Articles | Volume 43, issue 1
https://doi.org/10.5194/jm-43-121-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-121-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Alessio Fabbrini
CORRESPONDING AUTHOR
Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
Department of Geography, University of Galway, Distillery Road, Galway, H91 CF50, Ireland
Maria Rose Petrizzo
Department of Earth Sciences “A. Desio”, University of Milan, Via Mangiagalli 34, 20133 Milan, Italy
Isabella Premoli Silva
Department of Earth Sciences “A. Desio”, University of Milan, Via Mangiagalli 34, 20133 Milan, Italy
Luca M. Foresi
Department of Physical Sciences, Earth and Environment, University of Siena, Strada Laterina 8, 53100 Siena, Italy
Bridget S. Wade
Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
Related authors
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Flavia Boscolo-Galazzo, David Evans, Elaine Mawbey, William Gray, Paul Pearson, and Bridget Wade
EGUsphere, https://doi.org/10.5194/egusphere-2024-1608, https://doi.org/10.5194/egusphere-2024-1608, 2024
Short summary
Short summary
Here we present a comparison of results from the Mg/Ca and oxygen stable isotopes paleothermometers obtained from 57 modern to fossil species of planktonic foraminifera from the last 15 million of years. We find that the occurrence (or not) of species-species offsets in Mg/Ca is conservative between ancestor-descendent species, and that taking into account species kinship can significantly improve temperature reconstructions by several degrees.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Jakub Witkowski, Karolina Bryłka, Steven M. Bohaty, Elżbieta Mydłowska, Donald E. Penman, and Bridget S. Wade
Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, https://doi.org/10.5194/cp-17-1937-2021, 2021
Short summary
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
Related subject area
Planktic foraminifera
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Spine-like structures in Paleogene muricate planktonic foraminifera
Taxonomic review of living planktonic foraminifera
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Jurassic planktic foraminifera from the Polish Basin
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Ontogenetic disparity in early planktic foraminifers
Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea)
Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows
Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Anieke Brombacher, Alex Searle-Barnes, Wenshu Zhang, and Thomas H. G. Ezard
J. Micropalaeontol., 41, 149–164, https://doi.org/10.5194/jm-41-149-2022, https://doi.org/10.5194/jm-41-149-2022, 2022
Short summary
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary
Short summary
Three well-preserved new species of Middle Jurassic (Bajocian) planktonic foraminifera from the continental margin of northwest Australia are described. This is on the southern shelf of the Tethys Ocean, and these planktonics are the first to be reported from the Jurassic Southern Hemisphere. Described as new are Globuligerina bathoniana australiana n. ssp., G. altissapertura n. sp. and Mermaidogerina loopae n. gen. n. sp. The research is part of a study of regional Jurassic foraminifera.
Sophie Kendall, Felix Gradstein, Christopher Jones, Oliver T. Lord, and Daniela N. Schmidt
J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, https://doi.org/10.5194/jm-39-27-2020, 2020
Short summary
Short summary
Changes in morphology during development can have profound impacts on an organism but are hard to quantify as we lack preservation in the fossil record. As they grow by adding chambers, planktic foraminifera are an ideal group to study changes in growth in development. We analyse four different species of Jurassic foraminifers using a micro-CT scanner. The low morphological variability suggests that strong constraints, described in the modern ocean, were already acting on Jurassic specimens.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Cited articles
Akers, W. H.: Some planktonic foraminifera of the American Gulf Coast and suggested correlations with the Caribbean Tertiary, J. Paleontol., 29, 647–664, 1955.
Aze, T., Ezard, T. H., Purvis, A., Coxall, H. K., Stewart, D. R., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, 2011.
Bandet, Y., Burgois, J., Glacon, G., Gourinard, Y., Magne, J., and Muller, C.: Position du Langhien dans les echelles de chronologie biostratigraphique et geomagnetique, C. R. Acad. Sc. Paris, t. 299, Seire II, 10, 650–656, 1984.
Beldean, C., Filipescu, S., and Bălc, R.: Paleoenvironmental and biostratigraphic data for the Early Miocene of the north-western Transylvanian Basin based on planktonic foraminifera, Carpath. J. Earth Env., 7, 171–184, 2012.
