Articles | Volume 37, issue 2
https://doi.org/10.5194/jm-37-445-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-37-445-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A review of the ecological affinities of marine organic microfossils from a Holocene record offshore of Adélie Land (East Antarctica)
Julian D. Hartman
Marine Palynology and Paleoceanography, Department of Earth
Sciences,
Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
Peter K. Bijl
Marine Palynology and Paleoceanography, Department of Earth
Sciences,
Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
Marine Palynology and Paleoceanography, Department of Earth
Sciences,
Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
Related authors
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Carolien Maria Hendrina van der Weijst, Josse Winkelhorst, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-105, https://doi.org/10.5194/cp-2020-105, 2020
Manuscript not accepted for further review
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Related subject area
Palynology
High Arctic late Paleocene and early Eocene dinoflagellate cysts
Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts
Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica
Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Late Eocene–early Miocene evolution of the southern Australian subtropical front: a marine palynological approach
Desmocysta hadra, a new Late Cretaceous dinoflagellate cyst species: stratigraphic range, palaeogeographic distribution and palaeoecology
New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes
Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast
Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts
Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India
Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Mallory Pilie, Martha E. Gibson, Ingrid C. Romero, Noelia B. Nuñez Otaño, Matthew J. Pound, Jennifer M. K. O'Keefe, and Sophie Warny
J. Micropalaeontol., 42, 291–307, https://doi.org/10.5194/jm-42-291-2023, https://doi.org/10.5194/jm-42-291-2023, 2023
Short summary
Short summary
The ANDRILL SMS site provides the first Middle Miocene Antarctic fungal record. The CREST plant-based paleoclimate reconstructions confirm an intensification of the hydrological cycle during the MCO, with the Ross Sea region reconstructed 279 % wetter than modern conditions and a maximum mean annual temperature of 10.3 °C for the warmest intervals of the MCO. The plant-based reconstructions indicate a temperate, no dry season with a warm summer (Cfb) Köppen–Geiger climate classification.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Manuel Vieira and Salih Mahdi
J. Micropalaeontol., 39, 155–167, https://doi.org/10.5194/jm-39-155-2020, https://doi.org/10.5194/jm-39-155-2020, 2020
Short summary
Short summary
This paper describes a new species of the genus Desmocysta from the Late Cretaceous in the Norwegian Sea. The short stratigraphic range for this new species makes it a good biostratigraphic marker. The available published data also indicate that this genus is restricted to higher latitudes in the Northern Hemisphere and is suggested to have preferred turbid waters and stressed marine environments.
Kasia K. Śliwińska and Martin J. Head
J. Micropalaeontol., 39, 139–154, https://doi.org/10.5194/jm-39-139-2020, https://doi.org/10.5194/jm-39-139-2020, 2020
Short summary
Short summary
We described two new species of the fossil dinoflagellate cyst genus Svalbardella. S. clausii sp. nov. has a narrow range in the lowermost Chattian and may be related to cooler surface waters. S. kareniae sp. nov. ranges from Lower Oligocene to Lower Miocene and favours more open marine conditions.
Our study illustrates the close phylogenetic relationship between Svalbardella and Palaeocystodinium and shows that surface ornamentation and the tabulation are variable features within both genera.
Marcelo Augusto De Lira Mota, Guy Harrington, and Tom Dunkley Jones
J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, https://doi.org/10.5194/jm-39-1-2020, 2020
Short summary
Short summary
New high-resolution microfossil record from a clay succession in the US Gulf Coastal Plain reveal more accurate age estimates for the critical Eocene–Oligocene transition (EOT), a global climate event marked by the rapid expansion of the first permanent Antarctic ice sheet 34 million years ago. These data suggest a coeval major increase in sedimentation rate. Future isotopic and palaeoecological work on this core can be more precisely integrated with other global records of the EOT.
Kasia K. Śliwińska
J. Micropalaeontol., 38, 143–176, https://doi.org/10.5194/jm-38-143-2019, https://doi.org/10.5194/jm-38-143-2019, 2019
Short summary
Short summary
This study provides an age model based on dinocysts for the early Oligocene succession from the North Sea. The changes in the dinocysts assemblage show that the succession was deposited in a proximal and dynamic environment. Furthermore, the results suggests that the early icehouse climate played an important role in the depositional development of the Oligocene succession in the North Sea basin.
Phillip E. Jardine, William D. Gosling, Barry H. Lomax, Adele C. M. Julier, and Wesley T. Fraser
J. Micropalaeontol., 38, 83–95, https://doi.org/10.5194/jm-38-83-2019, https://doi.org/10.5194/jm-38-83-2019, 2019
Short summary
Short summary
Many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are domesticated species of grass. However, because grass pollen all looks highly similar, it has been challenging to track grass domestication using pollen in archaeological samples. Here, we show that we can use the chemical signature of pollen grains to classify different grass species. This approach has the potential to help unravel the spread of domestication and agriculture over the last 10 000 years.
Thomas M. Hoyle, Manuel Sala-Pérez, and Francesca Sangiorgi
J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, https://doi.org/10.5194/jm-38-55-2019, 2019
Short summary
Short summary
Morphology of dinoflagellate cysts (which are valuable tools in deciphering past environmental and climate changes) depends not only on genetics, but also on a range of environmental factors. We review frequently occurring (Black Sea) morphotypes and propose use of matrices to record gradual variation between endmember forms as a pragmatic approach until cyst–theca studies and genetic sequencing can demonstrate relationships between genetically and environmentally controlled morphotypes.
Sonal Khanolkar and Jyoti Sharma
J. Micropalaeontol., 38, 1–24, https://doi.org/10.5194/jm-38-1-2019, https://doi.org/10.5194/jm-38-1-2019, 2019
Short summary
Short summary
We carried out comparative analyses of multiple microfossil groups like foraminifera, dinoflagellates, pollen and spores from Early and Middle Eocene lignite mine sections from paleotropical sites of the Cambay, Kutch and Barmer basins of western India in order to record the changes in paleovegetation and paleodepositional conditions during the hot and humid climate.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Cited articles
Agatha, S.: A Light and Scanning Electron Microscopic Study of the Closing Apparatus in Tintinnid Ciliates (Ciliophora, Spirotricha, Tintinnida): A Forgotten Synapomorphy, J. Eukaryot. Microbiol., 57, 297–307, https://doi.org/10.1111/j.1550-7408.2010.00490.x, 2010.
Agatha, S. and Simon, P.: On the Nature of Tintinnid Loricae (Ciliophora: Spirotricha: Tintinnina): a Histochemical, Enzymatic, EDX, and High-resolution TEM Study, Acta Protozool., 51, 1–19, https://doi.org/10.4467/16890027AP.12.001.0384, 2012.
Agatha, S. and Strüder-Kypke, M. C.: Reconciling Cladistic and Genetic Analyses in Choreotrichid Ciliates (Ciliophora, Spirotricha, Oligotrichea), J. Eukaryot. Microbiol., 59, 325–350, https://doi.org/10.1111/j.1550-7408.2012.00623.x, 2012.
Agatha, S. and Strüder-Kypke, M. C.: Systematics and Evolution of Tintinnid Ciliates, in: The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, edited by: Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W., and Stoecker, D. K., 42–84, Wiley-Blackwell, Hoboken, New Jersey, USA, 2013.
Agatha, S., Laval-Peuto, M., and Simon, P.: The Tintinnid Lorica, in: The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, edited by: Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W., and Stoecker, D. K., 17–41, Wiley-Blackwell, Hoboken, New Jersey, USA, 2013.
Alder, V. A.: Tintinnoinea, in: South Atlantic zooplankton, Vol. 1, edited by: Boltovskoy, D., 321–384, Backhuys Publishers, Leiden, the Netherlands, 1999.
Alder, V. A. and Boltovskoy, D.: Microplanktonic distributional patterns west of the Antarctic Peninsula, with special emphasis on the Tintinnids, Polar Biol., 11, 103–112, 1991.
Altiero, T., Bertolani, R., and Rebecchi, L.: Hatching phenology and resting eggs in tardigrades, J. Zool., 280, 290–296, https://doi.org/10.1111/j.1469-7998.2009.00664.x, 2010.
Amenábar, C. R., Candel, M. S., and Guerstein, G. R.: Small Antarctic Late Cretaceous Chorate Dinoflagellate Cysts?: Biological and Palaeoenvironmental Affinities, Palynology, 38, 303–323, 2014.
Amorim, A., Dale, B., Godinho, R., and Brotas, V.: Gymnodinium catenatum-like cysts (Dinophyceae) in recent sediments from the coast of Portugal, Phycologia, 40, 572–582, https://doi.org/10.2216/i0031-8884-40-6-572.1, 2001.
Anderson, D. M., Jacobson, D. M., Bravo, I., and Wrenn, J. H.: The unique, microreticulate cyst of the naked dinoflagellate Gymnodinium catenatum, J. Phycol., 24, 255–262, 1988.
Andreoli, C., Tolomio, C., Moro, I., Radice, M., Moschin, E., and Bellato, S.: Diatoms and dinoflagellates in Terra Nova Bay (Ross Sea-Antarctica) during austral summer 1990, Polar Biol., 15, 465–475, https://doi.org/10.1007/BF00237460, 1995.
Andreoli, C., Moro, I., La Rocca, N., Valle, L. D., Masiero, L., Rascio, N., and Vecchia, F. D.: Ecological, physiological, and biomolecular surveys on microalgae from Ross Sea (Antarctica), Ital. J. Zool., 67, 147–156, https://doi.org/10.1080/11250000009356370, 2000.
Apstein, C.: Die Pyrocysteen der Plankton-Expedition, in: Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, Bd. IV M.c., Lipsius and Tischer, Kiel and Leipzig, 1–27, 1909.
Arai, M. and Koutsoukos, E. A. M.: Palynoforaminifera (Foraminiferal Organic Linings and Allied Material: a New Tool for Petroleum Exploration, Am. Assoc. Petr. Geol. AAPG Int. Conf. Exhib. Ext. Abstr. Vol., 82, 584–585, 1998.
Armbrecht, L. H., Eriksen, R., Leventer, A., and Armand, L. K.: First observations of living sea-ice diatom agglomeration to tintinnid loricae in East Antarctica, J. Plankton Res., 39, 795–802, https://doi.org/10.1093/plankt/fbx036, 2017.
Arrigo, K. R. and van Dijken, G. L.: Phytoplankton dynamics within 37 Antarctic coastal polynya systems, J. Geophys. Res., 108, 3271, https://doi.org/10.1029/2002JC001739, 2003.
Arrigo, K. R., Weiss, A. M., and Smith, W. O. J.: Physical forcing of phytoplankton dynamics in the southwestern Ross Sea, J. Geophys. Res., 103, 1007–1021, 1998.
Askin, R. A. and Raine, J. I.: Oligocene and Early Miocene Terrestrial Palynology of the Cape Roberts Drillhole CRP-2/2a, Victoria Land Basin, Antarctica, Terra Ant., 7, 493–501, 2000.
Assmy, P., Cisewski, B., Henjes, J., Klaas, C., Montresor, M., and Smetacek, V.: Response of the protozooplankton assemblage during the European Iron Fertilization Experiment (EIFEX) in the Antarctic circumpolar current, J. Plankton Res., 36, 1175–1189, https://doi.org/10.1093/plankt/fbu068, 2014.
Atanassova, J.: Palaeoecological setting of the western Black Sea area during the last 15 000 years, Holocene, 15, 576–584, 2005.
Atkinson, A.: Life cycle strategies of epipelagic copepods in the Southern Ocean, J. Marine Syst., 15, 289–311, 1998.
Atkinson, A., Hunt, B. P. V., Pakhomov, E. A., and Hosie, G. W.: Overview of Southern Ocean Zooplankton data: Abundance, Biomass, Feeding and Funtional Relationships, CCAMLR Sci., 19, 171–218, 2012.
Attaran-Fariman, G., de Salas, M. F., Negri, A. P., and Bolch, C. J. S.: Morphology and phylogeny of Gymnodinium trapeziforme sp. nov. (Dinophyceae): a new dinoflagellate from the southeast coast of Iran that forms microreticulate resting cysts, Phycologia, 46, 644–656, https://doi.org/10.2216/07-05.1, 2007.
Australian Antarctic Data Center: Electron Micrograph Database – Marine Specimens, Occurrence Dataset, https://doi.org/10.15468/5ubdem (last access: 8 February 2018), 2017.
Balech, E.: Dinoflagellés et Tintinnides de la Terre Adélie (Secteur Français Antarctique), Vie Milieu, 8, 382–408, 1958a.
Balech, E.: Plancton de la Campaña Antárctica Argentina, Physis, 21, 75–108, 1958b.
Balech, E.: Segunda contribucion al conocimiento del microplancton del mar de Bellingshausen, Contrib. del Inst. Antart. Argentino, 107, 1–63, 1973.
Ball, E. E. and Miller, D. J.: Phylogeny?: The Continuing Classificatory Conundrum of Chaetognaths, Curr. Biol., 16, R593–R596, https://doi.org/10.1016/j.cub.2006.07.005, 2006.
Bartels, P. J., Pilato, G., Lisi, O., and Nelson, D. R.: Macrobiotus (Eutardigrada, Macrobiotidae) from the Great Smoky Mountains National Park, Tennessee/North Carolina, USA (North America): two new species and six new records, Zootaxa, 2022, 45–57, https://doi.org/10.5281/zenodo.186100, 2009.
Beijerinck, M. W.: Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen, Botanische Zeitung, 48, 725–739, 741–754, 757–768, 781–785, 1890.
Bell, E. M. and Laybourn-Parry, J.: Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae), J. Phycol., 39, 644–649, 2003.
Belmonte, G.: Diapause egg production in Acartia (Paracartia) latisetosa (Crustacea, Copepoda, Calanoida), B. Zool., 59, 363–366, https://doi.org/10.1080/11250009209386694, 1992.
Belmonte, G.: The egg morphology of 7 Acartiidae species?: a preliminary survey of the ootaxonomy of calanoids, J. Marine Syst., 15, 35–39, 1998.
Benedek, P. N.: Phytoplanktonen aus dem Mittel- und Oberoligozän von Tönisberg (Niederrheingebiet), Palaeontographica, Abt. B, 137, 1–71, 1972.
Bérard-Therriault, L., Poulin, M., and Bossé, L.: Guide d'intification du phytoplancton marin de l'estuaire et du Golfe du Saint-Laurent incluant également certaints protozoaires, Publication spéciale canadienne des sciences haleutiques et aquatiques, 128, p. 387, 1999.
Berasategui, A. A., Hoffmeyer, M. S., Dutto, M. S., and Biancalana, F.: Marine Science, ICES J. Mar. Sci., 69, 380–388, 2012.
Bertolani, R. and Rebecchi, L.: A revision of the Macrobiotus hufelandi group (Tardigrada, Macrobiotidae), with some observations on the taxonomic characters of eutardigrades, Zool. Scr., 22, 127–152, https://doi.org/10.1111/j.1463-6409.1993.tb00347.x, 1993.
Bertolani, R., Rebecchi, L., and Claxton, S. K.: Phylogenetic significance of egg shell variation in tardigrades, Zool. J. Linn. Soc.-Lond., 116, 139–148, 1996.
Bijl, P. K., Sluijs, A., and Brinkhuis, H.: A magneto- and chemostratigraphically calibrated dinoflagellate cyst zonation of the early Palaeogene South Pacific Ocean, Earth-Sci. Rev., 124, 1–31, https://doi.org/10.1016/j.earscirev.2013.04.010, 2013.
Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J., and Sangiorgi, F.: Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal, J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, 2018.
Bjørnsen, P. K. and Kuparinen, J.: Growth and herbivory by heterotrophic dinoflagellates in the Southern Ocean, studied by microcosm experiments, Mar. Biol., 109, 397–405, https://doi.org/10.1007/BF01313505, 1991.
Boere, A. C., Abbas, B., Rijpstra, W. I. C., Versteegh, G. J. M., Volkman, J. K., Sinninghe Damsté, J. S., and Coolen, M. J. L.: Late-Holocene succession of dinoflagellates in an Antarctic fjord using a multi-proxy approach: Paleoenvironmental genomics, lipid biomarkers and palynomorphs, Geobiology, 7, 265–281, https://doi.org/10.1111/j.1472-4669.2009.00202.x, 2009.
Bolch, C., Negri, A. P., and Hallegraeff, G. M.: Gymnodinium microreticulatum sp. nov. (Dinophyceae): a naked, microreticulate cyst-producing dinoflagellate, distinct from Gymnodinium catenatum and Gymnodinium nolleri, Phycologia, 38, 301–313, https://doi.org/10.2216/i0031-8884-38-4-301.1, 1999.
Bolch, C. J. S. and Reynolds, M. J.: Species resolution and global distribution of microreticulate dinoflagellate cysts, J. Plankton Res., 24, 565–578, 2002.
Boltovskoy, D., Dinofrio, E. O., and Alder, V. A.: Intraspecific variability in Antarctic tintinnids?: the Cymatocylis affinislconvallaria species group, J. Plankton Res., 12, 403–413, 1990.
Bonnet, S., de Vernal, A., Hillaire-Marcel, C., Radi, T., and Husum, K.: Variability of sea-surface temperature and sea-ice cover in the Fram Strait over the last two millennia, Mar. Micropaleontol., 74, 59–74, https://doi.org/10.1016/j.marmicro.2009.12.001, 2010.
Borromei, A. M., Coronato, A., Franzén, L. G., Ponce, J. F., Sáez, J. A. L., Maidana, N., Rabassa, J., and Candel, M. S.: Multiproxy record of Holocene paleoenvironmental change, Tierra del Fuego, Argentina, Palaeogeogr. Palaeocl., 286, 1–16, https://doi.org/10.1016/j.palaeo.2009.11.033, 2010.
Brinkhuis, H., Munsterman, D. K., Sengers, S., Sluijs, A., Warnaar, J., and Williams, G. L.: Late Eocene-Quaternary dinoflagellate cysts from ODP Site 1168, off Western Tasmania, Proc. ODP, Sci. Results, 189, 1–36, 2003.
Brünnich, M. T.: Zoologiae fundamenta praelectionibus academicis accomodata. Grunde i dyrelaeren, Friderik Christian Pelt, Hafnia et Lipsia, p. 253, 1772.
Buck, K. R., Bolt, P. A., Bentham, W. N., and Garrison, D. L.: A dinoflagellate cyst from Antarctic sea ice, J. Phycol., 28, 15–18, 1992.
Bujak, J. P.: Cenozoic Dinoflagellate Cysts and Acritarchs from the Bering Sea and Northern North Pacific, DSDP Leg 19, Micropaleontology, 30, 180–212, https://doi.org/10.2307/1485717, 1984.
Bujak, J. P. and Davies, E. H.: Modern and fossil Peridiniineae, American Association of Stratigraphic Palynologists, Contribution Series, 13, 202, 1983.
Bujak, J. P. and Davies, E. H.: Protoperidiniaceae fam. nov. – Type: Protoperidinium Bergh, Taxon, 47, 729, 1998.
Bütschli, O.: Dr. H. G. Bronn's Klassen und Ordnungen Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild, C. F. Winter'sche Verlagshandlung, Leipzig and Heidelberg, 1096, 1885.
Candel, M. S., Borromei, A. M., Martínez, M. A., and Bujalesky, G.: Palynofacies analysis of surface sediments from the Beagle Channel and its application as modern analogues for Holocene records of Tierra del Fuego, Argentina, Palynology, 37, 62–76, https://doi.org/10.1080/01916122.2012.718994, 2013.
Cărăuş, I.: Algae of Romania. A distributional checklist of actual algae., Stud. Cercet.-Biologie, 7, 1–1002, 2017.
Castellani, C. and Lucas, I. A. N.: Seasonal variation in egg morphology and hatching success in the calanoid copepods Temora longicornis, Acartia clausi and Centropages hamatus, J. Plankton Res., 25, 527–537, 2003.
Cavalier-Smith, T.: Eukaryote kingdoms: Seven or nine?, BioSystems 14, 461–481, 1981.
Cavalier-Smith, T.: The origin of eukaryotic and archaebacterial cells, Ann. N.Y. Acad. Sci., 503, 17–54, 1987.
Cavalier-Smith, T.: Cell diversification in heterotrophic flagellates, in: The Biology of Free-Living Heterotrophic Flagellates, edited by: Patterson, D. J. and Larsen, J., 113–131, Oxford University Press, Oxford, UK, 1991.
Cavalier-Smith, T.: A revised six-kingdom system of life, Biol. Rev., 73, 203–266, 1998.
Cavalier-Smith, T.: The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa, Int. J. Syst. Evol. Micr., 52, 297–354, 2002.
Cavalier-Smith, T.: Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree, Biol. Lett., 6, 342–345, 2010.
Chadefaud, M.: Les cellules nageuses de algues dans l'embranchement de Chromophycées, C. R. Acad. Sci. Paris, 231, 788–790, 1950.
Chamberlin, R. V.: The Annelida Polychaeta, Memoirs of the Museum of Comparative Zoölogy at Harvard Collage, 48, 1–514, 1919.
Choi, K.-S. and Park, K.-I.: Review on the Protozoan Parasite Perkinsus olseni (Lester and Davis 1981) Infection in Asian Waters, in: Coastal Environmental and Ecosystem Issues of the East China Sea, edited by: Ishimatsu, A. and Lie, H.-J., 269–281, TERRAPUB and Nagasaki University, Nagasaki, Japan, 2010.
Claparède, E. and Mecznikow, E.: Beiträge zur Kenntniss der Entwickelungsgeschichte der Chaetopoden, Zeitschrift für Wissenschaftliche Zoologie, 19, 163–205, 1869.
Clarke, A. and Leakey, R. J. G.: The seasonal cycle of phytoplankton, macronutrients, and the microbial community in a nearshore Antarctic marine ecosystem., Limnol. Oceanogr., 41, 1281–1294, 1996.
Cleve, P. T.: Some Atlantic Tintinnodea, Öfversigt af Konglig Vetenskaps-Akademiens Förhandlingar, 10, 969–975, 1899.
Clowes, C. D., Hannah, M. J., Wilson, G. J., and Wrenn, J. H.: Marine Micropaleontology Marine palynostratigraphy and new species from the Cape Roberts drill-holes, Victoria land basin, Antarctica, Mar. Micropaleontol., 126, 65–84, https://doi.org/10.1016/j.marmicro.2016.06.003, 2016.
Colbath, G. K. and Grenfell, H. R.: Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”), Rev. Palaeobot. Palyno., 86, 287–314, 1995.
Concheyro, A., Caramés, A., Amenábar, C. R., and Lescano, M.: Nannofossils, foraminifera and microforaminiferal linings in the Cenozoic diamictites of Cape Lamb, Vega Island, Antarctica, Pol. Polar Res., 35, 1–26, https://doi.org/10.2478/popore-2014-0003, 2014.
Convey, P. and McInnes, S. J.: Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica, Ecology, 86, 519–527, 2005.
Convey, P., Gibson, J. A. E., Hillenbrand, C.-D., Hodgson, D. A., Pugh, P. J. A., Smellie, J. L., and Stevens, M. I.: Antarctic terrestrial life – challenging the history of the frozen continent?, Biol. Rev., 83, 103–117, https://doi.org/10.1111/j.1469-185X.2008.00034.x, 2008.
Cookson, I. C. and Eisenack, A.: Additional microplankton from the Australian Cretaceous sediments, Micropaleontology, 8, 485–507, 1962.
Corliss, B. H.: Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean, Mar. Micropaleontol., 17, 195–236, https://doi.org/10.1016/0377-8398(91)90014-W, 1991.
Costello, O. P. and Bauch, H. A.: Late Pleistocene-Holocene productivity record of benthic foraminifera from the Iceland Plateau (Core PS 1246-2), in: Contributions of the Micropaleontology and Paleoceanography of the Northern North Atlantic, edited by: Hass, H. C. and Kaminski, M. A., 141–148, Grzybowski Foundation Special Publication, Krakow, 1997.
Cromer, L., Gibson, J. A. E., Swadling, K. M., and Ritz, D. A.: Faunal microfossils?: Indicators of Holocene ecological change in a saline Antarctic lake, Palaeogeogr. Palaeocl., 221, 83–97, https://doi.org/10.1016/j.palaeo.2005.02.005, 2005.
Cromer, L., Gibson, J. A. E., McInnes, S. J., and Agius, J. T.: Tardigrade remains from lake sediments, J. Paleolimnol., 39, 143–150, https://doi.org/10.1007/s10933-007-9102-5, 2008.
Crouch, E. M., Mildenhall, D. C., and Neil, H. L.: Distribution of organic-walled marine and terrestrial palynomorphs in surface sediments, offshore eastern New Zealand, Mar. Geol., 270, 235–256, https://doi.org/10.1016/j.margeo.2009.11.004, 2010.
Dahl, E.: Some crustacean relationships, in: Festschrift für Bertil Hanström: Zoological Papers in Honour of his Sixty-Fifth Birthday, edited by: Wingstrand, K. G., 138–147, Zoological Institute, Lund, 1956.
Dastych, H. and Harris, J. M.: A new species of the genus Macrobiotus from inland nunataks in western Dronning Maud Land, continental Antarctica (Tardigrada), Entomol. Mitt. Zool. Mus. Hamburg, 11, 175–182, 1995.
Daugbjerg, N.: Pyramimonas tychotreta, sp. nov. (Prasinophyceae), a new marine species from Antarctica: light and electron microscopy of the motile stage and notes on growth rates, J. Phycol., 36, 160–171, 2000.
Davies, C., Watts, D.: The Australian Phytoplankton Database (1844 onwards), CSIRO Oceans and Atmosphere, Occurrence Dataset, https://doi.org/10.15468/my3fxc (last access: 8 February 2018), 2017.
Defaye, D., Cuoc, C., and Brunet, M.: Genital structures and spermatophore placement in female Paradiaptominae (Copepoda, Calanoida, Diaptomidae), J. Crustacean Biol., 20, 245–261, https://doi.org/10.1651/0278-0372(2000)020[0245:GSASPI]2.0.CO;2, 2000.
Deflandre, G.: Microfossiles des Silex Crétacés. Deuxième partie: Flagellés incertae sedis, Hystrichosphaeridés, Sarconidés, Organismes divers, Ann. Paléontologie, 26, 51–103, 1937.
Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a Changing Climate, Front. Mar. Sci., 4, 40, https://doi.org/10.3389/fmars.2017.00040, 2017.
De Schepper, S., Fischer, E. I., Groeneveld, J., Head, M. J., and Matthiessen, J.: Deciphering the palaeoecology of Late Pliocene and Early Pleistocene dinoflagellate cysts, Palaeogeogr. Palaeocl., 309, 17–32, https://doi.org/10.1016/j.palaeo.2011.04.020, 2011.
De Vernal, A.: Marine palynology and its use for studying nearshore environments, IOP C. Ser. Earth Env., 5, 1–13, https://doi.org/10.1088/1755-1307/5/1/012002, 2009.
De Vernal, A. and Marret, F.: Chapter Nine Organic-Walled Dinoflagellate Cysts: Tracers of Sea-Surface Conditions, in Developments in Marine Geology, 1, 371–408, Elsevier B.V., Amsterdam and London, 2007.
De Vernal, A., Goyette, C., and Rodrigues, C. G.: Contribution palynostratigraphique (dinokystes, pollen et spores) à la connaissance de la mer de Champlain: coupe de Saint-Césaire, Québec, Can. J. Earth Sci., 26, 2450–2464, 1989.
De Vernal, A., Rochon, A., Turon, J.-L., and Matthiessen, J.: Organic-walled Dinoflagellate Cysts: Palynologial Tracers of Sea-surface Conditions in Middle to High Latitude Marine Environments, Geobios, 30, 905–920, 1997.
De Vernal, A., Henry, M., Matthiessen, J., Mudie, P. J., Rochon, A., Boessenkool, K. P., Eynaud, F., Grøsfjeld, K., Joel, G., Hamel, D., Harland, R., Head, M. J., Kunz-Pirrung, M., Levac, E., Loucheur, V., Peyron, O., Pospelova, V., Radi, T., Turon, J., and Voronina, E.: Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas?: the new “n = 677” data base and its application for quantitative palaeoceanographic reconstruction, J. Quaternary Sci., 16, 681–698, https://doi.org/10.1002/jqs.659, 2001.
Doflein, F.: Die Protozoen als Parasiten und Krankheitserreger nach biologischen Gesichtspunkten dargestellt, Jena, Gustav Fischer, 274, 1901.
Dolan, J. R. and Pierce, R. W.: Diversity and Distributions of Tintinnids, in: The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, edited by: Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W., and Stoecker, D. K., 214–243, Wiley-Blackwell, Hoboken, New Jersey, USA., 2013.
Dolan, J. R., Pierce, R. W., Yang, E. J., and Kim, S. Y.: Southern ocean biogeography of tintinnid ciliates of the marine plankton, J. Eukaryot. Microbiol., 59, 511–519, https://doi.org/10.1111/j.1550-7408.2012.00646.x, 2012.
Dolan, J. R., Yang, E. J., Lee, S. H., and Kim, S. Y.: Tintinnid ciliates of Amundsen Sea (Antarctica) plankton communities, Polar Res., 32, 19784, https://doi.org/10.3402/polar.v32i0.19784, 2013.
D'Orbigny, M. D.: Tableau méthodique de la classe des Céphalopodes, Ann. Sci. Nat., 7, 245–314, 1826.
Downie, C., Evitt, W. R., and Sarjeant, W. A. S.: Dinoflagellates, hystrichospheres, and the classification of the acritarchs, Stanford Univ. Pubs. Geol. Sci., 7, 16, 1963.
Dumont, H. J., Nandini, S., and Sarma, S. S. S.: Cyst ornamentation in aquatic invertebrates?: a defence against egg-predation, Hydrobiologia, 486, 161–167, 2002.
Eaton, G. L.: A morphogenetic series of dinoflagellate cysts from the Bracklesham Beds of the Isle of Wight, Hampshire, England, in: Proceedings of the Second Planktonic Conference, Rome, 1970, edited by: Farinacci, A., 355–379, Edizioni Tecnoscienza, Rome, 1971.
Ehrenberg, C. G.: Animalia evertebrata, in: Symbolae physicae seu icones et descriptiones naturalium novorum aut minus cognitorum quae ex itineribus Lybiam Aegyptum Nubiam Dongalam Syriam Arabiam et Habessinian. Pars Zoologica, edited by: Hemprich, P. C. and Ehrenberg, C. G., Abhandlungen der deutschen Akademie der Wissenschaften, 1831.
Eisenack, A.: Mikroplankton aus dem norddeutsche Apt nebst einigen Bemerkungen über fossile Dinoflagellaten, Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 106, 383–422, 1958.
Ellegaard, M. and Moestrup, Ø.: Fine structure of the flagellar apparatus and morphological details of Gymnodinium nolleri sp. nov. (Dinophyceae), an unarmored dinoflagellate producing a microreticulate cyst, Phycologia, 38, 289–300, 1999.
Ellegaard, M., Figueroa, R. L., and Versteegh, G. J. M.: Dinoflagellate life cycles, strategy and diversity: key foci for future research, in: Biological and Geological Perspectives of Dinoflagellates, edited by: Lewis, J. M., Marret, F., and Bradley, L. R., 249–261, The Micropalaeontological Society, Special Publications, London, 2013.
Esper, O. and Zonneveld, K. A. F.: Distribution of organic-walled dinoflagellate cysts in surface sediments of the Southern Ocean (eastern Atlantic sector) between the Subtropical Front and the Weddell Gyre, Mar. Micropaleontol., 46, 177–208, https://doi.org/10.1016/S0377-8398(02)00041-5, 2002.
Esper, O. and Zonneveld, K. A. F.: The potential of organic-walled dinoflagellate cysts for the reconstruction of past sea-surface conditions in the Southern Ocean, Mar. Micropaleontol., 65, 185–212, https://doi.org/10.1016/j.marmicro.2007.07.002, 2007.
Evitt, W. R.: A discussion and proposals concerning fossil dinoflagellates, hystrichospheres and acritarchs, II, P. Natl. Acad. Sci. USA, 49, 298–302, 1963.
Evitt, W. R.: Sporopollenin dinoflagellate cysts. Their morphology and interpretation, American Association of Stratigraphic Palynology Foundation, Austin, Texas, 333, 1985.
Expedition 318 Scientists: Site U1357, in: Proceedings of the Integrated Ocean Drilling Program, vol. 318, edited by: Escutia, C., Brinkhuis, H., Klaus, A., and the Expeditions 318 Scientists, 1–74, Integrated Ocean Drilling Program Management International, Inc., Tokyo, 2011.
Fabiano, M., Chiantore, M., Povero, P., Cattaneo-Vietti, R., Pusceddu, A., Misic, C., and Albertelli, G.: Short-term variations in particulate matter flux in Terra Nova Bay, Ross Sea, Antarct. Sci., 9, 143–149, https://doi.org/10.1017/S0954102097000187, 1997.
Fauchald, K.: The Polychaete Worms. Definitions and Keys to the Orders, Families and Genera, Nat. Hist. Museum Los Angeles Cty. Sci. Ser., 28, 1–188, 1977.
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L.: A classification of fossil and living dinoflagellates, Micropaleontology Press Special Paper, 7, 351, 1993.
Fensome, R. A., Bujak, J., Dale, B., Davies, E. H., Dodge, J. D., Edwards, L. E., Harland, R., Head, M. J., Lentin, J. K., Lewis, J., Matsuoka, K., Norris, G., Sarjeant, W. A. S., Taylor, F. J. R., and Williams, G. L.: Proposal to conserve the name Protoperidiniaceae against Congruentidiaceae, Diplopsalaceae, and Kolkwitziellaceae (Dinophyceae), Taxon, 47, 727–730, 1998.
Fensome, R. A., Guerstein, G. R., and Williams, G. L.: New insights on the Paleogene dinoflagellate cyst genera Enneadocysta and Licracysta gen. nov. based on material from offshore eastern Canada and southern Argentina, Micropaleontology, 52, 385–410, 2006.
Fertouna-Bellakhal, M., Dhib, A., Béjaoui, B., Turki, S., and Aleya, L.: Driving factors behind the distribution of dinocyst composition and abundance in surface sediments in a western Mediterranean coastal lagoon?: Report from a high resolution mapping study, Mar. Pollut. Bull., 84, 347–362, https://doi.org/10.1016/j.marpolbul.2014.04.041, 2014.
Filipova-Marinova, M.: Archaeological and paleontological evidence of climate Dynamics, sea level change, and coastline migration in the Bulgarian sector of the Circum-Pontic Region, in: The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement, edited by: Yanko-Hombach, V., Gilbert, A. S., Panin, N., and Dolukhanov, P. M., 453–481, Springer, New York, 2007.
Filipova-Marinova, M., Pavlov, D., Vergiev, S., Slavchev, V., and Giosan, L.: Palaeoecology and Geoarchaeology of Varna Lake, Northeastern Bulgaria, Comptes rendus l'Académie Bulg. des Sci., 66, 377–392, 2013.
Fjellså, A. and Nordberg, K.: Toxic dinoflagellate “blooms” in the Kattegat, North Sea, during the Holocene, Palaeogeogr. Palaeocl., 124, 87–105, https://doi.org/10.1016/0031-0182(96)00009-0, 1996.
Foissner, W., Müller, H., and Agatha, S.: A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora), Eur. J. Protistol., 43, 295–314, https://doi.org/10.1016/j.ejop.2007.06.001, 2007.
Fonda Umani, S., Monti, M., Bergamasco, A., Cabrini, M., De Vittor, C., Burba, N., and Del Negro, P.: Plankton community structure and dynamics versus physical structure from Terra Nova Bay to Ross Ice Shelf (Antarctica), J. Marine Syst., 55, 31–46, https://doi.org/10.1016/j.jmarsys.2004.05.030, 2005.
Frieling, J., Reichart, G.-J., Middelburg, J. J., Röhl, U., Westerhold, T., Bohaty, S. M., and Sluijs, A.: Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, 2018.
Froneman, P. W. and Pakhomov, E. A.: Trophic importance of the chaetognaths Eukrohnia hamata and Sagitta gazellae in the pelagic system of the Prince Edward Islands (Southern Ocean), Polar Biol., 19, 242–249, 1998.
Fujiwara, A., Hirawake, T., Suzuki, K., Imai, I., and Saitoh, S.-I.: Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean, Biogeosciences, 11, 1705–1716, https://doi.org/10.5194/bg-11-1705-2014, 2014.
Gaarder, K. R.: Phytoplankton Studies from the Trømso District 1930–31, Trømso Museums Arshefter Naturh. Avd. Nr. 11, 55, 1, 1–159, 1938.
Gaarder, K. R.: Coccolithineae, Silicoflagellatae, Pterospermataceae and other forms from the `Michael Sars' North Atlantic Deep-Sea Expedition 1910, Report on the Scientific Results of the `Michael Sars' North Atlantic Deep-Sea Expedition 1910 2, 4, 1–20, 1954.
Gambi, M. C., Lorenti, M., Russo, G. F., and Scipione, M. B.: Benthic associations of the shallow hard bottoms off Terra Nova Bay, Ross Sea: zonation, biomass and population structure, Antarct. Sci., 6, 449–462, 1994.
Garrison, D. L. and Buck, K. R.: Protozooplankton in the Weddell Sea, Antarctica: Abundance and Distribution in the Ice-Edge Zone, Polar Biol., 9, 341–351, 1989.
Garzio, L. M. and Steinberg, D. K.: Microzooplankton community composition along the Western Antarctic Peninsula, Deep-Sea Res. Pt. I, 77, 36–49, https://doi.org/10.1016/j.dsr.2013.03.001, 2013.
Gibson, J. A. E. and Zale, R.: Holocene development of the fauna of Lake Boeckella, northern Antarctic Peninsula, Holocene, 16, 625–634, https://doi.org/10.1191/0959683606hl959rp, 2006.
Gibson, J. A. E., Cromer, L., Agius, J. T., McInnes, S. J., and Marley, N. J.: Tardigrade eggs and exuviae in Antarctic lake sediments: Insights into Holocene dynamics and origins of the fauna, J. Limnol., 66, 65–71, https://doi.org/10.4081/jlimnol.2007.s1.65, 2007.
Gowing, M. M. and Garrison, D. L.: Abundance and feeding ecology of larger protozooplankton in the ice edge zone of the Weddell and Scotia Seas during the austral winter, Deep-Sea Res., 39, 893–919, 1992.
Grube, A. E.: Die Familien der Anneliden, Archiv für Naturgeschichte, 16, Bd. 1, 249–364, 1850.
Guillou, L., Eikrem, W., Chrétiennot-Dinet, M.-J., Le Gall, F., Massana, R., Romari, K., Pedrós-Alió, C., and Vaulot, D.: Diversity of Picoplanktonic Prasinophytes Assessed by Direct Nuclear SSU rDNA Sequencing of Environmental Samples and Novel Isolates Retrieved from Oceanic and Coastal Marine Ecosystems, Protist, 155, 193–214, 2004.
Guilloux, L., Rigaut-Jalabert, F., Jouenne, F., Ristori, S., Viprey, M., Not, F., Vaulot, D., and Simon, N.: An annotated checklist of Marine Phytoplankton taxa at the SOMLIT-Astan time series off Roscoff (Western English Channel, France): data collected from 2000 to 2010, Cah. Biol. Mar., 54, 247–256, 2013.
Haeckel, E.: Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formenwissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie, Bd. 2: Allgemeine Entwickelungsgeschichte der Organismen, Georg Reimer, Berlin, 462, 1866.
Haeckel, E.: Ueber einige neue pelagische Infusorien, Jenaische Zeitschrift für Naturwissenschaft 7 (year 1871), 561–568, 1873.
Haeckel, E.: Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammegeschichte, Erster Theil: Systematische Phylogenie der Protisten und Pflanzen, Georg Reimer, Berlin, 400, 1894.
Hajós, M.: A mecseki mioc'en diatomaföld rétegek mikroplanktonja. (Das Mikroplankton der Kieselgurschichten im Miozän des Mecsekgebirges), Magyar Állami Földtani Intézet jelentése az 1964. évről., 139–171, 1966.
Hallegraeff, G. M.: Transport of toxic dinoflagellates via ships' ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies, Mar. Ecol. Prog. Ser., 168, 297–309, 1998.
Hällfors, G.: Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups), Baltic Sea Environment Proceedings, 95, 1–208, 2004.
Hannah, M. J.: The palynology of ODP site 1165, Prydz Bay, East Antarctica?: A record of Miocene glacial advance and retreat, Palaeogeogr. Palaeocl., 231, 120–133, https://doi.org/10.1016/j.palaeo.2005.07.029, 2006.
Hannah, M. J. and Fielding, C. R.: Chronostratigraphy of the CRP-3 Drillhole, Victoria Land Basin, Antarctica © Terra Antartica Publication, 2001.
Hannah, M. J., Wrenn, J. H., and Wilson, G. J.: Early Miocene and Quaternary Marine Palynomorphs from Cape Roberts Project CRP-1, McMurdo Sound, Antarctica, Terra Ant., 5, 527–538, 1998.
Hannah, M. J., Wilson, G. J., and Wrenn, J. H.: Oligocene and Miocene Marine Palynomorphs from CRP-2/2A, Victoria Land Basin, Antarctica, Terra Ant., 7, 503–511, 2000.
Hannah, M. J., Wrenn, J. H., and Wilson, G. J.: Preliminary Report on Early Oligocene and Latest Eocene Marine Palynomorphs from CRP-3 Drillhole, Victoria Land Basin, Antarctica, Terra Ant., 8, 383–388, 2001.
Hansen, B. W., Drillet, G., Kristensen, R. M., Sørensen, T. F., and Tøttrup, M. T.: Production, hatching success and surface ornamentation of eggs of calanoid copepods during a winter at 57° N, Mar. Biol., 157, 59–68, https://doi.org/10.1007/s00227-009-1295-x, 2010.
Harðardóttir, S., Lundholm, N., Moestrup, Ø., and Nielsen, T. G.: Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter-spring transition, Polar Biol., 37, 1479–1494, https://doi.org/10.1007/s00300-014-1538-2, 2014.
Harland, R. and Pudsey, C. J.: Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica, Mar. Micropaleontol., 37, 77–99, https://doi.org/10.1016/S0377-8398(99)00016-X, 1999.
Harland, R., Pudsey, C. J., Howe, J. A., and Fitzpatrick, M. E. J.: Recent dinoflagellate cysts in a transect from the Falkland Trough to the Weddell Sea, Antarctica, Palaeontology, 41, 1131–1998, 1998.
Harland, R., FitzPatrick, M. E. J., and Pudsey, C. J.: Latest Quaternary dinoflagellate cyst climatostratigraphy for three cores from the Falkland Trough, Scotia and Weddell Seas, Southern Ocean, Rev. Palaeobot. Palyno., 107, 265–281, https://doi.org/10.1016/S0034-6667(99)00023-8, 1999.
Harmsworth, R. V.: The Developmental History of Blelham Tarn (England) as Shown by Animal Microfossils, with Special Reference to the Cladocera, Ecol. Monogr., 38, 223–241, 1968.
Harris, R.: Copepods, in: Encyclopedia of Ocean Sciences, edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K., 640–650, Academic Press, San Diego, 2001.
Hartman, J. D., Sangiorgi, F., Bijl, P. K., and Versteegh, G. J. M.: Nucicla umbiliphora gen. et sp. nov.: a Quaternary peridinioid dinoflagellate cyst from the Antarctic margin, Palynology, 1–10, https://doi.org/10.1080/01916122.2018.1430070, 2018a.
Hartman, J. D., Sangiorgi, F., Salabarnada, A., Peterse, F., Houben, A. J. P., Schouten, S., Brinkhuis, H., Escutia, C., and Bijl, P. K.: Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 3: Insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions, Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, 2018b.
Hartman, J. D., Willmott, V., Peterse, F., Bijl, P. K., Sangiorgi, F., and Schouten, S.: A Holocene record of environmental change in the polynya-influenced waters of the Adélie Basin, East Antarctica, in preparation, 2018c.
Hashihama, F., Hirawake, T., Kudoh, S., Kanda, J., Furuya, K., Yamaguchi, Y., and Ishimaru, T.: Size fraction and class composition of phytoplankton in the Antarctic marginal ice zone along the 140° E meridian during February–March 2003, Polar Sci., 2, 109–120, https://doi.org/10.1016/j.polar.2008.05.001, 2008.
Head, M. J.: Dinoflagellate cysts, sporomorphs, and other palynomorphs from the marine uppermost Pliocene St. Erth Beds, Cornwall, southwestern England, The Paleontological Society, Memoir 31 (Suppl. to J. Paleontol. 67, 3), 1–62, 1993.
Head, M.: Modern dinoflagellate cysts and their biological affnities, in: Palynology: principles and applications, edited by: Jansonius, J. and McGregor, D. C., 1197–1248, American Association of Stratigraphic Palynologists Foundation, Salt Lake City, Utah, 1996.
Head, M. J., Harland, R., and Matthiessen, J.: Cold marine indicators of the late Quaternary: The new dinoflagellate cyst genus Islandinium and related morphotypes, J. Quaternary Sci., 16, 621–636, https://doi.org/10.1002/jqs.657, 2001.
Head, M. J., Riding, J. B., Eidvin, T., and Chadwick, R. A.: Palynological and foraminiferal biostratigraphy of (Upper Pliocene) Nordland Group mudstones at Sleipner, northern North Sea, Mar. Petrol. Geol., 21, 277–297, https://doi.org/10.1016/j.marpetgeo.2003.12.002, 2004.
Heikkilä, M., Pospelova, V., Hochheim, K. P., Kuzyk, Z. Z. A., Stern, G. A., Barber, D. G., and Macdonald, R. W.: Surface sediment dinoflagellate cysts from the Hudson Bay system and their relation to freshwater and nutrient cycling, Mar. Micropaleontol., 106, 79–109, https://doi.org/10.1016/j.marmicro.2013.12.002, 2014.
Hemleben, C., Bé, A. W. H., Anderson, O. R., and Tuntivate, S.: The morphology, organic layers and chamber formation of the planktonic foraminifer Globorotalia menardii (d'Orbigny), J. Foramin. Res., 7, 1–25, 1977.
Hill, R. S. and Scriven, L. J.: The angiosperm-dominated woody vegetation of Antarctica: A review, Rev. Palaeobot. Palyno., 86, 175–198, https://doi.org/10.1016/0034-6667(94)00149-E, 1995.
Hoem, S. A.: Norwegian Biodiversity Information Centre – Other datasets, Version 31.217, Natural History Museum, University of Oslo, Occurrence Dataset, https://doi.org/10.15468/tm56sc, last access: 8 February 2018.
Hopcroft, R.: Phytoplankton from the White Sea, Barents Sea, Norwegian Sea and Arctic Basin 1993–2003, Conservation of Arctic Flora and Fauna, Occurrence Dataset, https://doi.org/10.15468/tvpmov (last access: 8 February 2018), 2016.
Hopkins, C. C. E.: The male genital system, and spermatophore production and function in Euchaeta norvegica Boeck (Copepoda: Calanoida), J. Exp. Mar. Biol. Ecol., 35, 197–231, https://doi.org/10.1016/0022-0981(78)90076-X, 1978.
Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S., Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., van de Flierdt, T., Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., Brinkhuis, H., Dotti, C. E., Klaus, A., Fehr, A., Williams, T., Bendle, J. A. P., Carr, S. A., Dunbar, R. B., Flores, J.-A., Gonzàlez, J. J., Hayden, T. G., Iwai, M., Jimenez-Espejo, F. J., Katsuki, K., Kong, G. S., McKay, R. M., Nakai, M., Pekar, S. F., Riesselman, C., Sakai, T., Salzmann, U., Shrivastava, P. K., Tuo, S., Welsh, K., and Yamane, M.: Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation., Science, 340, 341–344, https://doi.org/10.1126/science.1223646, 2013.
Howe, J. A., Harland, R., and Pudsey, C. J.: Dinoflagellate cyst evidence for Quaternary palaeoceanographic change in the northern Scotia Sea, South Atlantic Ocean, Mar. Geol., 191, 55–69, https://doi.org/10.1016/S0025-3227(02)00498-X, 2002.
Ichinomiya, M., Nakamachi, M., Fukuchi, M., and Taniguchi, A.: Resting cells of microorganisms in the 20–100 µm fraction of marine sediments in an Antarctic coastal area, Polar Sci., 2, 27–32, https://doi.org/10.1016/j.polar.2007.12.001, 2008.
Inouye, I., Hori, T., and Chihara, M.: Absolute configuration analysis of the flagellar apparatus of Pterosperma cristatum (Prasinophyceae) and consideration of its phylogenetic position, J. Phycol., 26, 329–344, 1990.
Jacobson, D. M.: A brief history of dinoflagellate feeding research, J. Eukaryot. Microbiol., 46, 376–381, 1999.
Janssen, H. H. and Gradinger, R.: Turbellaria (Archoophora: Acoela) from Antarctic sea ice endofauna – examination of their micromorphology, Polar Biol., 21, 410–416, 1999.
Jörgensen, E.: Mediterranean Tintinnidae. Report of the Danish Oceanographical Expeditions 1908–1910 to the Mediterranean and adjacent seas, Vol. 2, Biology, No. 8, J.3 (Thor Expedition), Copenhagen, 109, 1924.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G. V: A conceptual model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, https://doi.org/10.1016/0377-8398(95)00047-X, 1995.
Kamiyama, T.: Comparative Biology of Tintinnid Cysts, in: The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, edited by: Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W., and Stoecker, D. K., 171–185, Wiley-Blackwell, Hoboken, New Jersey, USA, 2013.
Kamykowski, D., Reed, R. E., and Kirkpatrick, G. J.: Comparison of sinking velocity, swimming velocity, rotation and path characteristics among six marine dinoflagellate species, Mar. Biol., 113, 319–328, https://doi.org/10.1007/BF00347287, 1992.
Katajisto, T.: Development of Acartia bifilosa (Copepoda?: Calanoida) eggs in the northern Baltic Sea with special reference to dormancy, J. Plankton Res., 25, 357–364, 2003.
Kawachi, M.: Microbial Culture Collection, National Institute for Environmental Studies, Version 5.5, National Institute of Genetics, ROIS, Occurrence Dataset, https://doi.org/10.15468/8rml10 (last access: 8 February 2018), 2017.
Kemp, E. M.: Palynology of Leg 28 drill sites, Deep Sea Drilling Project, Initial Rep. DSDP, 28, 699–623, 1975.
Kennett, J. P. and Barker, P. F.: Latest Cretaceous to Cenozoic Climate and Oceanographic Developments in the Weddell Sea, Antarctica: an Ocean-Drilling Perspective, in: Proceedings of the Ocean Drilling Program, Scientific Results, vol. 113, edited by: Barker, P. F., Kennett, J. P., O'Connell, S., and Pisias, N. G., 937–960, 1990.
Kim, S. Y., Choi, J. K., Dolan, J. R., Shin, H. C., Lee, S., and Yang, E. J.: Morphological and Ribosomal DNA-based Characterization of Six Antarctic Ciliate Morphospecies from the Amundsen Sea with Phylogenetic Analyses, J. Eukaryot. Microbiol., 60, 497–513, https://doi.org/10.1111/jeu.12057, 2013.
Klumpp, B.: Beitrag zur Kenntnis der Mikrofossilien des mittleren und oberen Eozän, Palaeontographica, Abteilung A, 103, 377–406, 1953.
Kofoid, C. A. and Campbell, A. S.: A conspectus of the marine and freshwater ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the Eastern Tropical Pacific 1904–1905, Univ. Calif. Publ. Zool., 34, 1–403, 1929.
Koga, F.: On the Pelagic Eggs of Copepoda, J. Oceanogr. Soc. Japan, 24, 16–20, 1968.
Kozlowski, W. A., Deutschman, D., Garibotti, I., Trees, C., and Vernet, M.: An evaluation of the application of CHEMTAX to Antarctic coastal pigment data, Deep-Sea Res. Pt. I, 58, 350–364, https://doi.org/10.1016/j.dsr.2011.01.008, 2011.
Kramer, M., Swadling, K. M., Meiners, K. M., Kiko, R., Scheltz, A., Nicolaus, M., and Werner, I.: Antarctic sympagic meiofauna in winter?: Comparing diversity, abundance and biomass between perennially and seasonally ice-covered regions, Deep-Sea Res. Pt. II, 58, 1062–1074, https://doi.org/10.1016/j.dsr2.2010.10.029, 2011.
Kunz-Pirrung, M., Matthiessen, J., and De Vernal, A.: Relationships between dinoflagellate cyst assemblages in surface sediment and hydrographic conditions in the Bering and Chukchi seas, J. Quaternary Sci., 16, 667–680, https://doi.org/10.1002/jqs.652, 2001.
Kvenvolden, K. A., Rapp, J. B., Golan-Bac, M., and Hostettler, F. D.: Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica, Org. Geochem., 11, 291–302, https://doi.org/10.1016/0146-6380(87)90040-4, 1987.
Laackmann, H.: Antarktische Tintinnen, Zool. Anz., 31, 235–239, 1907.
Laackmann, H.: Die Tintinnodeen der Deutschen Südpolar-Expedition 1901–1903, in: Deutsche Südpolar-Expedition, 1901–1903, im Auftrage des Reichsamtes des Innern, Bd. 11, edited by: Von Drygalski, E., 341–496, Georg Reimer, Berlin, 1910.
Lamarck, J. B. P. A.: Philosophie Zoologique ou Exposition des Considérations relatives à l'histoire naturelle des Animaux, Tome Premier, Paris, 428, 1809.
Lankester, E. R.: Protozoa, in: The Encyclopedia Brittanica, 9th edn., 19, 830–866, 1885.
Leander, B. S. and Hoppenrath, M.: Ultrastructure of a novel tube-forming, intracellular parasite of dinoflagellates: Parvilucifera prorocentri sp. nov. (Alveolata, Myzozoa), Eur. J. Protistol., 44, 55–70, https://doi.org/10.1016/j.ejop.2007.08.004, 2008.
Lentin, J. K. and Williams, G. L.: A monograph of fossil peridinioid dinoflagellate cysts, Bedford Institute of Oceanography, Report Series BI-R-75-16, 1–237, 1976.
Levy, R. H. and Harwood, D. M.: Tertiary marine palynomorphs from McMurdo Sound erratics, Antarctica, in: Paleobiology and Paleoenvironments of Eocene Rocks, McMurdo Sound, East Antarctica, Antarctic Research Series 76, edited by: Stilwell, J. D. and Feldman, R. M., 183–242, American Geophysical Union, Washington D.C., 2000.
Li, Z., Pospelova, V., Liu, L., Zhou, R., and Song, B.: High-resolution palynological record of Holocene climatic and oceanographic changes in the northern South China Sea, Palaeogeogr. Palaeocl., 483, 94–124, https://doi.org/10.1016/j.palaeo.2017.03.009, 2017.
Lindemann, E.: Abteilung Peridineae (Dinoflagellatae), in: Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeben von A. Engler. Bd. 2, edited by: Engler, A. and Prantl, K., 3–104, Wilhelm Engelmann, Leipzig, 1928.
Linnaeus, C.: Systema Naturae per Regna Tria Naturae, secundum Classes, Ordines, Genera, Species cum characteribus, differentiis, synonymis, locis, Tomus I, 10th edition, Laurentius Salvius, Holmiae, 824, 1758.
Loots, C., Swadling, K. M., and Koubbi, P.: Annual cycle of distribution of three ice-associated copepods along the coast near Dumont d'Urville, Terre Adélie (Antarctica), J. Marine Syst., 78, 599–605, https://doi.org/10.1016/j.jmarsys.2009.01.003, 2009.
Magyar, I., Geary, D. H., and Müller, P.: Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe, Palaeogeogr. Palaeocl., 147, 151–167, https://doi.org/10.1016/S0031-0182(98)00155-2, 1999.
Malinverno, E., Maffioli, P., and Gariboldi, K.: Latitudinal distribution of extant fossilizable phytoplankton in the Southern Ocean?: Planktonic provinces, hydrographic fronts and palaeoecological perspectives, Mar. Micropaleontol., 123, 41–58, https://doi.org/10.1016/j.marmicro.2016.01.001, 2016.
Mangot, J. F., Debroas, D., and Domaizon, I.: Perkinsozoa, a well-known marine protozoan flagellate parasite group, newly identified in lacustrine systems: A review, Hydrobiologia, 659, 37–48, https://doi.org/10.1007/s10750-010-0268-x, 2011.
Marchant, H. J.: Prasinophytes, in: Antarctic Marine Protists, edited by: Scott, F. and Marchant, H. J., 308–315, Australian Biological Resources Study, Canberra and Australian Antarctic Division, Hobart, 2005.
Marcus, E.: Zur Anatomie und Ökologie mariner Tardigraden, Zoologische Jahrbücher, Abteilung für Systematik, 53, 487–558, 1927.
Marcus, N. H.: Ecological and evolutionary significance of resting eggs in marine copepods?: past, present, and future studies, Hydrobiologia, 320, 141–152, 1996.
Marin, B. and Melkonian, M.: Molecular Phylogeny and Classification of the Mamiellophyceae class. nov. (Chlorophyta) based on Sequence Comparisons of the Nuclear- and Plastid-encoded rRNA Operons, Protist, 161, 304–336, https://doi.org/10.1016/j.protis.2009.10.002, 2010.
Marine Biology Laboratory: MICROBIS database, Occurrence Dataset, https://doi.org/10.15468/wi6v9k, last access: 8 February 2018.
Marley, N. J., McInnes, S. J., and Sands, C. J.: Phylum Tardigrada: A re-evaluation of the Parachela, Zootaxa, 2819, 51–64, 2011.
Marret, F. and De Vernal, A.: Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean, Mar. Micropaleontol., 29, 367–392, https://doi.org/10.1016/S0377-8398(96)00049-7, 1997.
Marret, F. and Zonneveld, K. A. F.: Atlas of modern organic-walled dinoflagellate cyst distribution, Rev. Palaeobot. Palyno., 125, 1–200, https://doi.org/10.1016/S0034-6667(02)00229-4, 2003.
Marret, F., De Vernal, A., Benderra, F., and Harland, R.: Late quaternary sea-surface conditions at DSDP Hole 594 in the Southwest Pacific Ocean based on dinoflagellate cyst assemblages, J. Quaternary Sci., 16, 739–751, https://doi.org/10.1002/jqs.648, 2001.
Marsland, S. J., Church, J. A., Bindoff, N. L., and Williams, G. D.: Antarctic coastal polynya response to climate change, J. Geophys. Res., 112, C07009, https://doi.org/10.1029/2005JC003291, 2007.
Martin, F.: Acritarchs: a review, Biol. Rev. Camb. Philos., 68, 475–538, 1993.
McMinn, A.: Marine Quaternary dinoflagellate cysts of Australia, Papua-New Guinea, New Zealand and the Southern Ocean?: a review, Alcheringa, 26, 519–530, https://doi.org/10.1080/03115510208619541, 2002.
Medvedeva, L. A. and Nikulina, T. V: Catalogue of freshwater algae of the southern part of the Russian Far East, Dalnauka, Vladivostok, 2014.
Menéndez, C. A.: Microplancton fósil de sedimentos Terciarios y Cretácicos del norte de Tierra del Fuego (Argentina), Ameghiniana 4, 7–18, 1965.
Mertens, K. N., Ribeiro, S., Bouimetarhan, I., Caner, H., Combourieu Nebout, N., Dale, B., De Vernal, A., Ellegaard, M., Filipova, M., Godhe, A., Goubert, E., Grøsfjeld, K., Holzwarth, U., Kotthoff, U., Leroy, S. A. G., Londeix, L., Marret, F., Matsuoka, K., Mudie, P. J., Naudts, L., Peña-Manjarrez, J. L., Persson, A., Popescu, S.-M., Pospelova, V., Sangiorgi, F., van der Meer, M. T. J., Vink, A., Zonneveld, K. A. F., Vercauteren, D., Vlassenbroeck, J., and Louwye, S.: Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments?: Investigating its potential as salinity proxy, Mar. Micropaleontol., 70, 54–69, https://doi.org/10.1016/j.marmicro.2008.10.004, 2009.
Michels, J. and Gorb, S. N.: Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures, Beilstein J. Nanotech., 6, 674–685, https://doi.org/10.3762/bjnano.6.68, 2015.
Mikhalevich, V. I.: Major features of the distribution of Antarctic foraminifera, Micropaleontology, 50, 179–194, 2004.
Milne-Edwards, M.: Histoire naturelle des crustacés, comprenant l'anatomie, la physiologie et la classification de ces animaux, Tome Troisième, Librairie Encyclopedique de Roret, Paris, 638, 1840.
Moestrup, Ø., Inouye, I., and Hori, T.: Ultrastructural studies on Cymbomonas tetramitiformis (Prasinophyceae). I. General structure, scale microstructure, and ontogeny, Can. J. Botany, 81, 657–671, https://doi.org/10.1139/B03-055, 2003.
Moita, M. T. and Vilarinho, M. G.: Checklist of phytoplankton species off Portugal: 70 years (1929–1998) of studies, Portugaliae Acta Biol. Ser. B. Sist., 18, 5–50, 1999.
Montagnes, D. J. S.: Ecophysiology and Behaviour of Tintinnids, in: The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, edited by: Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W., and Stoecker, D. K., 85–121, Wiley-Blackwell, Hoboken, New Jersey, USA, 2013.
Montresor, M., Procaccini, G., and Stoecker, D. K.: Polarella glacialis, Gen. Nov., sp. Nov. (Dinophyceae): Suessiaceae are still alive, J. Phycol., 35, 186–197, 1999.
Montresor, M., Lovejoy, C., Orsini, L., Procaccini, G., and Roy, S.: Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis, Polar Biol., 26, 186–194, https://doi.org/10.1007/s00300-002-0473-9, 2003.
Morales Maqueda, M. A., Willmott, A. J., and Biggs, N. R. T.: Polynya Dynamics: A review of observations and modeling, Rev. Geophys., 42, RG1004, https://doi.org/10.1029/2002RG000116, 2004.
Morehead, S., Montagna, P., and Kennicutt II, M. C.: Comparing fixed-point and probabilistic sampling designs for monitoring the marine ecosystem near McMurdo Station, Ross Sea, Antarctica, Antarct. Sci., 20, 471–484, https://doi.org/10.1017/S0954102008001326, 2008.
Moro, I., La Rocca, N., Valle, L. D., Moschin, E., Negrisolo, E., and Andreoli, C.: Pyramonas australis sp. nov. (Prasinophyceae, Chlorophyta) form Antarctica: fine structure and molecular phylogeny, Eur. J. Phycol., 37, 103–114, 2002.
Mousing, E. A., Ribeiro, S., Chisholm, C., Kuijpers, A., Moros, M. and Ellegaard, M.: Size differences of Arctic marine protists between two climate periods – using the paleoecological record to assess the importance of within-species trait variation, Ecol. Evol., 7, 3–13, https://doi.org/10.1002/ece3.2592, 2017.
Mudie, P. J.: Circum-arctic Quaternary and Neogene marine palynofloras: paleoecology and statistical analysis, in: Neogene and Quaternary dinoflagellate cysts and acritarchs, edited by: Head, M. X. and Wrenn, J. H., 347–390, American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, 1992.
Mudie, P. J. and Harland, R.: Chapter 21. Aquatic Quaternary, in: Palynology: Principles and Applications, edited by: Jansonius, J. and McGregor, D. C., 843–877, American Association of Stratigraphic Palynologists Foundation, Dallas, Texas, 1996.
Mudie, P. J., Marret, F., Rochon, A., and Aksu, A. E.: Non-pollen palynomorphs in the Black Sea corridor, Veg. Hist. Archaeobot., 19, 531–544, https://doi.org/10.1007/s00334-010-0268-9, 2010.
Mudie, P. J., Leroy, S. A. G., Marret, F., Gerasimenko, N. P., Kholeif, S. E. A., Sapelko, T., and Filipova-Marinova, M.: Nonpollen palynomorphs: indicators of salinity and environmental change in the Caspian – Black Sea – Mediterranean corridor, in: Geology and Geoarchaeology of the Black Sea Region: Beyond the Flood Hypothesis, vol. 473, edited by: Buynevich, I. V., Yanko-Hombach, V., Gilbert, A. S., and Martin, R. E., 89–115, The Geological Society of America Special Paper, Boulder, Colorado, 2011.
Müller, H. and Wünsch, C.: Seasonal dynamics of cyst formation of pelagic strombidiid ciliates in a deep prealpine lake, Aquat. Microb. Ecol., 17, 37–47, 1999.
Nakayama, T., Marin, B., Kranz, H. D., Surek, B., Huss, V. A. R., Inouye, I., and Melkonian, M.: The Basal Position of Scaly Green Flagellates among the Green Algae (Chlorophyta) is Revealed by Analyses of Nuclear-Encoded SSU rRNA Sequences, Protist, 149, 367–380, https://doi.org/10.1016/S1434-4610(98)70043-4, 1998.
Ní Fhlaithearta, S., Ernst, S. R., Nierop, K. G. J., de Lange, G. J., and Reichart, G.-J.: Molecular and isotopic composition of foraminiferal organic linings, Mar. Micropaleontol., 102, 69–78, https://doi.org/10.1016/j.marmicro.2013.06.004, 2013.
Ocean Biogeographic Information System: NODC WOD01 Plankton Database, Occurrence Dataset, https://doi.org/10.15468/ahpulo, last access: 8 February 2018.
O'Kelly, C. J.: Origin and Early Evolution of Green Plants, in: Evolution of Primary Producers in the Sea, edited by: Falkowski, P. G. and Knoll, A. H., 287–309, Academic Press, Burlington, 2007.
Orlova, T. Y., Morozova, T. V., Gribble, K. E., Kulis, D. M., and Anderson, D. M.: Dinoflagellate cysts in recent marine sediments from the east coast of Russia, Bot. Mar., 47, 184–201, https://doi.org/10.1515/BOT.2004.019, 2004.
Ostenfeld, C. H. and Schmidt, J.: Plankton fra det Røde Hav og Adenbugten (Plankton from the Red Sea and Gulf of Aden), in: Videnskabilige Meddelelser fra Dansk Naturhistorisk Forening, for Aaret 1901, 141–182, Bianco Lunos, Kjøbenhavn, 1902.
Pals, J. P., van Geel, B., and Delfos, A.: Paleoecoogical studies in the Klokkeweel Bog near Hoogkarspel (Prov. of Noord-Holland), Rev. Palaeobot. Palyno., 30, 371–418, 1980.
Parke, M., Boalch, G. T., Jowett, R., and Harbour, D. S.: The genus Pterosperma (Prasinophyceae): species with a single equatorial ala, J. Mar. Biol. Assoc. UK, 58, 239–276, 1978.
Pascher, A.: Über Flagellaten und Algen, Ber. Deut. Bot. Ges., 32, 136–160, 1914.
Pasternak, A. F. and Schnack-Schiel, S. B.: Seasonal feeding patterns of the dominant Antarctic copepods Calanus propinquus and Calanoides acutus in the Weddell Sea, Polar Biol., 24, 771–784, https://doi.org/10.1007/s003000100283, 2001.
Paxton, H. and Åkesson, B.: Redescription of Ophryotrocha puerilis and O. labronica (Annelida, Dorvilleidae), Mar. Biol. Res., 3, 3–19, https://doi.org/10.1080/17451000601024373, 2007.
Paxton, H. and Davey, A.: A new species of Ophryotrocha (Annelida?: Dorvilleidae) associated with fish farming at Macquarie Harbour, Tasmania, Australia, Zootaxa, 2509, 53–61, https://doi.org/10.5281/zenodo.196027, 2010.
Paxton, H., Wiklund, H., Alexander, F., and Taboada, S.: Is the Antarctic Ophryotrocha orensanzi (Annelida?: Dorvilleidae) a circumpolar non-specialized opportunist?, Syst. Biodivers., 15, 105–114, https://doi.org/10.1080/14772000.2016.1218371, 2017.
Petersen, S. V. and Schrag, D. P.: Antarctic ice growth before and after the Eocene-Oligocene Transition: New estimates from clumped isotope paleothermometry, Paleoceanography, 30, 1–13, https://doi.org/10.1002/2014PA002769, 2015.
Petz, W.: Ciliates, in: Antarctic Marine Protists, edited by: Scott, F. and Marchant, H. J., 347–448, Australian Biological Resources Study, Canberra and Australian Antarctic Division, Hobart, 2005.
Petz, W., Song, W., and Wilbert, N.: Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica, Stapfia, 40, 1–223, 1995.
Pieńkowski, A. J., Mudie, P. J., England, J. H., Smith, J. N., and Furze, M. F. A.: Late Holocene environmental conditions in Coronation Gulf, southwestern Canadian Arctic Archipelago: Evidence from dinoflagellate cysts, other non-pollen palynomorphs, and pollen, J. Quaternary Sci., 26, 839–853, https://doi.org/10.1002/jqs.1503, 2011.
Pieńkowski, A. J., England, J. H., Furze, M. F. A., Blasco, S., Mudie, P. J., and MacLean, B.: 11,000 yrs of environmental change in the Northwest Passage: A multiproxy core record from central Parry Channel, Canadian High Arctic, Mar. Geol., 341, 68–85, https://doi.org/10.1016/j.margeo.2013.04.008, 2013a.
Pieńkowski, A. J., Marret, F., Scourse, J. D., and Thomas, D. N.: Organic-walled microfossils from the north-west Weddell Sea, Antarctica: records from surface sediments after the collapse of the Larsen-A and Prince Gustav Channel ice shelves, Antarct. Sci., 25, 565–574, https://doi.org/10.1017/S0954102012001186, 2013b.
Pieńkowski, A. J., England, J. H., Furze, M. F. A., MacLean, B., and Blasco, S.: The late Quaternary environmental evolution of marine Arctic Canada?: Barrow Strait to Lancaster Sound, Quaternary Sci. Rev., 91, 184–203, https://doi.org/10.1016/j.quascirev.2013.09.025, 2014.
Pilato, G., Binda, M. G., and Lisi, O.: Tardigrades of the Seychelles Islands, with the description of three new species, Ital. J. Zool., 71, 171–178, https://doi.org/10.1080/11250000409356569, 2004.
Pouchet, M.: Chapter X. Histoire naturelle, in: Voyage de “La Manche” à l'île Jan-Mayen et au Spitzberg, edited by: Leroux, E., 155–217, Paris, 1894.
Prebble, J. G., Raine, J. I., Barrett, P. J., and Hannah, M. J.: Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica, Palaeogeogr. Palaeocl., 231, 41–57, https://doi.org/10.1016/j.palaeo.2005.07.025, 2006.
Prebble, J. G., Crouch, E. M., Carter, L., Cortese, G., Bostock, H., and Neil, H.: An expanded modern dinoflagellate cyst dataset for the Southwest Pacific and Southern Hemisphere with environmental associations, Mar. Micropaleontol., 101, 33–48, https://doi.org/10.1016/j.marmicro.2013.04.004, 2013.
Pross, J. and Brinkhuis, H.: Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts, Paläontologische Zeitschrift, 79, 53–59, 2005.
Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., Schouten, S., Bendle, J. a, Röhl, U., Tauxe, L., Raine, J. I., Huck, C. E., van de Flierdt, T., Jamieson, S. S. R., Stickley, C. E., van de Schootbrugge, B., Escutia, C., and Brinkhuis, H.: Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch, Nature, 488, 73–77, https://doi.org/10.1038/nature11300, 2012.
Radi, T., Bonnet, S., Cormier, M.-A., de Vernal, A., Durantou, L., Faubert, É., Head, M. J., Henry, M., Pospelova, V., Rochon, A., and Van Nieuwenhove, N.: Operational taxonomy and (paleo-)autecology of round, brown, spiny dinoflagellate cysts from the Quaternary of high northern latitudes, Mar. Micropaleontol., 98, 41–57, https://doi.org/10.1016/j.marmicro.2012.11.001, 2013.
Ravara, A., Marçal, A. R., Wiklund, H., and Hilário, A.: First account on the diversity of Ophryotrocha (Annelida, Dorvilleidae) from a mammal-fall in the deep-Atlantic Ocean with the description of three new species, Syst. Biodivers., 13, 555–570, https://doi.org/10.1080/14772000.2015.1047428, 2015.
Reid, P. C.: Mass encystment of a planktonic oligotrich ciliate, Mar. Biol., 95, 221–230, 1987.
Reid, P. C. and John, A. W. G.: Resting Cysts in the Ciliate Class Polyhymenophorea: Phylogenetic Implications, J. Protozool., 30, 710–713, 1983.
Rengefors, K., Laybourn-Parry, J., Logares, R., Marshall, W. A., and Hansen, G.: Marine-Derived Dinoflagellates in Antarctic Saline Lakes: Community Composition and Annual Dynamics, J. Phycol., 44, 592–604, https://doi.org/10.1111/j.1529-8817.2008.00517.x, 2008.
Ribeiro, S., Amorim, A., Andersen, T. J., Abrantes, F., and Ellegaard, M.: Reconstructing the history of an invasion?: the toxic phytoplankton species Gymnodinium catenatum in the Northeast Atlantic, Biol. Invasions, 14, 969–985, https://doi.org/10.1007/s10530-011-0132-6, 2012a.
Ribeiro, S., Moros, M., Ellegaard, M., and Kuijpers, A.: Climate variability in West Greenland during the past 1500 years: evidence from a high-resolution marine palynological record from Disko Bay, Boreas, 41, 68–83, https://doi.org/10.1111/j.1502-3885.2011.00216.x, 2012b.
Ribeiro, S., Amorim, A., Abrantes, F., and Ellegaard, M.: Environmental change in the Western Iberia Upwelling Ecosystem since the preindustrial period revealed by dinoflagellate cyst records, Holocene, 26, 874–889, https://doi.org/10.1177/0959683615622548, 2016.
Roberts, A. P., Wilson, G. S., Harwood, D. M., and Verosub, K. L.: Glaciation across the Oligocene-Miocene boundary in southern McMurdo Sound, Antarctica: New chronology from the CIROS-1 drill hole, Palaeogeogr. Palaeocl., 198, 113–130, https://doi.org/10.1016/S0031-0182(03)00399-7, 2003.
Roncaglia, L.: New acritarch species from Holocene sediments in central West Greenland, Grana, 43, 81–88, https://doi.org/10.1080/00173130410018966, 2004a.
Roncaglia, L.: Palynofacies analysis and organic-walled dinoflagellate cysts as indicators of palaeo-hydrographic changes: an example from Holocene sediments in Skálafjord, Faroe Islands, Mar. Micropaleontol., 50, 21–42, https://doi.org/10.1016/S0377-8398(03)00065-3, 2004b.
Rozema, P. D., Venables, H. J., Poll, W. H. Van De, Clarke, A., Meredith, M. P., and Buma, A. G. J.: Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification, Limnol. Oceanogr., 62, 235–252, https://doi.org/10.1002/lno.10391, 2017.
Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., and Kirk, P. M.: A higher level classification of all living organisms, PLoS One, 10, 1–60, https://doi.org/10.1371/journal.pone.0119248, 2015.
Sackett, W. M.: Organic carbon in sediments underlying the Ross Ice Shelf, Org. Geochem., 9, 135–137, https://doi.org/10.1016/0146-6380(86)90103-8, 1986.
Sangiorgi, F. and Donders, T. H.: Reconstructing 150 years of eutrophication in the north-western Adriatic Sea (Italy) using dinoflagellate cysts, pollen and spores, Estuar. Coast. Shelf S., 60, 69–79, https://doi.org/10.1016/j.ecss.2003.12.001, 2004.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R. D., Pross, J., Van De Flierdt, T., Bohaty, S. M., Levy, R., Williams, T., Escutia, C., and Brinkhuis, H.: Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9, 317, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Santella, L. and Ianora, A.: Subitaneous and diapause eggs in Mediterranean populations of Pontella mediterranea (Copepoda?: Calanoida): a morphological study, Mar. Biol., 105, 83–90, 1990.
Sarjeant, W. A. S.: A Restudy of some Dinoflagellate Cyst Holotypes in the University of Kiel Collections. II. The Eocene Holotypes of Barbara Klumpp (1953); with a Revision of the Genus Cordosphaeridium Eisenack, 1963, Meyniana, 33, 97–132, 1981.
Schiller, J.: Die planktontischen Vegetationen des adriatischen Meeres. B. Chrysomonadina, Heterokontae, Cryptomonadina, Eugleninae, Volvocales. 1. Systematischer Teil, Arch. Protistenkd., 53, 59–123, 1925.
Schmitz, F.: Halosphaera, eine neue Gattung grüner Algen aus dem Mittelmeer, in: Mitteilungen aus der zoologischen Station zu Neapel, Bd. 1, Wilhelm Engelmann, Leipzig, 1879.
Scholz, B. and Liebezeit, G.: Microphytobenthic dynamics in a Wadden Sea intertidal flat – Part II: Seasonal and spatial variability of non-diatom community components in relation to abiotic parameters, Eur. J. Phycol., 47, 120–137, https://doi.org/10.1080/09670262.2012.665251, 2012.
Schrank, E.: Small acritarchs from the Upper Cretaceous?: taxonomy, biological affinities and palaeoecology, Rev. Palaeobot. Palyno., 123, 199–235, 2003.
Schuster, R. O., Nelson, D. R., Grigarick, A. A., and Christenberry, D.: Systematic criteria of the Eutardigrada, T. Am. Microsc. Soc., 99, 284–303, 1980.
Seidenkrantz, M.-S., Roncaglia, L., Fischel, A., Heilmann-Clausen, C., Kuijpers, A., and Moros, M.: Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland, Mar. Micropaleontol., 68, 66–83, https://doi.org/10.1016/j.marmicro.2008.01.006, 2008.
Sluijs, A., Brinkhuis, H., Stickley, C. E., Warnaar, J., Williams, G. L., and Fuller, M.: Dinoflagellate Cysts From the Eocene – Oligocene Transition in the Southern Ocean?: Results From Odp Leg 189, Proc. ODP, Sci. Results, 189, 1–42, 2003.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., Clemens, S., Cronin, T., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R., Kaminski, M., King, J., Koc, N., Martinez, N. C., McInroy, D., Moore Jr., T. C., O'Regan, M., Onodera, J., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D. C., St John, K. E. K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., and Yamamoto, M.: Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 441, 610–613, https://doi.org/10.1038/nature04668, 2006.
Sluijs, A., Röhl, U., Schouten, S., Brumsack, H.-J., Sangiorgi, F., Sinninghe Damsté, J. S., and Brinkhuis, H.: Arctic late Paleocene – Early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302), Paleoceanography, 23, PA1S11, https://doi.org/10.1029/2007PA001495, 2008.
Sluijs, A., Brinkhuis, H., Williams, G. L., and Fensome, R. A.: Taxonomic revision of some Cretaceous-Cenozoic spiny organic-walled peridiniacean dinoflagellate cysts, Rev. Palaeobot. Palyno., 154, 34–53, https://doi.org/10.1016/j.revpalbo.2008.11.006, 2009.
Small, E. B. and Lynn, D. H.: Phylum Ciliophora, in: An Illustrated Guide to the Protozoa, edited by: Lee, J. J., Hunter, S. H., and Bovee, E. C., 393–575, Society of Protozool. Spec. Publ., Lawrence, Kansas, 1985.
Smith Jr., W. O., Shields, A. R., Dreyer, J. C., Peloquin, J. A., and Asper, V.: Interannual variability in vertical export in the Ross Sea: Magnitude, composition, and environmental correlates, Deep-Sea Res. Pt. I, 58, 147–159, https://doi.org/10.1016/j.dsr.2010.11.007, 2011.
Spallanzani, L.: Opuscoli di fisica animale, e vegetabile, Volume Secondo, Presso la Societa Tipografica, 277, 1776.
Stirling, I.: The importance of polynas, ice edges, and leads to marine mammals and birds, J. Marine Syst., 10, 9–21, https://doi.org/10.1016/S0924-7963(96)00054-1, 1997.
Stocchi, P., Escutia, C., Houben, A. J. P., Vermeersen, B. L. A., Bijl, P. K., Brinkhuis, H., DeConto, R. M., Galeotti, S., Passchier, S., Pollard, D., Brinkhuis, H., Escutia, C., Klaus, A., Fehr, A., Williams, T., Bendle, J. A. P., Bijl, P. K., Bohaty, S. M., Carr, S. A., Dunbar, R. B., Flores, J. A., Gonzàlez, J. J., Hayden, T. G., Iwai, M., Jimenez-Espejo, F. J., Katsuki, K., Kong, G. S., McKay, R. M., Nakai, M., Olney, M. P., Passchier, S., Pekar, S. F., Pross, J., Riesselman, C., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Sugisaki, S., Tauxe, L., Tuo, S., van de Flierdt, T., Welsh, K., and Yamane, M.: Relative sea-level rise around East Antarctica during Oligocene glaciation, Nat. Geosci., 6, 380–384, https://doi.org/10.1038/ngeo1783, 2013.
Stoecker, D. K.: Predators of Tintinnids, in: The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, edited by: Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W., and Stoecker, D. K., 122–144, Wiley-Blackwell, Hoboken, New Jersey, USA, 2013.
Stoecker, D. K., Gustafson, D. E., Merrell, J. R., Black, M. M. D., and Baier, C. T.: Excystment and growth of chrysophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice, J. Phycol., 33, 585–595, https://doi.org/10.1111/j.0022-3646.1997.00585.x, 1997.
Storkey, C. A.: Distribution of Marine Palynomorphs in Surface Sediments, Prydz Bay, Antarctica, Victoria University of Wellington, 2006.
Stover, L. E. and Evitt, W. R.: Analyses of pre-Pleistocene organic-walled dinoflagellates, Stanford Univ. Publ. Geol. Sci., 15, 1–300, 1978.
Stover, L. E. and Williams, G. L.: A revision of the Paleogene dinoflagellate genera Areosphaeridium Eaton 1971 and Eatonicysta Stover and Evitt 1978, Micropaleontology, 41, 97–141, 1995.
Struck, T. H., Purschke, G. and Halanych, K. M.: Phylogeny of Eunicida (Annelida) and Exploring Data Congruence Using a Partition Addition Bootstrap Alteration (PABA) Approach, Syst. Biol., 55, 1–20, 2006.
Strüder-Kypke, M. C. and Lynn, D. H.: Morphological versus molecular data – Phylogeny of tintinnid ciliates (Ciliophora, Choreotrichia) inferred from small subunit rRNA gene sequences, Denisia, 23, 417–424, 2008.
Subramoniam, T.: Spermatophore and Sperm Transfer Mechanisms, in: Sexual Biology and Reproduction in Crustaceans, edited by: Subramoniam, T., 325–367, Academic Press, Amsterdam, 2017.
Suda, S., Bhuiyan, M. A. H., and Faria, D. G.: Genetic diversity of Pyramimonas From Ryukyu Archipelago, Japan (Chlorophyceae, Pyramimonadales), J. Mar. Sci. Technol., 21, 285–296, https://doi.org/10.6119/JMST-013-1220-16, 2013.
Sütő, Z. and Szegő, É.: Szervesvázú mikroplankton-vizsgálatok az erdélyi-medencei marosorbói (Oarba de Mures) szarmata és pannóniai emelet határsztratotípus rétegeiből, Földtani Közlöny, 138, 279–296, 2008.
Sütőné Szentai, M.: Szervesvázú mikroplankton zónák a szarmata és a pannóniai emeletek határan Magyarországról, Acta Nat. Pannonica, 4, 5–34, 2012.
Swadling, M. K.: Influence of Seasonal Ice Formation on Life Cycle Strategies of Antarctic Copepods, University of Tasmania, Hobart, 1998.
Szaniawski, H.: New evidence for the protoconodont origin of chaetognaths, Acta Palaeontol. Pol., 47, 405–419, 2002.
Szaniawski, H. and Wrona, R.: Polychaete jaws from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica, Palaeontologia Polonica, 49, 105–125, 1987.
Taboada, S., Wiklund, H., Glover, A. G., Dahlgren, T. G., and Cristobo, J.: Two new Antarctic Ophryotrocha (Annelida?: Dorvilleidae) described from shallow-water whale bones, Polar Biol., 36, 1031–1045, https://doi.org/10.1007/s00300-013-1326-4, 2013.
Taboada, S., Bas, M., and Avila, C.: A new Parougia species (Annelida, Dorvilleidae) associated with eutrophic marine habitats in Antarctica, Polar Biol., 38, 517–527, https://doi.org/10.1007/s00300-014-1614-7, 2015.
Takahashi, K.: Microplankton from the Asagai Formation in the Joban Coal-Field, Trans. Proc. Paleontol. Soc. Japan N.S., 54, 201–214, 1964.
Takahashi, K.: Upper Cretaceous and Lower Paleogene microfloras of Japan, Rev. Palaeobot. Palyno., 5, 227–234, 1967.
Taylor, F. J. R.: On dinoflagellate evolution, BioSystems, 13, 65–108, 1980.
Terazaki, M., Takahashi, K. T., and Odate, T.: Zonal variations in abundance and body length of chaetognaths in the 140° E seasonal ice zone during the austral summer of 2001/02, Polar Sci., 7, 39–47, https://doi.org/10.1016/j.polar.2013.02.002, 2013.
The Expedition 318 Scientists: Expedition 318 summary, Proc. IODP, 318, 1–59, https://doi.org/10.2204/iodp.proc.318.101.2011, 2011.
Thomas, E., Booth, L., Maslin, M., and Shackleton, N. J.: Northeastern Atlantic benthic foraminifera during the last 45,000 years: Changes in productivity seen from the bottom up, Paleoceanography, 10, 545–562, https://doi.org/10.1029/94PA03056, 1995.
Thomson, P. G., Wright, S. W., Bolch, C. J. S., Nichols, P. D., Skerratt, J. H., and Mcminn, A.: Antarctic distribution, pigment and lipid composition, and molecular identification of the brine dinoflagellate Polarella glacialis (Dinophyceae), J. Phycol., 40, 867–873, https://doi.org/10.1111/j.1529-8817.2004.03169.x, 2004.
Thomson, P. G., McMinn, A., Kiessling, I., Watson, M., and Goldsworthy, P. M.: Composition and succession of dinoflagellates and chrysophytes in the upper fast ice of Davis Station, East Antarctica, Polar Biol., 29, 337–345, https://doi.org/10.1007/s00300-005-0060-y, 2006.
Thorrington-Smith, M.: Some new and little known phytoplankton forms from the West Indian Ocean, Brit. Phycol. J., 5, 51–56, https://doi.org/10.1080/00071617000650071, 1970.
Thorsen, T. A., Dale, B., and Nordberg, K.: `Blooms' of the toxic dinoflagellate Gymnodinium catenatum as evidence of climatic fluctuations in the late Holocene of southwestern Scandinavia, Holocene, 5, 435–446, 1995.
Throndsen, J.: The planktonic marine flagellates, in: Identifying marine phytoplankton, edited by: Tomas, C. R., 591–730, Academic Press, San Diego, 1997.
Thulin, G.: Über die Phylogenie und das System der Tardigraden, Hereditas, 11, 207–266, 1928.
Tragin, M., Lopes dos Santos, A., Christen, R., and Vaulot, D.: Diversity and ecology of green microalgae in marine systems?: an overview based on 18S rRNA gene sequences, Perspect. Phycol., 3, 141–154, https://doi.org/10.1127/pip/2016/0059, 2016.
Traverse, A. and Ginsburg, R. N.: Palynology of the surface sediments of Great Bahama Bank, as related to water movement and sedimentation, Mar. Geol., 4, 417–459, https://doi.org/10.1016/0025-3227(66)90010-7, 1966.
Troedson, A. L. and Riding, J. B.: Upper Oligocene to Lowermost Miocene Strata of King George Island, South Shetland Islands, Antarctica: Stratigraphy, Facies Analysis, and Implications for the Glacial History of the Antarctic Peninsula, J. Sediment. Res., 72, 510–523, https://doi.org/10.1306/110601720510, 2002.
Truswell, E. M.: Palynology of seafloor samples collected by the 1911–14 Australasian Antarctic Expedition: Implications for the geology of coastal East Antarctica, J. Geol. Soc. Aust., 29, 343–356, https://doi.org/10.1080/00167618208729218, 1982.
Ulrich, E. O. and Bassler, R. S.: A Classification of the toothlike fossils, Conodonts, with descriptions of American Devonian and Mississippian species, Proc. U.S. Natl. Museum, 68, 1–63, 1926.
Van Waveren, I. M.: Morphology of probable planktonic crustacean eggs from the Holocene of the Banda Sea (Indonesia), in: Neogene and Quaternary dinoflagellate cysts and acritarchs, edited by: Head, M. J. and Wrenn, J. H., 89–120, American Association of Stratigraphic Palynologists Foundation, Dallas, 1992.
Varela, M., Fernandez, E., and Serret, P.: Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996, Deep-Sea Res. Pt. II, 49, 749–768, 2002.
Venkatesan, M. I. and Kaplan, I. R.: The lipid geochemistry of Antarctic marine sediments: Bransfield Strait, Mar. Chem., 21, 347–375, 1987.
Verleye, T. J. and Louwye, S.: Recent geographical distribution of organic-walled dinoflagellate cysts in the southeast Pacific (25–53° S) and their relation to the prevailing hydrographical conditions, Palaeogeogr. Palaeocl., 298, 319–340, https://doi.org/10.1016/j.palaeo.2010.10.006, 2010.
Versteegh, G. J. M. and Zonneveld, K. A. F.: Determination of (palaeo-)ecological preferences of dinoflagellates by applying Detrended and Canonical Correspondence analysis to Late Pliocene dinoflagellate cyst assemblages of the south Italian Singa section, Rev. Palaeobot. Palyno., 84, 181–199, https://doi.org/10.1016/0034-6667(94)90050-7, 1994.
Von Siebold, C. T.: Lehrbuch der vergleichenden Anatomie der wirbellosen Thiere, in: Lehrbuch der vergleichenden Anatomie, Erster Theil, edited by: Von Siebold, C. T. and Stannius, H., 1–679, Veit and Comp., Berlin, 1848.
Wall, D., Dale, B., and Harada, K.: Description of new fossil dinoflagellates from the Late Quaternary of the Black Sea, Micropaleontology, 19, 18–31, 1973.
Warny, S.: Species of the acritarch genus Palaeostomocystis Deflandre 1937: Potential indicators of neritic subpolar to polar environments in Antarctica during the Cenozoic, Palynology, 33, 43–54, https://doi.org/10.1080/01916122.2009.9989682, 2009.
Warny, S., Wrenn, J. H., Bart, P. J., and Askin, R.: Palynology of the NBP03-01 A Transect in the Northern Basin, Western Ross Sea, Antarctica: a Late Pliocene Record, Palynology, 30, 151–182, 2006.
Warny, S., Askin, R. A., Hannah, M. J., Mohr, B. A. R., Raine, J. I., Harwood, D. M., Florindo, F., and the S. S. Team: Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene, Geology, 37, 955–958, https://doi.org/10.1130/G30139A.1, 2009.
Warny, S., Kymes, C. M., Askin, R. A., Krajewski, K. P., and Bart, P. J.: Remnants of Antarctic vegetation on King George Island during the early Miocene Melville Glaciation, Palynology, 40, 66–82, https://doi.org/10.1080/01916122.2014.999954, 2016.
Wasik, A.: Antarctic Tintinnids: Their Ecology, Morphology, Ultrastructure and Polymorphism, Acta Protozool., 37, 5–15, 1998.
Wasik, A., Mikolajczyk, E., and Ligowski, R.: Agglutinated loricae of some Baltic and Antarctic Tintinnina species (Ciliophora), J. Plankton Res., 18, 1931–1940, 1996.
Williams, G. L., Fensome, R. A., and MacRae, R. A.: The Lentins and Williams Index of Fossil Dinoflagellates 2017 Edition, Am. Assoc. Stratigr. Palynol. Contrib. Ser., 48, 1–1097, 2017.
Wilson, G. J.: Some new species of lower Tertiary Dinoflagellates from McMurdo sound, Antarctica, New Zeal. J. Bot., 5, 57–83, https://doi.org/10.1080/0028825X.1967.10428735, 1967.
Wrenn, J. H. and Hart, G. F.: Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica, Geol. Soc. Am. Mem., 169, 321–447, 1988.
Wrenn, J. H., Hannah, M. J., and Raine, J. I.: Diversity and Palaeoenvironmental Significance of Late Cainozoic Marine Palynomorphs from the CRP-1 Core, Ross Sea, Antarctica, Terra Ant., 5, 553–570, 1998.
Yi, S., Batten, D. J., and Joo, S.: Provenance of recycled palynomorph assemblages recovered from surficial glaciomarine sediments in Bransfield Strait, offshore Antarctic Peninsula, Cretaceous Res., 26, 906–919, https://doi.org/10.1016/j.cretres.2005.06.004, 2005.
Zawierucha, K., Kolicka, M., and Kaczmarek, Ł.: Re-description of the Arctic tardigrade Tenuibiotus voronkovi (Tumanov, 2007) (Eutardigrada; Macrobiotidea), with the first molecular data for the genus, Zootaxa, 4196, 498–510, https://doi.org/10.11646/zootaxa.4196.4.2, 2016.
Zevenboom, D., Brinkhuis, H., and Visscher, H.: Dinoflagellate cysts palaeoenvironmental analysis of the Oligocene/Miocene transition in northwest and central Italy, Giorn. Geol., 56, 155–169, 1994.
Zonneveld, K. A. F.: New species of organic walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean), Rev. Palaeobot. Palyno., 97, 317–337, 1997.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G.: Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., De Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J., Kim, S., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J., Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern dinoflagellate cyst distribution based on 2405 data points, Rev. Palaeobot. Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie...