Articles | Volume 39, issue 2
https://doi.org/10.5194/jm-39-183-2020
https://doi.org/10.5194/jm-39-183-2020
Research article
 | 
15 Oct 2020
Research article |  | 15 Oct 2020

Automated analysis of foraminifera fossil records by image classification using a convolutional neural network

Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron

Related authors

Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020,https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary

Related subject area

Planktic foraminifera
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024,https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024,https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023,https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023,https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Anieke Brombacher, Alex Searle-Barnes, Wenshu Zhang, and Thomas H. G. Ezard
J. Micropalaeontol., 41, 149–164, https://doi.org/10.5194/jm-41-149-2022,https://doi.org/10.5194/jm-41-149-2022, 2022
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], arXiv:1603.04467, 2016. a
Barbarin, N.: La reconnaissance automatisée des nannofossiles calcaires du cénozoïque, PhD thesis, Aix-Marseille Université, Aix-en-Provence, France, 2014. a
Beaufort, L.: IMAGES 3-IPHIS-MD106 cruise, RV Marion Dufresne, French Oceanographic Cruises, SISMER, https://doi.org/10.17600/97200010, 1997. a
Beaufort, L.: MD 126/MONA cruise, RV Marion Dufresne, French Oceanographic Cruises, SISMER, https://doi.org/10.17600/2200040, 2002. a
Beaufort, L. and Dollfus, D.: Automatic recognition of coccoliths by dynamical neural networks, Mar. Micropaleontol., 51, 57–73, https://doi.org/10.1016/j.marmicro.2003.09.003, 2004. a, b
Download
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.