolarian evolution and taxonomy, two middle Cambrian specimens recovered from Australia were studied using micro-CT. Analyses of their 3-D models revealed for the first time their skeletal architecture constructed of spicules. Insertion of an artificial sphere into their shells indicates that they may have secreted their spicules one by one during cell enlargement. The timing of skeletal genesis may be an important factor influencing the morphology of early radiolarians.
Alexander G. Mitlehner
J. Micropalaeontol., 38, 67–81, https://doi.org/10.5194/jm-38-67-2019, https://doi.org/10.5194/jm-38-67-2019, 2019
Short summary
Short summary
Species of two important diatoms (algae with silica skeletons and important primary producers) are described formally and incorporated into existing biozonation schemes allowing correlation of Paleocene to Miocene strata in the North Sea, important for hydrocarbon exploration as well as for environmental interpretation. Their abundances are linked to environmentally stressed conditions, including increased global warming and periods of nutrient influx from rapidly eroding land masses nearby.
Cited articles
Abelmann, A., Gersonde, R., and Spiess, V.: Pliocene–Pleistocene paleoceanography in the Weddell Sea – siliceous microfossil evidence, Geological history of the polar oceans: Arctic versus Antarctic, in: Geological History of the Polar Oceans: Arctic Versus Antarctic, edited by: Bleil, U. and Thiede, J., Kluwer, Dordrecht, the Netherlands, 729–759, https://hdl.handle.net/10013/epic.10607 (last access: 29 July 2024), 1990.
Armbrecht, L. H., Lowe, V., Escutia, C., Iwai, M., McKay, R., and Armand, L. K.: Variability in diatom and silicoflagellate assemblages during mid-Pliocene glacial-interglacial cycles determined in Hole U1361A of IODP Expedition 318, Antarctic Wilkes Land Margin, Mar. Micropaleontol., 139, 28–41, https://doi.org/10.1016/j.marmicro.2017.10.008, 2018.
Bett, D. T., Bradley, A. T., Williams, C. R., Holland, P. R., Arthern, R. J., and Goldberg, D. N.: Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector, The Cryosphere, 18, 2653–2675, https://doi.org/10.5194/tc-18-2653-2024, 2024.
Bonn, W. J., Gingele, F. X., Grobe, H., Mackensen, A., and Fütterer, D. K.: Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka, Palaeogeogr. Palaeoecol., 139, 195–211, https://doi.org/10.1016/S0031-0182(97)00144-2, 1998.
Carter, S. C., Paytan, A., and Griffith, E. M.: Toward an improved understanding of the marine barium cycle and the application of marine barite as a paleoproductivity proxy, Minerals, 10, 421, https://doi.org/10.3390/min10050421, 2020.
Cefarelli, A. O., Ferrario, M. E., Almandoz, G. O., Atencio, A. G., Akselman, R., and Vernet, M.: Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance, Polar Biol., 33, 1463–1484, https://doi.org/10.1007/s00300-010-0794-z, 2010.
Cenedese, C. and Straneo, F.: Icebergs melting, Annu. Rev. Fluid Mech., 55, 377–402, https://doi.org/10.1146/annurev-fluid-032522-100734, 2023.
Censarek, B. and Gersonde, R.: Miocene diatom biostratigraphy at ODP Sites 689, 690, 1088, 1092 (Atlantic sector of the Southern Ocean), Mar. Micropaleontol., 45, 309–356, https://doi.org/10.1016/S0377-8398(02)00034-8, 2002.
Cortese, G. and Gersonde, R.: Plio/Pleistocene changes in the main biogenic silica carrier in the Southern Ocean, Atlantic Sector, Mar. Geol., 252, 3–4, https://doi.org/10.1016/j.margeo.2008.03.015, 2008.
Cortese, G., Gersonde, R., Hillenbrand, C. D., and Kuhn, G.: Opal sedimentation shifts in the World Ocean over the last 15 Myr, Earth Planet. Sc. Lett., 224, 509–527, https://doi.org/10.1016/j.epsl.2004.05.035, 2004.
Crosta, X., Pichon, J. J., and Labracherie, M.: Distribution of Chaetoceros resting spores in modern peri-Antarctic sediments, Mar. Micropaleontol., 29, 283–299, https://doi.org/10.1016/S0377-8398(96)00033-3, 1997.
Crosta, X., Romero, O., Armand, L. K., and Pichon, J. J.: The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open Ocean related species, Palaeogeogr. Palaeoecol., 223, 66–92, https://doi.org/10.1016/j.palaeo.2005.03.028, 2005.
Crosta, X., Denis, D., and Ther, O.: Sea ice seasonality during the Holocene, Adélie Land, East Antarctica, Mar. Micropaleontol., 66, 222–232, https://doi.org/10.1016/j.marmicro.2007.10.001, 2008.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
Dixit, S., Smol, J. P., Kingston, J. C., and Charles, D. F.: Diatoms-Powerful Indicators of Environmental-Change, Environ. Sci. Technol., 26, 22–33, https://doi.org/10.1021/es00025a002, 1992.
Dowsett, H., Barron, J., and Poore, R.: Middle Pliocene sea surface temperatures: a global reconstruction, Mar. Micropaleontol., 27, 13–25, https://doi.org/10.1016/0377-8398(95)00050-X, 1996.
Duprat, L. P., Bigg, G. R., and Wilton, D. J.: Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs, Nat. Geosci., 9, 219–221, https://doi.org/10.1038/ngeo2633, 2016.
Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuróczy, C.-E., De Baar, H. J. W., Mills, M. M., Van Dijken, G. L., Van Haren, H., and Arrigo, K. R.: Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry, Deep-Sea Res. Pt. II, 71–76, 16–31, https://doi.org/10.1016/j.dsr2.2012.03.007, 2012.
Greene, C. A., Gardner, A. S., Schlegel, N. J., and Fraser, A. D.: Antarctic calving loss rivals ice-shelf thinning, Nature, 609, 948–953, https://doi.org/10.1038/s41586-022-05037-w, 2022.
Grigorov, I., Pearce, R. B., and Kemp, A. E.: Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093, Deep-Sea Res. Pt. II, 49, 3391–3407, https://doi.org/10.1016/S0967-0645(02)00089-9, 2002.
Gohl, K., Wellner, J. S., Klaus, A., and the Expedition 379 Scientists: Expedition 379 Preliminary Report: Amundsen Sea West Antarctica Ice Sheet History, International Ocean Discovery Program, https://doi.org/10.14379/iodp.pr.379.2019, 2019.
Gohl, K., Wellner, J. S., Klaus, A., and the Expedition 379 Scientists: Amundsen Sea West Antarctic Ice Sheet History, Proceedings of the IODP 379, https://doi.org/10.14379/iodp.proc.379.2021, 2021.
Hillenbrand, C. D., Kuhn, G., and Frederichs, T.: Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?, Quaternary Sci. Rev., 28, 1147–1159, https://doi.org/10.1016/j.quascirev.2008.12.010, 2009.
Hopwood, M. J., Carroll, D., Höfer, J., Achterberg, E. P., Meire, L., Le Moigne, F. A., Bach, L. T., Eich, C., Sutherland, D. A., and González, H. E.: Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export, Nat. Commun., 10, 5261, https://doi.org/10.1038/s41467-019-13231-0, 2019.
Horrocks, J.: The formation and Late Quaternary palaeoenvironmental history of sediment mounds in the Amundsen Sea, West Antarctica, Doctoral dissertation, Durham University, https://nora.nerc.ac.uk/id/eprint/520455 (last access: 29 July 2024), 2018.
Johnson, T. C.: The dissolution of siliceous microfossils in surface sediments of the eastern tropical Pacific, Deep-Sea Res., 21, 851–864, https://doi.org/10.1016/0011-7471(74)90004-7, 1974.
Kemp, A. E., Pike, J., Pearce, R. B., and Lange, C. B.: The “Fall dump” – a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux, Deep-Sea Res. Pt. II, 47, 2129–2154, https://doi.org/10.1016/S0967-0645(00)00019-9, 2000.
Kemp, A. E., Pearce, R. B., Grigorov, I., Rance, J., Lange, C. B., Quilty, P., and Salter, I.: Production of giant marine diatoms and their export at oceanic frontal zones: Implications for Si and C flux from stratified oceans, Global Biogeochem. Cy., 20, GB4S04, https://doi.org/10.1029/2006GB002698, 2006.
Kemp, A. E. S., Baldauf, J. G., and Pearce, R. B.: Origins and palaeoceanographic significance of laminated diatom ooze from the Eastern Equatorial Pacific Ocean, Geol. Soc. Lond. Spec. Publ., 116, 243–252, https://doi.org/10.1144/GSL.SP.1996.116.01.19, 1996.
Kemp, A. E. S., Grigorov, I., Pearce, R. B., and Garabato, A. N.: Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications, Quaternary Sci. Rev., 29, 1993–2009, https://doi.org/10.1016/j.quascirev.2010.04.027, 2010.
Konfirst, M. A., Scherer, R. P., Hillenbrand, C. D., and Kuhn, G.: A marine diatom record from the Amundsen Sea – Insights into oceanographic and climatic response to the Mid-Pleistocene Transition in the West Antarctic sector of the Southern Ocean, Mar. Micropaleontol., 92, 40–51, https://doi.org/10.1016/j.marmicro.2012.05.001, 2012.
Kopczyńska, E., Fiala, M., and Jeandel, C.: Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Islands, Southern Ocean, Polar Biol., 20, 342–351, https://doi.org/10.1007/s003000050312, 1998.
Lan, X., Hall, B. D., Dutton, G., Mühle, J., and Elkins, J. W.: Atmospheric composition, State of the Climate in 2018, Chapter 2: Global Climate, Special Online Supplement to the Bulletin of the American Met. Soc., Vol. 101, No. 8, https://doi.org/10.1175/2021BAMSStateoftheClimate.1, 2020.
Lin, H., Rauschenberg, S., Hexel, C. R., Shaw, T. J., and Twining, B. S.: Free-drifting icebergs as sources of iron to the Weddell Sea, Deep-Sea Res. Pt. II, 58, 1392–1406, https://doi.org/10.1016/j.dsr2.2010.11.020, 2011.
Laufkötter, C., Stern, A. A., John, J. G., Stock, C. A., and Dunne, J. P.: Glacial iron sources stimulate the southern ocean carbon cycle, Geophys. Res. Lett., 45, 13–377, https://doi.org/10.1029/2018GL079797, 2018.
Leventer, A.: Sediment trap diatom assemblages from the northern Antarctic Peninsula region, Deep-Sea Res. Pt. A, 38, 1127–1143, https://doi.org/10.1016/0198-0149(91)90099-2, 1991.
Leventer, A., Domack, E., Barkoukis, A., McAndrews, B., and Murray, J.: Laminations from the Palmer Deep: A diatom-based interpretation, Palaeoceanography, 17, PAL 3-1–PAL 3-15, https://doi.org/10.1029/2001PA000624, 2002.
Liguori, B. T., Almeida, M. G., and Rezende, C. E.: Barium and its Importance as an Indicator of (Paleo) Productivity, An. Acad. Bras. Ciênc., 88, 2093–2103, https://doi.org/10.1590/0001-3765201620140592, 2016.
McKay, R., Naish, T., Powell, R., Barrett, P., Scherer, R., Talarico, F., Kyle, P., Monien, D., Kuhn, G., Jackolski, C., and Williams, T.: Pleistocene variability of Antarctic Ice Sheet extent in the Ross Embayment, Quaternary Sci. Rev., 34, 93–112, https://doi.org/10.1016/j.quascirev.2011.12.012, 2012.
McMinn, A.: Comparison of Diatom Preservation Between Oxic and Anoxic Basins in Ellis Fjord Antarctica, Diatom Res., 10, 145–151, https://doi.org/10.1080/0269249X.1995.9705333, 1995.
Mercer, J. H.: West Antarctica Ice Sheet and CO2 Greenhouse Effect: A Threat of Disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., and Forsberg, R., Fretwell, P., and Goel, V.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid determination of biogenic opal in pelagic marine sediments, Deep-Sea Res. Pt. A., 36, 1415–1426, https://doi.org/10.1016/0198-0149(89)90092-7, 1989.
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., and Carter, L.: Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322–328, https://doi.org/10.1038/nature07867, 2009.
Paytan, A. and Griffith, E. M.: Marine barite: Recorder of variations in ocean export Productivity, Deep-Sea Res. Pt. II, 54, 687–705, https://doi.org/10.1016/j.dsr2.2007.01.007, 2007.
Planquette, H., Sherrell, R. M., Stammerjohn, S., and Field, M. P.: Particulate iron delivery to the water column of the Amundsen Sea, Antarctica, Mar. Chem., 153, 15–30, https://doi.org/10.1016/j.marchem.2013.04.006, 2013.
Pollard, D. and DeConto, R.: Modelling West Antarctic ice sheet growth and collapse through the past five million years, Nature, 458, 329–332, https://doi.org/10.1038/nature07809, 2009.
Pollock, D. E.: The role of diatoms, dissolved silicate and Antarctic glaciation in glacial/interglacial climatic change: a hypothesis, Global Planet. Change, 14, 113–125, https://doi.org/10.1016/S0921-8181(96)00005-7, 1997.
Quilty, P. G., Kerry, K. R., and Marchant, H. J.: A seasonally recurrent patch of Antarctic planktonic diatoms, Search, 16, 48–51, 1985.
Raiswell, R., Benning, L. G., Tranter, M., and Tulaczyk, S.: Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt, Geochem. T., 9, 1–9, https://doi.org/10.1186/1467-4866-9-7, 2008.
Raiswell, R., Hawkings, J. R., Benning, L. G., Baker, A. R., Death, R., Albani, S., Mahowald, N., Krom, M. D., Poulton, S. W., Wadham, J., and Tranter, M.: Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans, Biogeosciences, 13, 3887–3900, https://doi.org/10.5194/bg-13-3887-2016, 2016.
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, P. Natl. Acad. Sci., 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019.
Robinson, D. E., Menzies, J., Wellner, J. S., and Clark, R. W.: Subglacial sediment deformation in the Ross Sea, Antarctica, Quaternary Sci. Adv., 4, 100029, https://doi.org/10.1016/j.qsa.2021.100029, 2021.
Ruggiero, J. A., Scherer, R. P., Mastro, J., Lopez, C., Angus, M., Unger-Harquail, E., Quartz, O., Leventer, A., and Hillenbrand, C.-D.: Last Interglacial Southern Ocean paleothermometry from diatom morphometrics: Analysis and application of the F. kerguelensis valve rectangularity sea surface temperature proxy, J. Micropalaeontol., in press, 2024.
Scherer, R. P.: Pliocene diatom abundance, IODP 397-U1532, USAP-DC [data set], https://www.usap-dc.org/view/dataset/601769, last access: 20 February 2024.
Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., and Kamb, B.: Pleistocene Collapse of the West Antarctic Ice Sheet, Science, 281, 82–85, https://doi.org/10.1126/science.281.5373.82, 1998.
Smith Jr., K. L., Robison, B. H., Helly, J. J., Kaufmann, R. S., Ruhl, H. A., Shaw, T. J., Twining, B. S., and Vernet, M.: Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea, Science, 317, 478–482, https://doi.org/10.1126/science.1142834, 2007.
Stephenson Jr., G. R., Sprintall, J., Gille, S. T., Vernet, M., Helly, J. J., and Kaufmann, R. S.: Subsurface melting of a free-floating Antarctic iceberg, Deep-Sea Res. Pt. II, 58, 1336–1345, https://doi.org/10.1016/j.dsr2.2010.11.009, 2011.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., and Dinniman, M. S.: Pathways and supply of dissolved iron in the Amundsen Sea (Antarctica), J. Geophys. Res.-Oceans, 122, 7135–7162, https://doi.org/10.1002/2017JC013162, 2017.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Oliver, H., Dinniman, M. S., and Stammerjohn, S. E.: Modeling the seasonal cycle of iron and carbon fluxes in the Amundsen Sea Polynya, Antarctica, J. Geophys. Res.-Oceans, 124, 1544–1565, https://doi.org/10.1029/2018JC014773, 2019.
Thuróczy, C.-E., Alderkamp, A.-C., Laan, P., Gerringa, L. J. A., Mills, M. M., Van Dijken, G. L., De Baar, H. J. W., and Arrigo, K. R.: Key role of organic complexation of iron in sustaining phytoplankton blooms in the Pine Island and Amundsen Polynyas (Southern Ocean), Deep-Sea Res. Pt. II, 71–76, 49–60, https://doi.org/10.1016/j.dsr2.2012.03.009, 2012.
Warnock, J. P. and Scherer, R. P.: A revised method for determining the absolute abundance of diatoms, Paleolimnol., 53, 157–163, https://doi.org/10.1007/s10933-014-9808-0, 2015a.
Warnock, J. P. and Scherer, R. P.: Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages, Cont. Shelf Res., 102, 1–8, https://doi.org/10.1016/j.csr.2015.04.012, 2015b.
Wu, S.-Y. and Hou, S.: Impact of icebergs on net primary productivity in the Southern Ocean, The Cryosphere, 11, 707–722, https://doi.org/10.5194/tc-11-707-2017, 2017.
Zielinski, U. and Gersonde, R.: Diatom distribution in Southern Ocean surface sediments (Atlantic sector): Implications for paleoenvironmental reconstructions, Palaeogeogr. Palaeoecol., 129, 213–250, https://doi.org/10.1016/S0031-0182(96)00130-7, 1997.
Zielinski, U., Bianchi, C., Gersonde, R., and Kunz-Pirrung, M.: Last occurrence datums of the diatoms Rouxia leventerae and Rouxia constricta: indicators for marine isotope stages 6 and 8 in Southern Ocean sediments, Mar. Micropaleontol., 46, 127–137, https://doi.org/10.1016/S0377-8398(02)00042-7, 2002.
Short summary
Diatom assemblages are vital components of the Antarctic ecosystem and nutrient supply chain, and they are often utilized as paleoclimate proxies to better understand past climatic changes. We demonstrate enhanced diatom production and accumulation in the outer Amundsen Sea during a Mid-Pliocene interglacial that coincides with pulses of ice-rafted terrestrial debris, providing compelling evidence that iceberg calving seeds diatom productivity in the Southern Ocean.
Diatom assemblages are vital components of the Antarctic ecosystem and nutrient supply chain,...