Benot, C., Parra, A., and Diaz, Y. M. G.: Contirbucion mediante foraminiferos al studio de la problematica del Neogeno Andaluz, Publicaciones de la Universidad de Sevilla, Anales de la Universidad Hispalense Serie Ciencias, Vol. 22, 1979.
Berggren, W. A.: Neogene planktonic foraminifer magnetobiostratigraphy of the southern Kerguelen Plateau (Sites 747, 748, and 751), in: Proceedings Ocean Drilling Program, Sci. Res., 120, 631–647, 1992.
Bizon, G., Cita, M. B., Wright, R., and Mueller, C.: DSDP Leg 42A biostratigraphic range charts, DSDP Init. Repts., 42, 1095–1138, 1978.
Blow, W. H.: Age, correlation, and biostratigraphy of the upper Tocuyo (San Lorenzo) and Pozon Formations, eastern Falcon, Venezuela, Bull. Am. Paleontol., 39, 67–251, 1959.
Blow, W. H. and Banner, F. T.: The mid-Tertiary (Upper Eocene to Aquitanian) Globigerinaceae, in: Fundamentals of mid-Tertiary Stratigraphical Correlation, edited by: Eames, F. E., Banner, F. T., Blow, W. H., and Clarke, W. J., Cambridge University Press, Cambridge, 61–151, 1962.
Blow, W. H.: Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy, in: Proceedings of the first international conference on planktonic microfossils (Leiden, EJ Brill.), 1, 199–422, 1969.
Bolli, H. M.: Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera, Asociación Venezolana de Geología, Minería y Petróleo, 9, 3–26, 1966.
Bolli, H. M. and Saunders, J. B.: Oligocene to Holocene low latitude planktic foraminifera, in: Plankton Stratigraphy, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., Cambridge University Press, Cambridge, 155–262, 1985.
Brandano, M., Cornacchia, I., Catanzariti, R., and Tomassetti, L.: The Monterey Event in the Mediterranean platform to basin transition: The Guadagnolo Formation (Miocene, Prenestini Mountains, Central Apennines), Palaeogeogr. Palaeocl., 564, 110–177, 2021.
Carpenter, W. B.: Introduction to the Study of the Foraminifera: By William B. Carpenter, edited by: William, K. P. and Jones, T. R. Publ. Ray Soc., 22, 1862.
Cati, F. and Borsetti, A. M.: Notes on the evolution of some planktonic Foraminifera from the Miocene in Central Italy, Giornale di Geologia, 35, 253–262, 1968.
Cita, M. B. and Blow, W. H.: The biostratigraphy of the Langhian-Serravallian and Tortonian in the type sections in Italy, Riv. Ital. Paleont., 75, 549–603, 1969.
Cita, M. B. and Elter, G.: La posizione stratigrafica delle marne a Pteropodi delle Langhe della Collina di Torino ed il significato cronologico del Langhiano, Accad. Nazi. dei Lincei. Ser., 8, 360, 1960.
Cita, M. B. and Premoli Silva, I.: Globigerina bollii, nuova specie del Langhiano della Langhe, Riv. Ital. Paleontol. S., 66, 119–126, 1960.
Cita, M. B. and Premoli Silva, I.: Evolution of the planktonic foraminiferal assemblages in the stratigraphical interval between the type-Langhian and the type-Tortonian and biozonation of the Miocene of Piedmont, Giorn. Geol., 35, 1051–1082, 1968.
Cita, M. B., Premoli Silva, I., and Rossi, I.: Foraminiferi planktonici del Tortoniano-tipo, Riv. ital. Paleont. Stratigr., 66, 308–317, 1965.
Cita, M. B., Ryan, W. B., and Kidd, R. B.: Sedimentation rates in Neogene deep-sea sediments from the Mediterranean and geodynamic implications of their changes, Initial Rep. Deep Sea, 42, 991–1002, 1978.
Cornacchia, I., Brandano, M., and Agostini, S.: Miocene paleoceanographic evolution of the Mediterranean area and carbonate production changes: A review, Earth-Sci. Rev., 221, 103785, https://doi.org/10.1016/j.earscirev.2021.103785, 2021.
Crescenti U.: Sulla biostratigrafia del Miocene affiorante al confine marchigiano-abruzzese, Geol. Rom., 5, 1–54, 1966.
Dieci, G.: Pteropodi langhiani di Rio delle Bàgole (Montegibbio, Appennino settentrionale modenese), Boll. Soc. Paleont. Ital, 1, 31–42, 1961.
Di Stefano, A., Foresi, L. M., Lirer, F., Iaccarino, S. M., Turco, E., Amore, F. O., and Aziz, H. A.: Calcareous plankton high resolution biomagnetostratigraphy for the Langhian of the Mediterranean area, Riv. Ital. Paleontol. S., 114, 51–76, 2008.
d'Orbigny, A. D.: Tableau méthodique de la classe des Céphalopodes, in Annales des Sciences Naturelles, Series, 1, 96–314, 1826.
Fabbrini, A., Zaminga, I., Ezard, T. H., and Wade, B. S.: Systematic taxonomy of middle Miocene Sphaeroidinellopsis (planktonic foraminifera), J. Syst. Palaeontol., 19, 953–968, https://doi.org/10.1080/14772019.2021.1991500, 2021.
Fabbrini, A., Greco, M., Iacoviello, F., Kucera, M., Ezard, T., and Wade B. S.: Bridging the extant and fossil record of planktonic foraminifera: implications for the Globigerina lineage, Paleontology, 66, e12676, https://doi.org/10.1111/pala.12676, 2023.
Fayolle, F. and Wade, B. S.: The evolution of Eocene planktonic foraminifera Dentoglobigerina, J. Syst. Palaeontol., 19, 333–376, https://doi.org/10.1080/14772019.2021.1904021, 2021.
Foresi, L. M., Iaccarino, S., Mazzei, R., and Salvatorini, G.: New data on middle to late Miocene calcareous plankton biostratigraphy in the Mediterranean area, Rivista Italiana di Paleontologia e Stratigrafia, 104, 95–114, 1998.
Foresi, L. M., Iaccarino, S., Mazzei, R., Salvatorini, G., and Bambini, A. M.: Il plancton calcareo (foraminiferi e nannofossili) del Miocene delle Isole Tremiti, Paleontographia Italica, 88, 1–64, 2001.
Fornaciari, E., Iaccarino, S., Mazzei, R., Rio, D., Salvatorini, G., Bossio, A., and Monteforti, B.: Calcareous plankton biostratigraphy of the Langhian historical stratotype, in: Miocene Stratigraphy: An Integrated Approach. Developments in Palaeontology and Stratigraphy, 15, edited by: Montanari, A., Odin G. S., and Coccioni, R., Elsevier, Amsterdam, 89–96, 1997.
Garecka, M. and Olszewska, B.: Biostratigraphy of the Early Miocene of the Southern Poland based on planktic foraminifera and calcareous nannoplankton, Przegląd Geologiczny, 46, 712–721, 1998.
Hofker, J.: Foraminifera of Santa Cruz and Thatch-Island, Virginia-Archipelago West-Indies, Copenhagen Univ. Zool. Mus. Spolia (Skrifler), 15, 1–237, 1956.
Hofker, J.: La famille Turborotalitidae, Revue de Micropaléontologie, 19, 47–53, 1976.
Howe, H. V. and Wallace, W. F.: Foraminifera of the Jackson Eocene at Danville Landing on the Ouachita, Catahoula Parish, Louisiana (No. 13–15), Department of Conservation, Bureau of Scientific Research and Statistics, Minerals Section, 1932.
Jenkins, D. G.: Planktonic foraminifera from the Lakes Entrance oil shaft, Victoria, Australia, Micropaleontology, 6, 345–371, 1960.
Jenkins, D. G.: Planktonic foraminiferal zones and new taxa from the Danian to lower Miocene of New Zealand, New Zeal. J. Geol. Geop., 8, 1088–1126, 1965.
Kennett, J. P. and Srinivasan, M. S.: Neogene planktonic foraminifera, A phylogenetic atlas, Hutchinson Ross Pub. Co., 265 pp., 1983.
Krasheninnikov, V. A. and Pflaumann, U.: Zonal stratigraphy of Neogene deposits of the eastern part of the Atlantic Ocean by means of planktonic foraminifers, Leg 41 Deep Sea Drilling Project, in: Initial Reports of the Deep Sea Drilling Project, US Government Printing Office, 41, edited by: Lancelot, Y., Seibold, E., Dean, E. E., Jansa, L. F., Eremeev, V., Gardner, J., Cepek, P., Krasheninnikov, V. A., Pflaumann, U., Johnson, D., Rankin, J. G., and Trabant, P., Washington DC, 613–658, 1978.
Kroh, A., Harzhauser, M., Piller, W. E., and Rögl, F.: The Lower Badenian (Middle Miocene) Hartl Formation (Eisenstadt – Sopron Basin, Austria), in: Stratigrafia Austriaca, edited by: Piller, W. E., Österreichische Akademie der Wissenschaften, Schriftenreihe Erdwissenschaftliche Kommission 16, 87–109, 2003.
Kulyanda, M. and Hnylko, O.: Verification of the stratigraphy of Neogene molasses of the Boryslav-Pokuttya and Sambir Nappes in the north-west ern part of the Ukrainian Precarpathians, Heolohiyai Heokhimiya Horyuchykh Kopalyn, 158/159, 36–50, 2012.
Latas, M., Pearson, P. N., Poole, C. R., Fabbrini, A., and Wade, B. S.: Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera, J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, 2023.
Lirer, F., Foresi, L. M., Iaccarino, S. M., Salvatorini, G., Turco, E., Cosentino, C., and Caruso, A.: Mediterranean Neogene planktonic foraminifer biozonation and biochronology, Earth-Sci. Rev., 196, 102869, https://doi.org/10.1016/j.earscirev.2019.05.013, 2019.
Lourens, L. J., Hilgen, F. J., Laskar, J., Shackleton, N. J., and Wilson, D.: The Neogene period, in: A geologic time scale 2004, edited by: Gradstein, F. M., Ogg, J. G., and Smith, A. G., Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9780511536045, 2004.
Majewski, W.: Planktonic foraminiferal response to middle Miocene cooling in the Southern Ocean (ODP Site 747, Kerguelen Plateau), Acta Palaeontol. Pol., 55, 541–560, https://doi.org/10.4202/app.2009.0088, 2010.
Martinez Diaz, C.: Tres nuevas especies de foraminiferos en el Andaluciense, Acts Geológica Hispánica, 5, 1–3, 1970.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton zonation, in: Proceedings Second Planktonic Conference, Rome, 739–785, 1971.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F.: The Phanerozoic record of global sea-level change, Science, 310, 1293–1298, 2005.
Morard, R., Hassenrück, C., Greco, M., Fernandez-Guerra, A., Rigaud, S., Douady, C. J., and Kucera, M.: Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers, Nat. Commun., 13, 7135, https://doi.org/10.1038/s41467-022-34794-5, 2022.
Olsson, R. K., Hemleben, C., Huber, B. T., and Berggren, W. A.: Taxonomy, biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita, in: Atlas of Eocene Planktonic Foraminifera, Cushman Foundation of Foraminiferal Research, Special Publication, 41, edited by: Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A., 111–168, 2006.
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A.: Atlas of Eocene Planktonic Foraminifera, Cushman Foundation of Foraminiferal Research, Special Publication, 41, 513 pp., 2006.
Peryt, T. M., Peryt, D., Szaran, J., Hałas, S., and Jasionowski, M.: O poziomie anhydrytowym badenu w utworze wiertniczym Ryszkowa Wola 7 k, Jarosławia (SE Polska), Biuletyn Państwowego Instytutu Geologicznego, 379, 61–78, ISSN 02086603, 1998.
Petrizzo, M. R., Wade, B. S., and Gradstein, F. M.: Evolution and biostratigraphy: Planktonic Foraminifera, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., 74–87, ISBN 9780128243602, 2020.
Piller, W. E., Harzhauser, M., and Mandic, O.: Miocene Central Paratethys stratigraphy–current status and future directions, Stratigraphy, 4, 151–168, 2007.
Pishvanova, L. S.: On the zonation of the Miocene by means of planktonic foraminifera, G. Geol., 35, 233–254, 1968.
Pishvanova, L. S. and Tkachenko, O. F.: Paleogeograficheskie karty miocena zapadnykh oblastei Ukr. SSR. Földtani Közlöny, Bull. Hung. Geol. Soc., 101, 265–276, 1971.
Poole, C. R. and Wade, B. S.: Systematic taxonomy of the Trilobatus sacculifer plexus and descendant Globigerinoidesella fistulosa (planktonic foraminifera), J. Syst. Palaeontol., 17, 1989–2030, https://doi.org/10.1080/14772019.2019.1578831, 2019.
Popov, S. V., Golovina, L. A., Palcu, D. V., Goncharova, I. A., Pinchuk, T. N., Rostovtseva, Y. V., Akhmetiev, M. A., Aleksandrova, G. N., Zaporozhets, N. I., Bannikov, A. F., and Bylinskaya, M. E.: Neogene Regional Scale of the Eastern Paratethys, Stratigraphy and Paleontological Basis, Paleontol. J., 56, 1557–1720, https://doi.org/10.1134/S0031030122120024, 2022.
Rögl, F.: Die Foraminiferenfauna aus den Phosphoritsanden von Plesching bei Linz (Oberosterreich) – Ottnangien (Untermiozan), Sonderdruck aus Mitteilungen der Geologischen Gessellschaft in Wien, 213–234, 1969.
Rögl, F.: Late Oligocene and Miocene planktic foraminifera of the Central Paratethys, in: Plankton Stratigraphy, edited by: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., Cambridge University Press, Cambridge, 315–328, 1985.
Rögl, F.: Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene), Annalen des Naturhistorischen Museums in Wien, Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie, 279–310, 1998.
Rögl, F.: Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview), Geol. Carpath., 50, 339–349, 1999.
Rögl, F. and Spezzaferri, S.: Foraminiferal paleoecology and biostratigraphy of the Mühlbach section (Gaindorf Formation, lower Badenian), Lower Austria. Annalen des Naturhistorischen Museums in Wien, Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie, 23–75, 2003.
Ruggieri, G. and Sprovieri, R.: I microforaminiferi delle Marne di S. Cipirello, Lavori Ist. Geol. Palermo, 10, 1–26, 1970.
Scotese, C. R. and Wright, N.: PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic, PALEOMAP Project, 2018.
Signorini, R. and Alimenti, M.: La serie stratigrafica del Monte Rentella fra il Lago Trasimeno e Perugia, GEOL. ROM., VII, 75–94, 1968.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole, C. R., and Stalder, C.: Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of the new genus Trilobatus, PLoS One, 10, e0128108, https://doi.org/10.1371/journal.pone.0128108, 2015.
Spezzaferri, S., Olsson, R. K., Hemleben, C., Wade, B. S., and Coxall, H. K.: Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene Globoturborotalita, in: Atlas of Oligocene planktonic foraminifera, edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman Foundation Foraminiferal Research, Special Publication, 46, 231–268, 2018.
Suciu, A. A., Chira, C., and Popa, M. V.: Late Badenian Foraminifera, calcareous nannofossils and pteropod assemblages identified in boreholes from Cluj-Napoca, Acta Palaeontol. Rom., 5, 451–461, 2005.
Székely, S. F. and Filipescu, S.: Biostratigraphy and paleoenvironments of the Late Oligocene in the north-western Transylvanian Basin revealed by the foraminifera assemblages, Palaeogeogr. Palaeocl., 449, 484–509, 2016.
Szczechura, J.: Middle Miocene foraminiferal biochronology and ecology of SE Poland, Acta Palaeontol. Pol., 27, 1982.
Thunell, R. C.: Mediterranean Neogene planktonic foraminiferal biostratigraphy: quantitative results from DSDP Sites 125, 132 and 372, Micropaleontology, 412–437, 1979.
Verducci, M., Foresi, L. M., Scott, G. H., Sprovieri, M., Lirer, F., and Pelosi, N.: The Middle Miocene climatic transition in the Southern Ocean: evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes, Palaeogeogr. Palaeocl., 280, 371–386, 2009.
Viotti, C. and Mansour, A.: Tertiary planktonic foraminiferal zonation from the Nile Delta, U.A.R., Part II. Globigerina nilotica, a new species of foraminifera from the Miocene of the Nile Delta, in: Proceedings of the Third African Micropaleontological Colloquium, edited by: Said, R., Beckmann, J. P., Ghorab, M. A., El Ansary, S., Viotti, C., and Kerdany, M. T., Cairo March 1968, National Information and Documentation Centre, Cairo, 442–447, 1969.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth-Sci. Rev., 104, 111–142, 2011.
Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A.: Atlas of Oligocene planktonic foraminifera, Cushman Foundation Foraminiferal Research, Special Publication, 46, 528 pp., 2018
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita...