Articles | Volume 44, issue 1
https://doi.org/10.5194/jm-44-119-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-44-119-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Leisure boat harbours, hidden alien species, and pollution: a case study of Hinsholmskilen harbour (Gothenburg, Sweden)
Irina Polovodova Asteman
CORRESPONDING AUTHOR
Department of Marine Sciences, University of Gothenburg, Gothenburg, 41390, Sweden
Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, 41390, Sweden
Emilie Jaffré
Université Angers, Nantes Université, Le Mans Université, CNRS, Laboratory of Planetology and Geosciences, LPG UMR6112, d'Angers, 49000, France
Agata Olejnik
Department of Marine Sciences, University of Gothenburg, Gothenburg, 41390, Sweden
Maria Holzmann
Department of Genetics and Evolution, University of Geneva, Geneva, 1205, Switzerland
Mary McGann
U.S. Geological Survey, Pacific Coastal and Marine Science Center, 350 North Akron Road, Moffett Field, California 94035, USA
Kjell Nordberg
Department of Marine Sciences, University of Gothenburg, Gothenburg, 41390, Sweden
Jean-Charles Pavard
Department of Marine Sciences, University of Gothenburg, Gothenburg, 41390, Sweden
Université Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux F, Lille, 59000, France
Delia Rösel
Department of Earth Sciences, University of Gothenburg, Gothenburg, 41390, Sweden
Magali Schweizer
Université Angers, Nantes Université, Le Mans Université, CNRS, Laboratory of Planetology and Geosciences, LPG UMR6112, d'Angers, 49000, France
Related authors
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022, https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Short summary
This study is the first to show non-selective deposit feeding in the foraminifera Nonionella labradorica and the possible uptake of methanotrophic bacteria. We carried out a feeding experiment with a marine methanotroph to examine the ultrastructure of the cell and degradation vacuoles using transmission electron microscopy (TEM). The results revealed three putative methanotrophs at the outside of the cell/test, which could be taken up via non-targeted grazing in seeps or our experiment.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Irina Polovodova Asteman, Helena L. Filipsson, and Kjell Nordberg
Clim. Past, 14, 1097–1118, https://doi.org/10.5194/cp-14-1097-2018, https://doi.org/10.5194/cp-14-1097-2018, 2018
Short summary
Short summary
We present 2500 years of winter temperatures, using a sediment record from Gullmar Fjord analyzed for stable oxygen isotopes in benthic foraminifera. Reconstructed temperatures are within the annual temperature variability recorded in the fjord since the 1890s. Results show the warm Roman and Medieval periods and the cold Little Ice Age. The record also shows the recent warming, which does not stand out in the 2500-year perspective and is comparable to the Roman and Medieval climate anomalies.
Related subject area
Benthic foraminifera
Recent benthic foraminifera communities offshore of Thwaites Glacier in the Amundsen Sea, Antarctica: implications for interpretations of fossil assemblages
Miocene Climatic Optimum and Middle Miocene Climate Transition: a foraminiferal record from the central Ross Sea, Antarctica
Distribution of two notodendrodid foraminiferal congeners in McMurdo Sound, Antarctica: an example of extreme regional endemism?
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Alve, E. and Goldstein, S. T.: Dispersal, survival and delayed growth of benthic foraminiferal propagules, J. Sea Res., 63, 36–51, https://doi.org/10.1016/j.seares.2009.09.003, 2010.
Alve, E. and Murray, J. W.: Marginal marine environments of the Skagerrak and Kattegat: a baseline study of living (stained) benthic foraminiferal ecology, Palaeogeogr. Palaeocl., 146, 171–193, https://doi.org/10.1016/S0031-0182(98)00131-X, 1999.
Angell, R. W.: Observations on reproduction and juvenile test building in the foraminifer Trochammina inflata, J. Foramin. Res., 20, 246–247, https://doi.org/10.2113/gsjfr.20.3.246, 1990.
Arenas, F., Bishop, J. D. D., Carlton, J. T., Dyrynda, P. J., Farnham, W. F., Gonzalez, D. J., Jacobs, M. W., Lambert, C., Lambert, G., Nielsen, S. E., Pedersen, J. A., Porter, J. C., Ward, S., and Wood, C. A.: Alien species and other notable records from a rapid assessment survey of marinas on the south coast of England, J. Mar. Biol. Assoc. UK, 86, 1329–1337, 2006.
Asakura, A. and Watanabe, S.: Hemigrapsus takanoi, new species, a sibling species of the common Japanese intertidal Crab H. penicillatus (Decapoda: Brachyura: Grapsoidea), J. Crustacean Biol., 25, 279–292, 2005.
Ashton, G. V., Zabin, C. J., Davidson, I. C., and Ruiz, G. M.: Recreational boats routinely transfer organisms and promote marine bioinvasions, Biol. Invasions, 24, 1083–1096, https://doi.org/10.1007/s10530-021-02699-x, 2022.
Bax, N., Williamson, A., Aguero, M., Gonzalez, E., and Geeves, W.: Marine invasive alien species: a threat to global biodiversity, Mar. Policy, 27, 313–323, https://doi.org/10.1016/S0308-597X(03)00041-1, 2003
Bengtsson, H. and Cato, I.: TBT i småbåtshamnar i Västra Götalands Län 2010: En studie av belastning och trender, Länsstyrelsen i Västra Götalands län, Rapport nr 2011:30, 65 s. [TBT in small leisure boat harbours in the Västra Götaland County in 2010: a study of impact and trends, County Administrative Board of Västra Götaland, Report no. 2011:30, 65 pp.], https://naturvardsverket.diva-portal.org/smash/get/diva2:1345312/FULLTEXT01.pdf (last access: 15 May 2025), 2011 (in Swedish).
Bengtsson, H. and Wernersson, A.-S.: TBT, koppar, zink och irgarol i dagvatten, slam och mark i småbåtshamnar, Västra Götalands län 2011. Länsstyrelsen i Västra Götaland, Göteborg, Rapport nr 2012:16, 68 s. [TBT, copper, zinc and irgarol in storm water and sludge of drainage wells and soils in leisure boat harbours of Västra Götaland County in 2011, County Administrative Board of Västra Götaland, Report nr 2012:16, 68 pp.], https://naturvardsverket.diva-portal.org/smash/get/diva2:1345314/FULLTEXT01.pdf (last access: 15 May 2025) 2012 (in Swedish).
Ben-Yaakov, S.: pH Buffering of pore water of recent anoxic marine sediments 1, Limnol. Oceanogr., 18, 86–94, https://doi.org/10.4319/lo.1973.18.1.0086, 1973.
Bernhard, J. M., Wit, J. C., Starczak, V. R., Beaudoin, D. J., Phalen, W. G., and McCorkle, D. C.: Impacts of multiple stressors on a benthic foraminiferal community: A long-term experiment assessing response to ocean acidification, hypoxia and warming, Front. Mar. Sci., 8, 643339, https://doi.org/10.3389/fmars.2021.643339, 2021.
Bird, C., Schweizer, M., Roberts, A., Austin, W. E., Knudsen, K. L., Evans, K. M., Filipsson, H. L., Sayer, M. D. J., Geslin, E., and Darling, K. F.: The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic, Mar. Micropaleontol., 155, 101726, https://doi.org/10.1016/j.marmicro.2019.02.001, 2020.
Bolam, S. G.: Impacts of dredged material disposal on macrobenthic invertebrate communities: a comparison of structural and functional (secondary production) changes at disposal sites around England and Wales, Mar. Pollut. Bull., 64, 2199–2210, https://doi.org/10.1016/j.marpolbul.2012.07.050, 2012.
Bouchet, V. M., Debenay, J. P., and Sauriau, P. G.: First report of Quinqueloculina carinatastriata (foraminifera) along the French Atlantic coast (Marennes-Oléron Bay and Ile de Ré), J. Foramin. Res., 37, 204–212, 2007.
Bouchet, V. M., Pavard, J. C., Holzmann, M., McGann, M., Arminot du Châtelet, E., Courleux, A., Pezy, J. P., Dauvin, J. C., and Seuront, L.: The invasive Asian benthic foraminifera Trochammina hadai Uchio, 1962: identification of a new local in Normandy (France) and a discussion on its putative introduction pathways, Aquat. Invasions, 18, 23–38, https://doi.org/10.3391/ai.2023.18.1.103512, 2023.
Brady, G. S. and Robertson, D.: XXVI. – The Ostracoda and Foraminifera of tidal rivers. With an analysis and descriptions of the Foraminifera, Brady, H. B. F. L. S., Ann. Mag. Nat. Hist., 6, 273–309, 1870.
Brack, K., Johannesson, L., and Stevens, R.: Accumulation rates and mass calculations of Zn and Hg in recent sediments, Göta älv estuary, Sweden, Environ. Geol., 40, 1232–1241, https://doi.org/10.1007/s002540100293, 2001.
Brennecke, D., Duarte, B., Paiva F., Caçador, I., and Canning-Clode J.: Microplastics as vector for heavy metal contamination from the marine environment, Estuar. Coast. Shelf S., 178, 189–195, https://doi.org/10.1016/j.ecss.2015.12.003, 2016.
Brinkmann, I., Schweizer, M., Singer, D., Quinchard, S., Barras, C., Bernhard, J. M., and Filipsson, H. L.: Through the eDNA looking glass: Responses of fjord benthic foraminiferal communities to contrasting environmental conditions, J. Eukaryot. Microbiol., 70, e12975, https://doi.org/10.1111/jeu.12975, 2023.
Calvo-Marcilese, L. and Langer, M. R.: Breaching biogeographic barriers: the invasion of Haynesina germanica (Foraminifera, Protista) in the Bahía Blanca estuary, Argentina, Biol. Invasions, 12, 3299–3306, https://doi.org/10.1007/s10530-010-9723-x, 2010.
Cato, I.: Sedimentundersökningar längs Bohuskusten 1995 samt nuvarande trender i kustsedimentensmiljökvalitet – en rapport från fem kontrollprogram [Investigation of sediments along the Swedish Bohuslän coast in 1995 and recent trends in sediment environmental quality – a report from five control programs], Geological Survey of Sweden (SGU), Research Reports 95, 193–266, 1997 (in Swedish).
Charrieau, L. M., Filipsson, H. L., Ljung, K., Chierici, M., Knudsen, K. L., and Kritzberg, E.: The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region, Mar. Micropaleontol., 139, 42–56, https://doi.org/10.1016/j.marmicro.2017.11.004, 2018.
Choi, J. U. and An, S.: High benthic foraminiferal diversity in polluted Busan North Port (Korea), J. Foramin. Res., 42, 327–339, https://doi.org/10.2113/gsjfr.42.4.327, 2012.
Choquel, C., Geslin, E., Metzger, E., Filipsson, H. L., Risgaard-Petersen, N., Launeau, P., Giraud, M., Jauffrais, T., Jesus, B., and Mouret, A.: Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment, Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, 2021.
Chronopoulou, P. M., Salonen, I., Bird, C., Reichart, G. J., and Koho, K. A.: Metabarcoding insights into the trophic behavior and identity of intertidal benthic foraminifera, Front. Microbiol., 10, 1169, https://doi.org/10.3389/fmicb.2019.01169, 2019.
Costello, K. E., Lynch, S. A., McAllen, R., O'Riordan, R. M., and Culloty, S. C.: Assessing the potential for invasive species introductions and secondary spread using vessel movements in maritime ports, Mar. Pollut. Bull., 177, 113496, https://doi.org/10.1016/j.marpolbul.2022.113496, 2022.
Cushman, J. A.: The Foraminifera of the Atlantic Ocean. Part 7. Nonionidae, Camerinidae, Peneroplidae and Alveolinellidae, Bull. US Nat. Museum, 104, 1–79, https://www.biodiversitylibrary.org/page/7879320 (last access: 15 May 2025), 1930.
Cushman, J. A.: Foraminifera from the shallow water of the New England coast, Special Publ. No. 12, Cushman Lab. Foram. Res., 37 pp., 1944.
Daneliya, M. E. and Laakkonen, H.: The Japanese skeleton shrimp Caprella mutica (Amphipoda: Caprellidae) in Sweden (Eastern Skagerrak), Mar. Biodivers. Records, 5, e36, https://doi.org/10.1017/S1755267212000243, 2012.
Danielssen, D. S., Edler, L., Fonselius, S., Hernroth, L., Ostrowski, M., Svendsen, E., and Talpsepp, L.: Oceanographic variability in the Skagerrak and northern Kattegat, May–June, 1990, ICES J. Mar. Sci., 54, 753–773, https://doi.org/10.1006/jmsc.1996.0210, 1997.
Darling, K. F., Schweizer, M., Knudsen, K. L., Evans, K. M., Bird, C., Roberts, A., Filipsson, H. L., Kim, J. H., Gudmundsson, G., Wade, C. M., Sayer, M. D. J., and Austin, W. E.: The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic, Mar. Micropaleontol., 129, 1–23, https://doi.org/10.1016/j.marmicro.2016.09.001, 2016.
Dattola, L., Belvedere, A., D’Agostino, M., Faggio, G., Majolino, D., Marguccio, S., Messina, G., Messina, M., Mottese, A. F., Paladini, Venuti, V., and Caridi, F.: Assessment of the Radioactivity, Metals Content and Mineralogy of Granodiorite from Calabria, Southern Italy: A Case Study, Materials, 17, 3813, https://doi.org/10.3390/ma17153813, 2024.
Daviray, M., Geslin, E., Risgaard-Petersen, N., Scholz, V. V., Fouet, M., and Metzger, E.: Potential impacts of cable bacteria activity on hard-shelled benthic foraminifera: implications for their interpretation as bioindicators or paleoproxies, Biogeosciences, 21, 911–928, https://doi.org/10.5194/bg-21-911-2024, 2024.
de Haan, W.: Crustacea, in: Fauna Japonica sive Descriptio Animalium, quae in Itinere per Japoniam, Jussu et Auspiciis Superiorum, qui Summum in India Batava Imperium Tenent, Suspecto, Annis 1823–1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit. i–xxxi, ix–xvi, 1–243, pls. A–J, L–Q, 1–55, Lugduni-Batavorum, edited by: von Siebold, P. F., 58 pp., https://www.biodiversitylibrary.org/item/217507#page/41/mode/1up (last access: 20 May 2025), 1853.
Deldicq, N., Alve, E., Schweizer, M., Asteman, I. P., Hess, S., Darling, K., and Bouchet, V. M.: History of the introduction of a species resembling the benthic foraminifera Nonionella stella in the Oslofjord (Norway): morphological, molecular and paleo-ecological evidences, Aquat. Invasions, 14, 182–205, 2019.
Dennison, W. C., Orth, R. J., Moore, K.A., Stevenson, J .C., Carter, V., Kollar, S., Bergström, P. W., and Batiuk, R. A.: Assessing water quality with submerged aquatic vegetation: Habitat requirements as barometers of Chesapeake Bay health, BioScience, 43, 86–94, https://doi.org/10.2307/1311969, 1993.
Desprez, M.: Physical and biological impact of marine aggregate extraction along the French coast of the Eastern English Channel: short-and long-term post-dredging restoration, ICES J. Mar. Sci., 57, 1428–1438, https://doi.org/10.1006/jmsc.2000.0926, 2000.
d'Orbigny, A. D.: Tableau méthodique de la classe des Céphalopodes, Ann. Sci. Nat., 7, 96–169, 245–314, http://biodiversitylibrary.org/page/5753959 (last access: 15 May 2025), 1826.
Egardt, J., Nilsson, P., and Dahllöf, I.: Sediments indicate the continued use of banned antifouling compounds, Mar. Pollut. Bull., 125, 282–288, https://doi.org/10.1016/j.marpolbul.2017.08.035, 2017.
Ehrenberg, C. G.: Eine weitere Erläuterung des Organismus mehrerer in Berlin lebend beobachteter Polythalamien der Nordsee, Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 1840, 18–23, 1840.
Eichler, P. P., McGann, M., Rodrigues, A. R., Mendonca, A., Amorim, A., Bonetti, C., Cordeiro de Farias, C., Melo e Sousa, S. H., Vital, H., and Gomes, M. P.: The occurrence of the invasive foraminifera Trochammina hadai Uchio in Flamengo inlet, Ubatuba, São Paulo state, Brazil, Micropaleontology, 64, 391–402, https://www.jstor.org/stable/26759098 (last access: 17 May 2025), 2018.
Eklund, B., Hansson, T., Bengtsson, H., and Eriksson Wiklund, A. K.: Pollutant concentrations and toxic effects on the red alga Ceramium tenuicorne of sediments from natural harbours and small boat harbours on the west coast of Sweden, Arch. Environ. Con. Tox., 70, 583–594, https://doi.org/10.1007/s00244-016-0262-z, 2016.
Enge, S., Nylund, G. M., Harder, T., and Pavia, H.: An exotic chemical weapon explains low herbivore damage in an invasive alga, Ecology, 93, 2736–2745, https://doi.org/10.1890/12-0143.1, 2012.
Epstein, S. and López-García, P.: “Missing” protists: a molecular prospective, Biodivers. Conserv., 17, 261–276, https://doi.org/10.1007/s10531-007-9250-y, 2008.
Farrell, P. and Nelson, K.: Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.), Environ. Pollut., 177, 1–3, https://doi.org/10.1016/j.envpol.2013.01.046, 2013.
Ferrario, J., Caronni, S., Occhipinti-Ambrogi, A., and Marchini, A.: Role of commercial harbours and recreational marinas in the spread of non-indigenous fouling species, Biofouling, 33, 651-660, https://doi.org/10.1080/08927014.2017.1351958, 2017.
Fouet, M. P., Singer, D., Coynel, A., Héliot, S., Howa, H., Lalande, J., Mouret, A., Schweizer., M., Tcherkez, G., and Jorissen, F. J.: Foraminiferal distribution in two estuarine intertidal mudflats of the French Atlantic coast: testing the Marine Influence Index, Water, 14, 645, https://doi.org/10.3390/w14040645, 2022.
Fouet, M. P., Schweizer, M., Singer, D., Richirt, J., Quinchard, S. and Jorissen, F. J.: Unravelling the distribution of three Ammonia species (Foraminifera, Rhizaria) in French Atlantic Coast estuaries using morphological and metabarcoding approaches, Mar. Micropaleontol., 188, 102353, https://doi.org/10.1016/j.marmicro.2024.102353, 2024.
Francescangeli, F., Du Chatelet, E. A., Billon, G., Trentesaux, A., and Bouchet, V. M. P.: Palaeo-ecological quality status based on foraminifera of Boulogne-sur-Mer harbour (Pas-de-Calais, Northeastern France) over the last 200 years, Mar. Environ. Res., 117, 32–43, 2016.
Francescangeli, F., Milker, Y., Bunzel, D., Thomas, H., Norbisrath, M., Schönfeld, J., and Schmiedl, G.: Recent benthic foraminiferal distribution in the Elbe Estuary (North Sea, Germany): A response to environmental stressors, Estuar. Coast. Shelf S., 251, 107198, https://doi.org/10.1016/j.ecss.2021.107198, 2021.
Glock, N.: Benthic foraminifera and gromiids from oxygen-depleted environments – survival strategies, biogeochemistry and trophic interactions, Biogeosciences, 20, 3423–3447, https://doi.org/10.5194/bg-20-3423-2023, 2023.
Glock, N., Richirt, J., Woehle, C., Algar, C., Armstrong, M., Eichner, D., Firrincieli, H., Makabe, A., Menon, A. G., Ishitani, Y., Hackl, T., Hubert-Huard, R., Kienast, M., Milker, Y., Mutzberg, A., Ni, S., Okada, S., Rakshit, S., Schmiedl, G., Steiner, Z., Tame, A., Zhang, Z., and Nomaki, H.: Widespread occurrence and relevance of phosphate storage in foraminifera, Nature, 638, 1000–1006, https://doi.org/10.1038/s41586-024-08431-8, 2025.
Goetz, E. J., Yan, A., Hull, P. M., and Thomas, E.: Ammonia (Foraminifera) in Long Island Sound (USA): Molecular and Morphological Diversity, J. Foramin. Res., 55, 45–59, https://doi.org/10.61551/gsjfr.55.1.45, 2025
Golikova, E., Varfolomeeva, M., Yakovis, E., and Korsun, S.: Saltmarsh foraminifera in the subarctic White Sea: thrive in summer, endure in winter, Estuar. Coast. Shelf S., 238, 106685, https://doi.org/10.1016/j.ecss.2020.106685, 2020.
Gomaa, F., Utter, D. R., Powers, C., Beaudoin, D. J., Edgcomb, V. P., Filipsson, H. L., Hansel, C. M., Wankel, S. D., Zhang, Y., and Bernhard, J. M.: Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments, Sci. Adv., 7, eabf1586, https://doi.org/10.1126/sciadv.abf1586, 2021.
Gouy, M., Guindon, S., and Gascuel, O.: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol., 27, 221–224, https://doi.org/10.1093/molbev/msp259, 2010.
Grenfell, H. R., Hayward, B. W., and Horrocks, M.: Foraminiferal record of ecological impact of deforestation and oyster farms, Mahurangi Harbour, New Zealand, Mar. Freshwater Res., 58, 475–491, 2007.
Groeneveld, J., Filipsson, H. L., Austin, W. E., Darling, K., McCarthy, D., Quintana Krupinski, N. B., Bird, C. and Schweizer, M.: Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages, J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, 2018.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O.: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 59, 307–321, https://doi.org/10.1093/sysbio/syq010, 2010.
Gustafsson, M. and Nordberg, K.: Benthic foraminifera and their response to hydrography, periodic hypoxic conditions and primary production in the Koljö fjord on the Swedish west coast, J. Sea Res., 41, 163–178, https://doi.org/10.1016/S1385-1101(99)00002-7, 1999.
Gustafsson, M. and Nordberg, K.: Living (stained) benthic foraminifera and their response to the seasonal hydrographic cycle, periodic hypoxia and to primary production in Havstens Fjord on the Swedish west coast, Estuar. Coast. Shelf S., 51, 743–761, https://doi.org/10.1006/ecss.2000.0695, 2000.
Gustafsson, M. and Nordberg, K.: Living (stained) benthic foraminiferal response to primary production and hydrography in the deepest part of the Gullmar Fjord, Swedish West Coast, with comparisons to Hoglund's 1927 material, J. Foramin. Res., 31, 2–11, https://doi.org/10.2113/0310002, 2001.
Hara, Y., Doi, K., and Chihara, M.: Four new species of Chattonella (Raphidophyceae, Chromophyta) from Japan, Jpn. J. Phycol., 42, 407–420, 1994.
Harvey, M., Gauthier, D., and Munro, J.: Temporal changes in the composition and abundance of the macro-benthic invertebrate communities at dredged material disposal sites in the Anse à Beaufils, Baie des Chaleurs, Eastern Canada, Mar. Pollut. Bull., 36, 41–55, https://doi.org/10.1016/S0025-326X(98)90031-5, 1998.
Haynert, K., Schönfeld, J., Riebesell, U., and Polovodova, I.: Biometry and dissolution features of the benthic foraminifer Ammonia aomoriensis at high pCO2, Mar. Ecol. Prog. Ser., 432, 53–67, 2011.
Haynert, K., Schönfeld, J., Riebesell, U., and Polovodova, I.: Biometry and dissolution features of the benthic foraminifer Ammonia aomoriensis at high pCO2, Mar. Ecol. Prog. Ser., 432, 53–67, 2011.
Haynes, J. R.: Cardigan Bay Recent Foraminifera (Cruises of the R. V. Antur, 1962–1964), Bulletin of the British Museum (Natural History), Zoology, Supplement 4, 245 pp., https://biodiversitylibrary.org/page/44726681 (last access: 15 May 2025), 1973.
Hayward, B. W.: Introduced marine organisms in New Zealand and their impact in the Waitemata Harbour, Auckland, Tane, 36, 197–223, 1997.
Hayward, B. W., Holzmann, M., Grenfell, H. R., Pawlowski, J., and Triggs, C. M.: Morphological distinction in Ammonia-towards a taxonomic revision of the world's most commonly misidentified foraminifera, Mar. Micropaleontol., 50, 237–271, https://doi.org/10.1016/S0377-8398(03)00074-4, 2004.
Hayward, B. W., Holzmann, M., Pawlowski, J., Parker, J. H., Kaushik, T., Toyofuku, M. S., and Tsuchiya, M.: Molecular and morphological taxonomy of living Ammonia and related taxa (Foraminifera) and their biogeography, Micropaleontology, 67, 109–313, https://doi.org/10.47894/mpal.67.3.01, 2021.
Heron-Allen, E. and Earland, A.: On the recent and fossil Foraminifera of the shore-sands of Selsey Bill, Sussex – VIII. Tabular list of species and localities, Journal of the Royal Microscopical Society, 8, 436–448, https://www.biodiversitylibrary.org/page/2210414 (last access: 17 May 2025), 1911.
Heron-Allen, E. and Earland, A.: The Foraminifera of the West of Scotland. Collected by on the cruise of the S.Y. “Runa”, July–Sept. Being a contribution to “Spolia Runiana”, Transactions of the Linnean Society of London, Zoology, 11, 197–299, https://www.biodiversitylibrary.org/page/16393732 (last access: 15 May 2025), 1916.
Hingston, J. A., Collins, C. D., Murphy, R. J., and Lester, J. N.: Leaching of chromated copper arsenate wood preservatives: a review, Environ. Pollut., 111, 53–66, https://https://doi.org/10.1016/S0269-7491(00)00030-0, 2001.
Hinsholmens Båtklubb: http://www.hinsholmen.se, last access: 5 June 2023.
Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H., Laursen, D., Zettler, E. R., Farrington, J. W., Reddy, C. M., Peacock, E. E., and Ward, M. W.: Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches, Mar. Pollut. Bull., 62, 1683–1692, https://doi.org/10.1016/j.marpolbul.2011.06.004, 2011.
Hyams-Kaphzan, O., Almogi-Labin, A., Sivan, D., and Benjamini, C.: Benthic foraminifera assemblage change along the southeastern Mediterranean inner shelf due to fall-off of Nile-derived siliciclastics, Neues Jahrb. Geol. P.-A., 248, 315–344, 2008.
Höglund, H.: Foraminifera in the Gullmar Fjord and the Skagerak. Uppsala University, Zoologiska Bidrag, 26, 1–328, 1947.
Hülsmann, N. and Galil, B. S.: Protists – a dominant component of the ballast-transported biota, in: Invasive aquatic species of Europe. Distribution, impacts and management, edited by: Leppäkoski, E., Gollasch, S., and Olenin, S., 20–26, Springer, Dordrecht, the Netherlands, 20–26, https://https://doi.org/10.1007/978-94-015-9956-6, 2002.
Jansen, S.: Copepods grazing on Coscinodiscus wailesii: a question of size? Helgoland, Mar. Res., 62, 251–255, https://doi.org/10.1007/s10152-008-0113-z, 2008.
Jauffrais, T., Jesus, B., Metzger, E., Mouget, J.-L., Jorissen, F., and Geslin, E.: Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida), Biogeosciences, 13, 2715–2726, https://doi.org/10.5194/bg-13-2715-2016, 2016.
Jauffrais, T., LeKieffre, C., Koho, K. A., Tsuchiya, M., Schweizer, M., Bernhard, J. M., Meibom, A., and Geslin, E.: Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats, Mar. Micropaleontol., 138, 46–62, https://doi.org/10.1016/j.marmicro.2017.10.003, 2018.
Jorissen, F., Fouet, M., Armynot du Chatelet, E., Barras, C., Bouchet, V., Daviray, M., Francescangeli, F., Geslin, E., Le Moigne, D., Licari, L., Mojtahid, M., Nardelli M.-P., Pavard, J.-C., Rolland, A., Schweizer, M., and Singer, D.: Foraminifères estuariens de la façade atlantique française. Guide de determination, Université d'Angers and Office Francais de la Biodiversite (in French), 89 pp., 2023.
Kankainen, M., Martinsson, S., Nordberg, K., and Polovodova Asteman, I.: In situ ecological quality status in the Kosterhavet National Park (Skagerrak, North Sea): a 100-year perspective, Ecol. Indic., 147, 110005, https://doi.org/10.1016/j.ecolind.2023.110005, 2023.
Karlsson, R., Obst, M., and Berggren, M.: Analysis of potential distribution and impacts for two species of alien crabs in Northern Europe, Biol. Invasions, 21, 3109–3119, https://doi.org/10.1007/s10530-019-02044-3, 2019.
Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E., Çinar, M.E., Oztürk, B., Grabowski, M., Golani, D., and Cardoso, A.C.: Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review, Aquat. Invasions, 9, 391–423, https://doi.org/10.3391/ai.2014.9.4.01, 2014
Kitazato, H. and Matsushita, S.: Laboratory observations of sexual and asexual reproduction of Trochammina hadai Uchio, Transactions and Proceedings of the Paleontological Society of Japan. New series, 1996, 454–466, 1996.
Klein, R.: The effects of marinas och boating activity upon tidal waterways. Community and Environmental Defence Services, Maryland, 23 pp., https://tidewatercurrent.com/Marinas.pdf (last access: 19 May 2025), 2007.
Koho, K. A., Lekieffre, C., Nomaki, H., Salonen, I., Geslin, E., Mabilleau, G., Søgaard Jensen, L. H., and Reichart, G. J.: Changes in ultrastructural features of the foraminifera Ammonia spp. in response to anoxic conditions: Field and laboratory observations, Mar. Micropaleontol., 138, 72–82, https://doi.org/10.1016/j.marmicro.2017.10.011, 2018.
Korsun, S., Hald, M., Golikova, E., Yudina, A., Kuznetsov, I., Mikhailov, D., and Knyazeva, O.: Intertidal foraminiferal fauna and the distribution of Elphidiidae at Chupa Inlet, western White Sea, Mar. Biol. Res., 10, 153–166, https://doi.org/10.1080/17451000.2013.814786, 2014.
Kosakyan, A., Heger, T. J., Leander, B. S., Todorov, M., Mitchell, E. A., and Lara, E.: COI barcoding of Nebelid testate amoebae (Amoebozoa: Arcellinida): extensive cryptic diversity and redefinition of the Hyalospheniidae Schultze, Protist, 163, 415–434, https://doi.org/10.1016/j.protis.2011.10.003, 2012.
Langer, M. R., Weinmann, A. E., Loetters, S., and Roedder, D.: “Strangers” in paradise: modeling the biogeographic range expansion of the foraminifera Amphistegina in the Mediterranean Sea, J. Foramin. Res., 42, 234–244, https://doi.org/10.2113/gsjfr.42.3.234, 2012.
Lefort, V., Longueville, J. E., and Gascuel, O.: SMS: smart model selection in PhyML, Mol. Biol. Evol., 34, 2422–2424, https://doi.org/10.1093/molbev/msx149, 2017.
LeKieffre, C., Spangenberg, J. E., Mabilleau, G., Escrig, S., Meibom, A., and Geslin, E.: Surviving anoxia in marine sediments: The metabolic response of ubiquitous benthic foraminifera (Ammonia tepida), Plos One, 12, e0177604, https://doi.org/10.1371/journal.pone.0177604, 2017.
LeKieffre, C., Jauffrais, T., Geslin, E., Jesus, B., Bernhard, J. M., Giovani, M. E., and Meibom, A.: Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer, Sci. Rep., 8, 10140, https://doi.org/10.1038/s41598-018-28455-1, 2018.
Linnaeus, C.: Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, [The system of nature through the three kingdoms of nature, according to classes, orders, genera, species, with characters, differences, synonyms, places], Impensis Direct. Laurentii Salvii. Holmiae, Stockholm, 1, 824 pp., https://biodiversitylibrary.org/page/726886 (last access: 15 May 2025), 1758.
Loosanoff, V. L. and Engle, J. B.: Polydora in Oysters Suspended in the Water, Biological Bulletin, Marine Biological Laboratory, Woods Hole, 85, 69–78, http://www.biolbull.org/content/85/1/69.full.pdf+html (last access: 17 May 2025), 1943.
Maciute, A., Holovachov, O., Glud, R. N., Broman, E., Berg, P., Nascimento, F. J., and Bonaglia, S.: Reconciling the importance of meiofauna respiration for oxygen demand in muddy coastal sediments, Limnol. Oceanogr., 68, 1895–1905, https://doi.org/10.1002/lno.12393, 2023.
Matoba, Y.: Distribution of recent shallow water foraminifera of Matsushima Bay, Miyagi Prefecture, northeast Japan, The Science Reports of the Tohoku University, Second series (Geology), 42, 1–85, https://tohoku.repo.nii.ac.jp/records/12008 (last access: 17 May 2025), 1970.
Matsushita, S. and Kitazato, H.: Seasonality in the benthic foraminiferal community and the life history of Trochammina hadai Uchio in Hamana Lake, Japan, in: Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and Scott, D. B., Springer, Dordrecht, the Netherlands, 695–715, https://https://doi.org/10.1007/978-94-011-3350-0, 1990.
McGann, M. and Holzmann, M.: First Occurrence of the nonindigenous Asian foraminifera Ammonia confertitesta in the Northeastern Pacific Ocean: Vancouver Island, British Columbia, Canada, Micropaleontology, 70, 115–127, https://doi.org/10.47894/mpal.70.2.02, 2024.
McGann, M., Sloan, D., and Cohen, A. N.: Invasion by a Japanese marine microorganism in western North America, Hydrobiologia, 421, 25–30, https://doi.org/10.1023/A:1003808517945, 2000.
McGann, M., Grossman, E. E., Takesue, R. K., Penttila, D., Walsh, J. P., and Corbett, R.: Arrival and expansion of the invasive foraminifera Trochammina hadai Uchio in Padilla Bay, Washington, Northwest Sci., 86, 9–26, https://doi.org/10.3955/046.086.0102, 2012.
McGann, M., Ruiz, G. M., Hines, A. H., and Smith, G.: A Ship's Ballasting History As an Indicator of Foraminiferal Invasion Potential – an Example from Prince William Sound, Alaska, Usa, J. Foramin. Res., 49, 434–455, https://doi.org/10.2113/gsjfr.49.4.434, 2019.
McGann, M., Holzmann, M., Bouchet, V. M. P., Eichler, P. P. B., Haig, D. W., Himson, S. J., Kitazato, H., Pavard, J.-C., Polovodova Asteman, I., Rodrigues, A. R., Tremblin, C. M., Tsuchiya, M., Williams, M., O'Brien, P., Asplund, J., and Axelsson, M.: Analysis of a human-mediated microbioinvasion: the global spread of the benthic foraminifer Trochammina hadai Uchio, 1962, J. Micropalaeontol., in press, 2025.
Moksnes, P. O., Eriander, L., Hansen, J., Albertsson, J., Andersson, M., Bergström, U., Carlström, J., Egardt, J., Fredriksson, R., Granhag, L., Lindgren, F., Nordberg, K., Wendt, I., Vikström, S., and Ytreberg, E.: Fritidsbåtars påverkan på grunda kustekosystem i Sverige. Havsmiljöinstitutets Rapport nr. 2019:3, 157 s. [Impact of leisure boats on shallow-water ecosystems in Sweden. Swedish Institute for the Marine Environment, Report no. 2019:3, 157 pp.], 2019 (in Swedish with summary in English).
Montagu, G.: Testacea Britannica or natural history of British shells, marine, land, and fresh-water, including the most minute: Systematically arranged and embellished with figures, sold by White, J., London, Vol. 1, xxxvii + 291 pp., Vol. 2, 293–606, pl. 1–16, http://www.biodiversitylibrary.org/item/78694 (last access: 15 May 2025), 1803.
Morin, F., Panova, M. A. Z., Schweizer, M., Wiechmann, M., Eliassen, N., Sundberg, P., Cluzel-Burgalat, L., and Polovodova Asteman, I.: Hidden aliens: Application of digital PCR to track an exotic foraminifer across the Skagerrak (North Sea) correlates well with traditional morphospecies analysis, Environ. Microbiol., 25, 2321–2337, https://doi.org/10.1111/1462-2920.16458, 2023.
Moros, M., Andersen, T. J., Schulz-Bull, D., Häusler, K., Bunke, D., Snowball, I., Kotilainen, A., Zillén, L., Jensen, J. B., Kabel, K., Hand, I., Leipe, T., Lougheed, B. C., Wagner, B., and Arz, H. W.: Towards an event stratigraphy for Baltic Sea sediments deposited since AD 1900: approaches and challenges, Boreas, 46, 129–142, https://doi.org/10.1111/bor.12193, 2017.
Morrell, J. J. and Huffman, J.: Copper, chromium, and arsenic levels in soils surrounding posts treated with chromated copper arsenate (CCA), Wood Fiber Sci., 36, 119–128, 2004.
Murray, J. W.: The enigma of the continued use of total assemblages in ecological studies of benthic foraminifera, J. Foramin. Res., 30, 244–245, 2000.
Murray, J. W. and Alve, E.: Natural dissolution of modern shallow water benthic foraminifera: taphonomic effects on the palaeoecological record, Palaeogeogr. Palaeocl., 146, 195–209, https://doi.org/10.1016/S0031-0182(98)00132-1, 1999.
National Library of Medicine: GenBank Overview, National Library of Medicine [data set], https://www.ncbi.nlm.nih.gov/genbank/, last access: 19 May 2025.
Naturvårdsverket: Bedömningsgrunder för miljökvalitet: sjöar och vattendrag: bakgrundsrapport 1, kemiska och fysikalista parametrar. [Swedish Environmental Protection Agency: Assessment guidelines for environmental status in lakes and rivers: background report 1: chemical and physical parameters], https://viss.lansstyrelsen.se/ReferenceLibrary/50383/Bilaga_A_sjo_och_vattendrag_webb.pdf (last access: 15 May 2025), 2000 (in Swedish).
Naturvårdsverket: Alkylatbensin i småbåtsmotorer – analys av miljöfördelar, Rapport 6307 Naturvårdsverket, ISBN 978-91-620- 6307-8 [Alkylate gasoline in leisure boat motors – analysis of environmental benefits, Report 6307, ISBN 978-91-620- 6307-8], Environmental Protection Agency, https://naturvardsverket.diva-portal.org/smash/record.jsf?pid=diva2%3A1617668&dswid=8362, (last access: 15 May 2025), 2009 (in Swedish).
Nikulina, A., Polovodova, I., and Schönfeld, J.: Foraminiferal response to environmental changes in Kiel Fjord, SW Baltic Sea, eEarth, 3, 37–49, 2008.
Nordberg, K., Bornmalm, L., Cato, I., Arneborg, L., Björk, G., and Robijn, A.: Sannäsfjorden – en studie av hydrografisk, bottendynamisk och miljökemisk status [Sannäs Fjord and a study of its hydrography, bottom dynamics and environmental geochemistry], Department of Earth Science, University of Gothenburg, Report 2012 C95, 2012 (in Swedish with summary in English).
Nordberg, K., Polovodova Asteman, I., Gallagher, T. M., and Robijn, A.: Recent oxygen depletion and benthic faunal change in shallow areas of Sannäs Fjord, Swedish west coast, J. Sea Res., 127, 46–62, https://doi.org/10.1016/j.seares.2017.02.006, 2017.
Nordberg, K., Björk, G., Lundin, L., Abrahamsson, K., Josefsson, S., Dahlberg, C., Zar, I.: Fritidsbåtars avgasutsläpp i skärgårdsmiljön. Havsmiljöinstitutet, Rapport nr 2022:2. 148 pp. [Exhaust discharges of leisure boats in the coastal archipelago, Swedish Institute for the Marine Environment, Report No. 2022:2, 148 pp.], https://www.havsmiljoinstitutet.se/publikationer/havsmiljoinstitutets-rapportserie/fritidsbatars-avgasutslapp-i-skargarden (last access: 15 May 2025), 2022 (in Swedish with summary in English).
Nordberg, K., Björk, G., Abrahamsson, K., Josefsson, S., and Lundin, L.: Historic distribution of Polycyclic Aromatic Compounds (PAC) in a Skagerrak fjord, Swedish west coast as reflected in a high-resolution sediment record and compared to the Environmental Quality Standards (EQS), Mar. Pollut. Bull., 199, 116014, https://doi.org/10.1016/j.marpolbul.2023.116014, 2024.
Nordberg, K., Björk, G., Abrahamsson, K., Josefsson, S., and Lundin, L.: Tracing PAH emissions from leisure boats in a low tidal coastal area, including comparison with Environmental Quality Standards (EQS), Chemosphere, 370, 143910, https://doi.org/10.1016/j.chemosphere.2024.143910, 2025.
O'Brien, P., Barrenechea Angeles, I., Cermakova, K., Pawlowski, J., Alve, E., Nordberg, K., and Polovodova Asteman, I.: Assessing environmental quality in a historically polluted fjord: a comparison of benthic foraminiferal eDNA and morphospecies approaches, J. Geophys. Res.-Biogeo., 129, e2023JG007781, https://doi.org/10.1029/2023JG007781, 2024.
Orsi, W. D., Morard, R., Vuillemin, A., Eitel, M., Wörheide, G., Milucka, J., and Kucera, M.: Anaerobic metabolism of Foraminifera thriving below the seafloor, ISME J., 14, 2580–2594, https://doi.org/10.1038/s41396-020-0708-1, 2020.
Pavard, J. C., Bouchet, V. M., Richirt, J., Courleux, A., Armynot Du Châtelet, E., Duong, G., Abraham, R., Pezy, J.-P., Dauvin, J-C., and Seuront, L.: Preferential presence in harbours confirms the non-indigenous species status of Ammonia confertitesta (Foraminifera) in the English Channel, Aquat. Invasions, 18, 351–369, https://doi.org/10.3391/ai.2023.18.3.106635, 2023a.
Pavard, J. C., Richirt, J., Seuront, L., Blanchet, H., Fouet, M. P., Humbert, S., Gouillieux, B., Duong, G., and Bouchet, V. M.: The great shift: The non-indigenous species Ammonia confertitesta (Foraminifera, Rhizaria) outcompetes indigenous Ammonia species in the Gironde estuary (France), Estuar. Coast. Shelf S., 289, 108378, https://doi.org/10.1016/j.ecss.2023.108378, 2023b.
Pawlowski, J.: Introduction to the molecular systematics of foraminifera, Micropaleontology, 46, 1–12, https://www.jstor.org/stable/1486176 (last access: 15 May 2025), 2000.
Pawlowski, J. and Holzmann, M.: Diversity and geographic distribution of benthic foraminifera: a molecular perspective, in: Protist Diversity and Geographical Distribution, edited by: Foissner, W. and Hawksworth, D. L., Topics in Biodiversity and Conservation, vol. 8, Springer, Dordrecht, the Netherlands, 83–94, https://doi.org/10.1007/978-90-481-2801-3_7, 2008.
Pawlowski, J. and Holzmann, M.: A plea for DNA barcoding of foraminifera, J. Foramin. Res., 44, 62–67, https://doi.org/10.2113/gsjfr.44.1.62, 2014.
Petersen, J., Riedel, B., Barras, C., Pays, O., Guihéneuf, A., Mabilleau, G., Schweizer, M., Meysman, F. J. R., and Jorissen, F. J.: Improved methodology for measuring pore patterns in the benthic foraminiferal genus Ammonia, Mar. Micropaleontol., 128, 1–13, https://doi.org/10.1016/j.marmicro.2016.08.001, 2016.
Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R., and LaJeunesse, T. C.: Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella, P. Natl. Acad. Sci. USA, 112, 7513–7518, https://doi.org/10.1073/pnas.1502283112, 2015.
Piña-Ochoa, E., Høgslund, S., Geslin, E., Cedhagen, T., Revsbech, N. P., Nielsen, L. P., Schweizer, M., Jorissen, F., Rysgaard, S., and Risgaard-Petersen, N.: Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida, P. Natl. Acad. Sci. USA, 107, 1148–1153, https://doi.org/10.1073/pnas.0908440107, 2010.
Polovodova, I., Nikulina, A., Schönfeld, J., and Dullo, W. C.: Recent benthic foraminifera in the Flensburg Fjord (western Baltic Sea), J. Micropalaeontol., 28, 131–142, https://doi.org/10.1144/jm.28.2.131, 2009.
Polovodova Asteman, I., Hanslik, D., and Nordberg, K.: An almost completed pollution-recovery cycle reflected by sediment geochemistry and benthic foraminiferal assemblages in a Swedish–Norwegian Skagerrak fjord, Mar. Pollut. Bull., 95, 126–140, https://doi.org/10.1016/j.marpolbul.2015.04.031, 2015.
Polovodova Asteman, I. and Schönfeld, J.: Recent invasion of the foraminifer Nonionella stella Cushman and Moyer, 1930 in northern European waters: evidence from the Skagerrak and its fjords, J. Micropalaeontol., 35, 20–25, 2016.
Port of Gothenburg: Official webpage https://www.portofgothenburg.com (last access: 1 June 2023), 2023.
Rao, K. K.: Ecology of Mandovi and Zuari estuaries, Goa: Distribution of foraminiferal assemblages, Indian J. Geo-Mar. Sci. (IJMS), 3, 61–66, 1974.
Rao, K. K., Jayalakshmy, K. V., Venugopal, P., Gopalakrishnan, T. C., and Rajagopal, M. D.: Foraminifera from the Chilka Lake on the east coast of India, J. Mar. Biol. Assoc. India, 42, 47–61, 2000.
Richirt, J., Schweizer, M., Mouret, A., Quinchard, S., Saad, S. A., Bouchet, V. M., Wade, C. M., and Jorissen, F. J.: Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition, J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, 2021.
Rehitha, T. V., Ullas, N., Vineetha, G., Benny, P. Y., Madhu, N. V., and Revichandran, C.: Impact of maintenance dredging on macrobenthic community structure of a tropical estuary, Ocean Coast. Manage., 144, 71–82, https://doi.org/10.1016/j.ocecoaman.2017.04.020, 2017.
Rosenberg, R.: Effects of dredging operations on estuarine benthic macrofauna, Mar. Pollut. Bull., 8, 102–104, https://https://doi.org/10.1016/0025-326X(77)90131-X, 1977.
Roy, H. E., Pauchard, A., Stoett, P., Truong, T. R., Bacher, S., Galil, B. S., Hulme, P. E., Ikeda, T., Kavileveettil, S., McGeoch, M. A., Meyerson, L. A., Nuñez, M. A., Ordonez, A., Rahlao, S. J., Schwindt, E., Seebens, H., Sheppard, A. W., and Vandvik, V.: IPBES Invasive Alien Species Assessment: Summary For Policymakers, IPBES, https://zenodo.org/records/11254974 (last access: 20 February 2025), 2023.
Ruiz, G. M., Rawlings, T. K., Dobbs, F. C., Drake, L. A., Mullady, T., Huq, A., and Colwell, R. R.: Global spread of microorganisms by ships, Nature, 408, 49–50, https://doi.org/10.1038/35040695, 2000.
SAMWM: Swedish Agency for Marine and Water Management: The list of invasive and alien species in Swedish waters, https://www.havochvatten.se/arter-och-livsmiljoer/invasiva-frammande-arter/, last access: 8 January 2023 (in Swedish).
Saad, S. A. and Wade, C. M.: Biogeographic distribution and habitat association of Ammonia genetic variants around the coastline of Great Britain, Mar. Micropaleontol., 124, 54–62, https://doi.org/10.1016/j.marmicro.2016.01.004, 2016.
Salonen, I. S., Chronopoulou, P. M., Bird, C., Reichart, G. J., and Koho, K. A.: Enrichment of intracellular sulphur cycle–associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis, Sci. Rep., 9, 11692, https://doi.org/10.1038/s41598-019-48166-5, 2019.
Schurin, A.: Zur Fauna der Caprelliden der Bucht Peters der Grosse, (Japanisches Meer), Zool. Anz., 112, 198–203, 1935.
Schweizer, M., Polovodova, I., Nikulina, A., and Schönfeld, J.: Molecular identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel Fjord (SW Baltic Sea) with rDNA sequences, Helgoland Mar. Res., 65, 1–10, https://doi.org/10.1007/s10152-010-0194-3, 2011.
Schweizer, M., Jauffrais, T., Choquel, C., Méléder, V., Quinchard, S., and Geslin, E.: Trophic strategies of intertidal foraminifera explored with single-cell microbiome metabarcoding and morphological methods: What is on the menu?, Ecol. Evol., 12, e9437, https://doi.org/10.1002/ece3.9437, 2022.
Shukla, K., Kumar, B., Agrawal, R., Priyanka, K., Venkatesh, M., and Anshumali: Assessment of Cr, Ni and Pb pollution in rural agricultural soils of Tonalite–Trondjhemite Series in Central India, B. Environ. Contam. Tox., 98, 856–866, https://doi.org/10.1007/s00128-017-2085-7, 2017.
Skjevik, A.-T.: Växtplanktonrapport 2004/ Phytoplankton report, The Swedish Meteorological and Hydrological Institute (SMHI) Report 2005 – 09, 12 pp., https://www.bvvf.se/download/18.6ab8a0381529bd4d34d6365d/1454398232645/2004.%20V%E4xtplankton_2004_SMHI.pdf, (last access: 17 May 2025), 2004 (in Swedish).
Simkanin, C., Davidson, I., Falkner, M., Sytsma, M., and Ruiz, G.: Intra-coastal ballast water flux and the potential for secondary spread of non-native species on the US West Coast, Mar. Pollut. Bull., 58, 366–374, https://doi.org/10.1016/j.marpolbul.2008.10.013, 2009.
Staehr, P. A., Jakobsen, H. H., Hansen, J. L., Andersen, P., Christensen, J., Göke, C., Thomsen, M. S., and Stebbing, P. D.: Trends in records and contribution of non-indigenous and cryptogenic species to marine communities in Danish waters: potential indicators for assessing impact, Aquat. Invasions, 15, 217–244, https://doi.org/10.3391/ai.2020.15.2.02, 2020.
Sveriges Geologiska Undersökning (SGU): Kartblad, SGU Serie Ba nr 59:4, Maringeologiska kartan: Ytsedimentfördelning i Göteborgs stad och Öckerö kommun, skala 1:50000 [SGU Map Series Ba nr 59:4, Marine geological map: seabed sediments in Gothenburg City and Öckerö Municipality, scale 1:50000], https://resource.sgu.se/dokument/publikation/ba/ba59karta/ba59-karta.pdf (last access: 20 May 2025), 2002.
Sveriges Geologiska Undersökning (SGU)/Swedish Geological Survey: Map viewer: Marine geology, https://apps.sgu.se/kartvisare/kartvisare-maringeologi.html, last access: 5 June 2023.
Swedish Environmental Institute (Svenska miljöinstitutet): Nytt invasivt skadedjur upptäckt i svenska ostronbankar, Pressmeddelande 2020-11-05 [The Swedish Environmental Institute: New invasive vermin has been discovered in Swedish oyster banks, Press release 2020-11-05], https://www.ivl.se/toppmeny/press/pressmeddelanden-och-nyheter/pressmeddelanden/2020-11-05-nytt-invasivt-skadedjur-upptackt-i-svenska-ostronbankar.html#container2020 (last access: 8 January 2024), 2020 (in Swedish).
Tango, P., Butler, W., Wazniak, C., and Hall, M.: Assessment of harmful algae bloom species in the Maryland Coastal Bays, in: Maryland’s Coastal Bays Ecosystem Health Assessment 2004, edited by: Wazniak, C., Goshorn, D., Hall, M., Blazer, D., Jesien, R., Wilson, D., Cain, C., Dennison, W., Thomas, J., Carruthers, T., And Sturgis, B., Maryland Department of Natural Resources, 8-2–8-34, https://dnr.maryland.gov/waters/coastalbays/Documents/EHA_2004.pdf (last access: 17 May 2025), 2004
Thomas, K. V. and Brooks, S.: The environmental fate and effects of antifouling paint biocides, Biofouling, 26, 73–88, https://doi.org/10.1080/08927010903216564, 2010.
Thunberg, C. P.: Tekning och Beskrifning på en stor Ostronsort ifrån Japan, Kongliga Vetenskaps Academiens Nya Handlingar, 14, 140–142, https://www.biodiversitylibrary.org/page/46957303 (last access: 17 May 2025), 1793.
Toriumi, S. and Takano, H.: A new genus of the Chloromonadophyceae from Atsumi Bay, Japan. Bull. Tokai Reg. Fish. Res. Lab., 76, 25–35, 1973.
Transportstyrelsen: Båtlivsundersökningen 2015: en undersökning om svenska fritidsbåtar och hur de används. Rapport no. TSG 2016e2534, mars 2016, 122 s. [The Swedish Transport Agency (2016). Leisure boat survey 2015: an investigation about Swedish leisure boats and how they are used. Report nr. TSG 2016e2534, March 2016, 122 pp.], https://www.transportstyrelsen.se/globalassets/global/sjofart/dokument/fritidsbatar1/transportstyrelsen-batlivsundersokning-2015.pdf, (last access: 17 May 2025), 2016 (in Swedish).
Transportstyrelsen: Båtlivsundersökningen 2020: en undersökning om svenska fritidsbåtar och hur de används. Rapport Båtlivsundersökningen 2020, Transportstyrelsen, Dnr 2021-2170, 108 s. [The Swedish Transport Agency (2021). Leisure boat survey 2020: an investigation about Swedish leisure boats and how they are used. Report nr. 2021-2170, 108 pp.], https://www.transportstyrelsen.se/globalassets/global/sjofart/dokument/fritidsbatar1/transportstyrelsen-batlivsundersokningen-2020.pdf (last access: 17 May 2025), 2021 (in Swedish).
Tremblin, C. M., Holzmann, M., Parker, J. H., Sadekov, A., and Haig, D. W.: Invasive Japanese foraminifera in a south-west Australian estuary, Mar. Freshwater Res., 73, 328–342, https://doi.org/10.1071/MF21254, 2021.
Turner, A.: Marine pollution from antifouling paint particles, Mar. Pollut. Bull., 60, 159–171, https://doi.org/10.1016/j.marpolbul.2009.12.004, 2010.
Uchio, T.: Influence of the River Shinano on foraminifera and sediment grain size distributions, Seto Marine Laboratory, Kyoto University, Sirahama, Japan, 10, 363–392, https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/175306/1/fia0102_363.pdf (last access: 20 May 2025), 1962.
Weiss, L.: Foraminifera and origin of the Gardiners clay (Pleistocene), eastern Long Island, New York, United States Geological Survey Professional Papers, 254-G, 143–163, https://doi.org/10.3133/pp254g, 1954.
Wetzel, R. G.: Sediments and microflora, in: Limnology Lake and River Ecosystems, edited by: Wetzel, R .G., 631–664, https://doi.org/10.1016/B978-0-08-057439-4.50025-3, 2001.
Zheng, S. and Fu, Z. X.: Faunal trends and assemblages of the northern South China Sea agglutinated foraminifera, in: Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera, edited by: Hemleben, C., Kaminski, M. A., Kuhnt, W., and Scott, D. B., Springer, Dordrecht, the Netherlands, 541–563, https://doi.org/10.1007/978-94-011-3350-0_19, 1990.
Zheng, S. Y., Cheng, T., Wang, X., and Fu, Z.: The Quaternary Foraminifera of the Dayuzhang Irrigation area, Shandong Province, and a preliminary attempt at an interpretation of its depositional environment, Studia Marina Sinica, 13, 72–78, 1978.
Short summary
Small boat harbours are suggested to cause pollution and alien species introductions. Here we analysed surface sediments in Hinsholmskilen harbour (Sweden) for benthic foraminifera and potentially toxic elements. Molecular and morphological analyses of foraminifera show the presence of two alien species, Trochammina hadai and Ammonia confertitesta, whilst pollution is mostly low for Cd, Co, Ni, and Pb. In contrast, As, Zn, Cu, Hg, and Cr have high levels due to the use of these elements in boat paints.
Small boat harbours are suggested to cause pollution and alien species introductions. Here we...