Articles | Volume 39, issue 2
https://doi.org/10.5194/jm-39-203-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-39-203-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Michael D. Simmons
CORRESPONDING AUTHOR
Halliburton, 97 Jubilee Avenue, Milton Park, Abingdon, OX14
4RW, UK
The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Vicent Vicedo
Departament de Paleontologia, Museu de Ciències Naturals de Barcelona, Passeig Picasso s/n, 08003 Barcelona, Spain
İsmail Ö. Yılmaz
Department of Geological Engineering, Middle East Technical
University, 06800, Ankara, Turkey
İzzet Hoşgör
Çalık Enerji, Oil and Gas Directorate,
Söğütözü, 06510, Ankara, Turkey
Oğuz Mülayim
TPAO, Turkish Petroleum Corporation, Adıyaman Directorate, 02040, Adıyaman, Turkey
Bilal Sarı
Department of Geological Engineering, Dokuz Eylül Üniversitesi, 35370, İzmir, Turkey
Related authors
No articles found.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Related subject area
Benthic foraminifera
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Abdallah, H. and Meister, C.: The Cenomanian–Turonian boundary in the
Gafsa-Chott area (southern part of central Tunisia): biostratigraphy,
palaeoenvironments, Cretaceous Res., 18, 197–236, 1997.
Afghah, M. and Fadaei, H. R.: Biostratigraphy of Cenomanian succession in
Zagros area (southwest of Iran), Geosci. J., 19, 257–271, 2015.
Afghah, M., Yousefzadeh, A., and Shirdel, S.: Biostratigraphic Revision of
Middle Cretaceous Succession in South Zagros Basin (SW of Iran), Journal of
Earth Science and Climatic Change, 5, 1000216, https://doi.org/10.4172/2157-7617.1000216, 2014.
Al-Dulaimy, R. T. and Al-Sheikhly, S. S.: Biostratigraphy of the Mishrif
Formation from well Amarah-1 Southeastern Iraq, Iraqi Bulletin of Geology
and Mining, 9, 1–14, 2013.
Arnaud-Vanneau, A.: Charentia cuvillieri, in: Les grands
Foraminiferes du Cretace moyen de la region mediterranenne, edited by: Schroeder, R. and Neumann, M., Geobios, Mem.
spec., 7, 17–18, 1985.
Arnaud-Vanneau, A. and Peybernès, B.: Les représentants
éocrétacés du genre Nautiloculina Mohler, 1938 (Foraminifera, Fam.
Lituolidae?) dans les chaines subalpines septentrionales (Vercors) et les
pyrénées Franco-Espagnoles: Revision de Nautiloculina cretacea Peybernès, 1976 et
description de Nautiloculina bronnimanni n. sp., Geobios, 11, 67–81, 1978.
Arnaud-Vanneau, A., Boisseau, T., and Darsac, C.: The genus Trocholina Paalzow, 1922
and its main species in the Cretaceous, Revue de Paléobiologie, Special
Volume 2, 353–377, 1988.
Assadi, A., Honarmand, J., Moallemi, S. A., and Abdollahie-Fard, I.:
Depositional environments and sequence stratigraphy of the Sarvak Formation
in an oil field in the Abadan Plain, SW Iran, Facies, 62, https://doi.org/10.1007/s10347-016-0477-5, 2016.
Banner, F. T. and Simmons, M. D.: Calcareous algae and foraminifera as
water-depth indicators: an example from the Early Cretaceous carbonates of
northeast Arabia, in: Micropalaeontology and Hydrocarbon
Exploration in the Middle East, edited by: Simmons, M. D., Chapman and Hall, London, 243–252, 1994.
Banner, F. T., Simmons, M. D., and Whittaker, J. E.: The Mesozoic
Chrysalidinidae (Foraminifera, Textulariacea) of the Middle East: the
Redmond (Aramco) taxa and their relatives, Bulletin of the British Museum of
Natural History (Geology), 47, 101–152, 1991.
Barattolo, F.: Late Cretaceous–Paleogene Dasycladaleans and the K/T
boundary problem, in: Research
advances in calcareous algae and microbial carbonates, edited by: Bucur, I. I. and Filipescu, S., Proceedings of the
4th IFAA Regional Meeting, Cluj Napoca, Romania, 29 August–5 September 2001,
17–40, 2002.
Basson, P. W. and Edgell, H. S.: Calcareous algae from the Jurassic and
Cretaceous of Lebanon, Micropaleontology, 17, 411–433, 1971.
Bauer, J., Kuss, J., and Steuber, T.: Sequence architecture and carbonate
platform configuration (Late Cenomanian–Santonian), Sinai, Egypt,
Sedimentology, 50, 387–414, 2003.
Beer, H.: Mardin-Derik-Mazıdağı çevresindeki fosfatlı tabakaların
jeolojisi, Bulletin of Mineral Research and Exploration Institute, 66,
104–120, 1966.
Bucur, I. I., Sudar, M. N., Săsăran, E., Jovanović, D., Pleş,
G., and Polavder, S.: Rediscovery of the type locality of the Udoteacean alga
Boueina hochstetteri Toula, 1884, in the Lower Cretaceous of Serbia, Carnets Géol.,
18, 123–137, 2018.
Calonge, A., Caus, E., Bernaus, J. M., and Aguilar, M.: Praealveolina (Foraminifera)
species; a tool to date Cenomanian platform sediments, Micropaleontology,
48, 53–66, 2002.
Caron, M. and Homewood, P.: Evolution of early planktic foraminifers, Mar.
Micropaleontol., 7, 453–462, 1983.
Cater, J. M. L. and Gillcrist, J. R.: Karstic reservoirs of the mid-Cretaceous
Mardin Group, SE Turkey: tectonic and eustatic controls on their genesis,
distribution and preservation, J. Petrol. Geol., 17, 253–278,
1994.
Çelikdemir, M. E., Dulger, S., Gorur, N., Wagner, C., and Uygur, K.:
Stratigraphy, sedimentology, and hydrocarbon potential of the Mardin Group,
south-east Turkey, in: Generation, Accumulation, and
Production of Europe's Hydrocarbons, edited by: Spencer, A. M., Special Publication of the European
Association of Petroleum Geologists, 1, 439–454, 1991.
Cherchi, A. and Schroeder, R.: Dicyclina sampoi n. sp., a larger foraminifer from the
Cenomanian of Zagros Range (SW Iran), Paläontol. Z., 64,
203–211, 1990.
Consorti, L., Calonge, A., Yazdi-Moghadam, M., and Caus, E.: Involutina hungarica (Sidó,
1952) from the Albian Tethys: Architecture, palaeoenviroment and
palaeobiogeography, Cretaceous Res., 51, 266–273, 2014.
Cros, P., Dercourt, J., Günay, Y., Fourcade, E., Bellier, J. P., Manivit,
H., Kozlu, H., and Lauer, J. P.: The Arabian Platform in Southeastern Turkey:
an Albian-Cenomanian carbonate ramp collapsed during the Senonian,
Bulletin of Turkish Association of Petroleum Geologists, 11, 55–77, 1999.
De Castro, P.: Chrysalidina gradata, in: Les grands
Foraminiferes du Cretace moyen de la region mediterranenne, edited by: Schroeder, R. and Neumann, M., Geobios, Mem.
spec., 7, 23–27, 1985.
Demirel, I. H. and Guneri, S.: Cretaceous carbonates in the Adiyaman region,
SE Turkey: an assessment of burial history and source-rock potential,
J. Petrol. Geol., 23, 91–106, 2000.
Demirel, I. H., Yurtsever, T. S., and Guneri, S.: Petroleum systems of the
Adiyaman region, southeastern Anatolia, Turkey, Mar. Petrol.
Geol., 18, 391–410, 2001.
Dias-Brito, D.: Global stratigraphy, palaeobiogeography and palaeoecology of
Albian–Maastrichtian pithonellid calcispheres: impact on Tethys
configuration, Cretaceous Res., 21, 315–349, 2000.
Droste, H. and Van Steenwinkel, M.: Stratal geometries and patterns of
platform carbonates: the Cretaceous of Oman, in: Seismic Imaging of Carbonate Reservoirs and
Systems, edited by: Eberli, G., Masaferro, J.
L., and Sarg, J. F. R., American Association of Petroleum Geologists Memoir, Tulsa, USA, 81, 185–206,
2004.
El Beialy, S. Y. and Al-Hitmi, H. H.: Micropalaeontology and palynology of the
Lower and Middle Cretaceous Thamama and Wasia groups, DK-C well, Dukhan oil
field, Western Qatar, Sciences Géologiques Bulletin, 47, 67–95, 1994.
Elliott, G. F.: Algal debris-facies in the Cretaceous of the Middle East,
Palaeontology, 1, 254–259, 1958.
Elliott, G. F.: More microproblematica from the Middle East,
Micropaleontology, 8, 29–44, 1962.
Elliott, G. F.: Permian to Paleocene calcareous algae Dasycladaceae of the
Middle East, Bulletin of the British Museum (Natural History) Geology
(Suppl.), 4, 1–111, 1968.
El-Naggar, Z. R. and Al-Rifaiy, I. A.: Stratigraphy and microfacies of type
Magwa formation of Kuwait, Arabia; part I: Rumaila Limestone Member, AAPG
Bull., 56, 1464–1493, 1972.
El-Naggar, Z. R. and Al-Rifaiy, I. A.: Stratigraphy and microfacies of type
Magwa Formation of Kuwait, Arabia; Part 2: Mishrif Limestone Member, AAPG
Bull., 57, 2263–2279, 1973.
Ettachfini, E. M., Souhel, A., Andreu, B., and Caron, M.: La limite
Cénomanien-Turonien dans le Haut Atlas central, Maroc, Geobios, 38,
57–68, 2005.
Farouk, S., Ahmad, F., and Powell, J. H.: Cenomanian–Turonian stable isotope
signatures and depositional sequences in northeast Egypt and central Jordan,
J. Asian Earth Sci., 134, 207–230, 2017.
Flügel, E.: Halimeda: paleontological record and palaeoenvironmental
significance, Coral Reefs, 6, 123–130, 1988.
Gale, A. S., Voigt, S., Sageman, B. B., and Kennedy, W. J.: Eustatic sea-level
record for the Cenomanian (Cretaceous) – extension to the Western Interior
Basin, USA, Geology, 36, 859–862, 2008.
Georgescu, M. D. and Huber, B. T.: Early evolution of the Cretaceous serial
planktic foraminifera (late Albian–Cenomanian), J.
Foramin. Res., 39, 335–360, 2009.
Ghanem, H. and Kuss, J.: Stratigraphic control of the Aptian–Early Turonian
sequences of the Levant Platform, Coastal Range, northwest Syria, GeoArabia,
18, 85–132, 2013.
Ghanem, H., Mouty, M., and Kuss, J.: Biostratigraphy and carbon-isotope
stratigraphy of the uppermost Aptian to Upper Cenomanian strata of the South
Palmyrides, Syria, GeoArabia, 17, 155–184, 2012.
Görür, N., Çelikdemir, E., and Dülger, S.: Carbonate
platforms developed on passive continental margins: Cretaceous Mardin
carbonates in SE Anatolia as an example, Bulletin of the Technical
University of Istanbul, 44, 301–324, 1991.
Grélaud, C., Razin, P., and Homewood, P.: Channelized systems in an inner
carbonate platform setting: differentiation between incisions and tidal
channels (Natih Formation, Late Cretaceous, Oman), Geol. Soc.
Lond. Spec. Publ., 329, 163–186, 2010.
Hajikazemi, E., Al-Aasm, I. S., and Coniglio, M.: Subaerial exposure and
meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation,
southwestern Iran, Geol. Soc. Lond. Spec. Publ., 330,
253–272, 2010.
Hamaoui, M.: On a new subgenus of Hedbergella (Foraminiferaida), Israel J.
Earth Sci., 13, 133–142, 1965.
Hamaoui, M.: Nezzazata simplex, in: Les grands
Foraminiferes du Cretace moyen de la region mediterranenne, edited by: Schroeder, R. and Neumann, M., Geobios, Mem.
spec., 7, 33–36, 1985a.
Hamaoui, M.: Biconcava bentori, in: Les grands
Foraminiferes du Cretace moyen de la region mediterranenne, edited by: Schroeder, R. and Neumann, M., Geobios, Mem.
spec., 7, 37–38, 1985b.
Hamaoui, M.: Biplanata peneropliformis, in: Les grands
Foraminiferes du Cretace moyen de la region mediterranenne, edited by: Schroeder, R. and Neumann, M., Geobios, Mem.
spec., 7, 39–41, 1985c.
Hamaoui, M. and Saint-Marc, P.: Microfaunes et microfaciès du
Cénomanien du Proche-Orient, Bulletin du Centre de Recherches Pau-SNPA,
4, 257–352, 1970.
Hancock, J.: The mid-Cenomanian eustatic low, Acta Geol. Pol., 54,
611–627, 2004.
Haq, B. U.: Cretaceous eustasy revisited, Global Planet. Change, 113,
44–58, 2014.
Hart, M. B.: The Late Cenomanian calcisphere global bioevent, Proc. Ussher, 7, 413–417, 1991.
Hart, M. B.: The evolution and biodiversity of Cretaceous planktonic
foraminifera, Geobios, 32, 247–255, 1999.
Hart, M. B. and Bailey, H. W.: The distribution of planktonic Foraminiferida
in the mid-Cretaceous of NW Europe, in: Aspekte der
Kreide Europas, edited by: Wiedmann, J., IUGS, Stuttgart, Series A, 6, 527–542, 1979.
Hart, M. B. and Leary, P. N.: Periodic bioevents in the evolution of the
planktonic foraminifera, in: Extinction Events in Earth History, Springer,
Berlin, Heidelberg, 325–331, 1990.
Henson, F. R. S.: Foraminifera of the genus Trocholina in the Middle East, Ann.
Mag. Nat. Hist., 14, 445–459, 1947.
Henson, F. R. S.: Recent publications on larger imperforate foraminifera of
the Middle East, J. Nat. Hist., 2, 173–177, 1949.
Hohenegger, J.: Large Foraminifera: Greenhouse Constructions and Gardeners
in the Oceanic Microcosm, Kagoshima University Museum Bulletin, 5, 1–81,
2011.
Hollis, C.: Diagenetic controls on reservoir properties of carbonate
successions within the Albian – Turonian of the Arabian Plate, Petrol.
Geosci., 17, 223–241, 2011.
Homewood, P., Razin, P., Grélaud, C., Droste, H., Vahrenkamp, V.,
Mettraux, M., and Mattner, J.: Outcrop sedimentology of the Natih Formation,
northern Oman: A field guide to selected outcrops in the Adam Foothills and
Al Jabal al Akhdar areas, GeoArabia, 13, 39–120, 2008.
Hoşgör, İ. and Yılmaz, İ. Ö.: Paleogeographic
northeastern limits of Aphrodina dutrugei (Cocquand, 1862) (Heterodonta, Bivalvia) from the
Cenomanian of the Arabian Platform, Riv. Ital. Paleontol.
S., 125, 421–431, 2019.
Hottinger, L.: Illustrated glossary of terms used in foraminiferal research,
Carnets de Geologie, Memoir 2006/02, https://doi.org/10.4267/2042/5832, 2006.
Hughes, G. W.: Late Permian to Late Jurassic “microproblematica” of Saudi
Arabia: Possible palaeobiological assignments and roles in the
palaeoenviromental reconstructions, GeoArabia, 18, 57–92, 2013.
Jaff, R. B. N., Wilkinson, I. P., Lee, S., Zalasiewicz, J., Lawa, F., and Williams, M.: Biostratigraphy and palaeoceanography of the early Turonian–early Maastrichtian planktonic foraminifera of NE Iraq, J. Micropalaeontol., 34, 105–138, https://doi.org/10.1144/jmpaleo2014-020, 2015.
Kalanat, B. and Vaziri-Moghaddam, H.: Ecological changes and depositional
sequences during Cenomanian/Turonian platform evolution in the Zagros Basin,
SW Iran; an interplay between tectonics and aquifer-eustasy, Sediment.
Geol., 390, 31–44, 2019.
Kuss, J.: Upper Cretaceous (Albian-Turonian) calcareous algae from Egypt and
Jordan – systematics, stratigraphy, and paleogeography, Jahrbuch der
Geologischen Bundesanstalt Wien, 50, 295–317, 1994.
Kuss, J. and Conrad, M. A.: Calcareous algae from Cretaceous carbonates of
Egypt, Sinai, and southern Jordan, J. Paleontol., 65, 869–882,
1991.
Kuss, J. and Schlagintweit, F.: Facies and stratigraphy of early to middle
cretaceous (Late Aptian-Early Cenomanian) strata from the northern rim of
the African Craton (Gebel Maghara—Sinai, Egypt), Facies, 19, 77–95, 1988.
Kuss, J. and Senowbari-Daryan, B.: Anomuran coprolites from Cretaceous
shallow water limestones of NE Africa, Cretaceous Res., 13, 147–156,
1992.
Leckie, R. M.: Foraminifera of the Cenomanian–Turonian Boundary Interval,
Greenhorn Formation, Rock Canyon Anticline, Pueblo, Colorado, in: Fine-grained deposits and biofacies of the Cretaceous
Western Interior Seaway: Evidence of cyclic sedimentary processes, edited by: Pratt, L. M., Kauffman, E. G., and Zelt, F. B., SEPM
Field Trip Guidebook No. 4, SEPM, Tulsa, USA, 139–149, 1985.
Lézin, C., Andreu, B., Ettachfini, E. M., Wallez, M. J., Lebedel, V., and
Meister, C.: The upper Cenomanian–lower Turonian of the Preafrican Trough,
Morocco, Sediment. Geol., 245, 1–16, 2012.
Lipson-Benitah, S., Almogi-Labin, A., and Sass, E.: Cenomanian
biostratigraphy and palaeoenvironments in the northwest Carmel region,
northern Israel, Cretaceous Res., 18, 469–491, 1997.
Mahdi, T. A. and Aqrawi, A. A. M.: Sequence stratigraphic analysis of the
mid-Cretaceous Mishrif Formation, southern Mesopotamian Basin, Iraq, J. Petrol. Geol., 37, 287–312, 2014.
Moullade, M. and Peybernés, B.: Etude microbiostratigraphique de
l'Albien du Massif de Montgri (Prov. Gerona, Espagne), description de
Hensonina nov. gen. (Générotype: Trocholina lenticularis Henson, 1947) (Foraminiferida, Fam.
Involutinidae), Arch. Sci., 26, 173–181, 1974.
Mouty, M., Al Maleh, A. K., and Abou Laban, H.: Le Crétacé moyen de la
chaîne des Palmyrides (Syrie centrale), Geodiversitas, 25, 429–443,
2003.
MTA: Diyarbakır-N 44 Paftası, no: 168., 1/100 000 €olçekli
Türkiye Jeoloji Haritası, 42 pp., 2011.
Mülayim, O., Mancini, E., Cemen, I., and Yılmaz, İ. Ö.: Upper
Cenomanian-Lower Campanian Derdere and Karababa formations in the
Çemberlitaş oil field, southeastern Turkey: their microfacies
analyses, depositional environments, and sequence stratigraphy, Turk.
J. Earth Sci., 25, 46–63, 2016.
Mülayim, O., Yılmaz, İ. Ö., and Ferré, B.: Roveacrinid
microfacial assemblages (Roveacrinida, Crinoidea) from the Lower-Middle
Cenomanian of the Adıyaman area (SE Turkey), Arab. J.
Geosci., 11, 545, https://doi.org/10.1007/s12517-018-3901-z, 2018.
Mülayim, O., Yılmaz, İ. Ö., Sarı, B., Taslı, K., and Wagreich,
M.: Cenomanian–Turonian drowning of the Arabian Carbonate Platform, the
İnişdere section, Adıyaman, SE Turkey, in: Cretaceous Climate Events
and Short-Term Sea-Level Changes, edited by: Wagreich, M., Hart,
M. B., Sames, B., and Yılmaz, İ. Ö., Geological Society, London, Special
Publications, London, 498, https://doi.org/10.1144/SP498-2018-130,
2019a.
Mülayim, O., Yılmaz, İ. Ö., Sarı, B., and Taslı, K.:
Carbon-isotope stratigraphy of the Cenomanian-Turonian carbonate succession
of the Türkoğlu section (SE Turkey): implications for the timing of Late
Cretaceous sea-level rise and anoxic event, IESCA 2019, Conference
Abstracts, Dokuz Eylül University, İzmir, Turkey, 2019b.
Mülayim, O., Yılmaz, İ. Ö., Özer, S., Sarı, B., and Taslı, K.: A Cenomanian-Santonian rudist-bearing carbonate platform on the
northern Arabian Plate, Turkey: facies and sequence stratigraphy, Cretaceous
Res., 110, https://doi.org/10.1016/j.cretres.2020.104414, 2020.
Navidtalab, A., Heimhofer, U., Huck, S., Omidvar, M., Rahimpour-Bonab, H.,
Aharipour, R., and Shakeri, A.: Biochemostratigraphy of an upper
Albian–Turonian succession from the southeastern Neo-Tethys margin, SW
Iran, Palaeogeogr. Palaeocl., 533, 109255, https://doi.org/10.1016/j.palaeo.2019.109255, 2019.
Norris, R. D. and Wilson, P. A: Low-latitude sea-surface temperatures for the
mid-Cretaceous and the evolution of planktic foraminifera, Geology, 26,
823–826, 1998.
Okay, A. I. and Tüysüz, O.: Tethyan sutures of northern Turkey,
Geol. Soc. Lond. Spec. Publ., 156, 475–515, 1999.
Okay, A. I., Satir, M., and Siebel, W.: Pre-Alpide Palaeozoic and Mesozoic
orogenic events in the Eastern Mediterranean region, Geol. Soc.
Lond. Mem., 32, 389–405, 2006.
Omidvar, M., Mehrabi, H., Sajjadi, F., Bahramizadeh-Sajjadi, H.,
Rahimpour-Bonab, H., and Ashrafzadeh, A.: Revision of the foraminiferal
biozonation scheme in Upper Cretaceous carbonates of the Dezful Embayment,
Zagros, Iran: integrated palaeontological, sedimentological and geochemical
investigation, Revue de micropaléontologie, 57, 97–116, 2014.
Özkan, R. and Altıner, D.: The Cretaceous Mardin Group carbonates in
southeast Turkey: lithostratigraphy, foraminiferal biostratigraphy,
microfacies and sequence stratigraphic evolution, Cretaceous Res., 98,
153–178, https://doi.org/10.1016/j.cretres.2018.09.021,
2019.
Parnian, B., Ahmadi, V., Saroii, H., and Bahrami, M.: Biostratigraphy and
palaeodepositional model of the Sarvak Formation in the Fars Zone, Zagros,
Iran, Journal of Himalayan Earth Sciences, 52, 197–216, 2019.
Petrizzo, M. R.: Palaeoceanographic and palaeoclimatic inferences from Late
Cretaceous planktonic foraminiferal assemblages from the Exmouth Plateau
(ODP Sites 762 and 763, eastern Indian Ocean), Mar. Micropaleontol., 45,
117–150, 2002.
Pia, J.: Description of the algae, in: Fossil algae
from the Uppermost Cretaceous beds of the Ninyur Group of the Trichinopoly
District, S. India, edited by: Rao, L. R. and Pia, J., Palaeontology India (N.S.), 21, 1–49, 1936.
Piuz, A. and Meister, C.: Cenomanian rotaliids (Foraminiferida) from Oman
and Morocco, Swiss Journal of Palaeontology, 132, 81–97, 2013.
Piuz, A., Meister, C., and Vicedo, V.: New Alveolinoidea (Foraminifera) from
the Cenomanian of Oman, Cretaceous Res., 50, 344–360, 2014.
Poignant, A. F.: Les Algues rouges cenomaniennes, Géologie
Méditerranéenne, 5, 69–171, 1978.
Premoli Silva, I. and Verga, D.: Practical Manual of Cretaceous Planktonic
Foraminifera, in: International School on
Planktonic Foraminifera, 3∘ Course: Cretaceous, edited by: Verga, D. and Rettori, R., Universities of
Perugia and Milan, Tipografia Pontefelcino, Perugia, Italy, 2004.
Rahimpour-Bonab, H., Mehrabi, H., Enayati-Bidgoli, A. H., and Omidvar, M.:
Coupled imprints of tropical climate and recurring emergence on reservoir
evolution of a mid Cretaceous carbonate ramp, Zagros Basin, southwest Iran,
Cretaceous Res., 37, 15–34, 2012.
Ray, D., van Buchem, F. S., Baines, G., Davies, A., Gréselle, B.,
Simmons, M. D., and Robson, C.: The magnitude and cause of short-term eustatic
Cretaceous sea-level change: A synthesis, Earth-Sci. Rev., 102901, https://doi.org/10.1016/j.earscirev.2019.102901,
2019.
Razin, P., Taati, F., and Van Buchem, F. S. P.: Sequence stratigraphy of
Cenomanian-Turonian carbonate platform margins (Sarvak Formation) in the
High Zagros, SW Iran: an outcrop reference model for the Arabian Plate, in:
Mesozoic and
Cenozoic Carbonate Systems of the Mediterranean and the Middle East:
Stratigraphic and Diagenetic Reference Models, edited by: van Buchem, F. S. P., Gerdes, K. D., and Esteban, M., Geological Society, London,
Special Publications, 329, 187–218, 2010.
Reichel, M.: Sur une Alvéoline cénomanienne du Bassin du Beausset,
Eclogae Geol. Helv., 26, 269–280, 1933.
Reichel, M.: Etude sur les Alvéolines, Mém. Soc. Paléont.
Suisse, 57, 1–93, 1936.
Rigaud, S., Blau, J., Martini, R., and Rettori, R.: Taxonomy and phylogeny of
the Trocholinidae (Involutinina), J. Foramin. Res., 43,
317–339, 2013.
Robertson, A., Boulton, S. J., Taslı, K., Yıldırım, N., İnan, N.,
Yıldız, A., and Parlak, O.: Late Cretaceous–Miocene sedimentary
development of the Arabian continental margin in SE Turkey (Adıyaman
region): Implications for regional palaeogeography and the closure history
of southern Neotethys, J. Asian Earth Sci., 115, 571–616, 2016.
Rosales, I. and Schlagintweit, F.: The uppermost Albian–lower Cenomanian
Bielba Formation of the type-area (Cantabria, northern Spain): facies,
biostratigraphy, and benthic Foraminifera, Facies, 61, https://doi.org/10.1007/s10347-015-0441-9, 2015.
Saber, S. G., Salama, Y. F., Scott, R. W., Abdel-Gawad, G. I., and Aly, M. F.:
Cenomanian-Turonian rudist assemblages and sequence stratigraphy on the
North Sinai carbonate shelf, Egypt, GeoArabia, 14, 113–134, 2009.
Saint-Marc, P.: Etude stratigraphique et micropaléontologique de
l'Albien, du Cénomanien et du Turonien du Liban, Notes Mémoires
Moyen–Orient, 13, 1–342, 1974.
Sames, B., Wagreich, M., Wendler, J. E., Haq, B. U., Conrad, C. P.,
Melinte-Dobrinescu, M. C., Hu, X., Wendler, I., Wolfgring, E., Yılmaz,
I. Ö., and Zorina, S. O.: Review: Short-term sea-level changes in a
greenhouse world – A view from the Cretaceous, Palaeogeogr.
Palaeocl., 441, 393–411, 2016.
Sampo, M.: Microfacies and Microfossils of the Zagros Area, south-western
Iran, E.J. Brill, Leiden, The Netherlands, 102 pp., 1969.
Sarı, B., Taslı, K., and Özer, S.: Benthonic foraminiferal
biostratigraphy of the Upper Cretaceous (middle Cenomanian-Coniacian)
sequences of the Bey Daglarıcarbonate platform, western Taurides, Turkey,
Turkish J. Earth Sci., 18, 393–425, 2009.
Sartorio, D. and Venturini, S.: Southern Tethys Biofacies, Agip SPA, Donato
Milanese, 235 pp., 1988.
Schlagintweit, F.: Further record of calcareous algae (dasycladaceae,
udoteaceae, solenoporaceae) from the Upper Cretaceous of the Northern
Calcareous Alps (Gosau Formation, Branderfleck Formation), Revue de
Paléobiologie, 11, 1–12, 1992.
Schlagintweit, F.: Taxonomic review of some Late Jurassic – Early
Cretaceous benthic foraminifera established by Gollestaneh (1965) from the
Zagros fold and thrust belt of Iran, Acta Palaenologica Romaniae, 9, 27–31,
2014.
Schlagintweit, F. and Piller, W.: Involutina hungarica (Sido) from allochthonous Urgonian
limestones of the Northern Calcareous Alps and remarks on the genus
Hensonina Moullade and
Peybernès, 1974, Beitr. Paläont. Österr., 16, 145–153, 1990.
Schlagintweit, F. and Wilmsen, M.: Calcareous algae (dasycladales,
udoteaceae) from the Cenomanian Altamira Formation of northern Cantabria,
Spain, Acta Palaeontologica Romaniae, 10, 15–24, 2014.
Schlagintweit, F. and Yazdi-Moghadam, M.: Orbitolinopsis cenomaniensis n. sp., a new larger benthic
foraminifera (Orbitolinidae) from the middle–late Cenomanian of the Sarvak
Formation (SW Iran, Zagros Zone): a regional marker taxon for the Persian Gulf area
and
Oman, Revue de micropaléontologie, 67, 100413, https://doi.org/10.1016/j.revmic.2020.100413, 2020.
Schlagintweit, F., Rigaud, S., and Wilmsen, M.: Insights from exceptionally
preserved Cenomanian trocholinids (benthic foraminifera) of northern
Cantabria, Spain, Facies, 61, https://doi.org/10.1007/s10347-014-0416-2, 2015.
Schlagintweit, F., Rashidi, K., and Babadipour, M.: Orbitolinid foraminifera
from the Late Maastrichtian of the Tarbur Formation (Zagros Zone, SW Iran),
Acta Palaeontologica Romaniae, 12, 29–46, 2016.
Schroeder, R. and Neumann, M. (Eds.): Les grands Foraminiferes du Cretace
moyen de la region mediterranenne, Geobios, Special Publication, Lyon. Mem. spec., 7, 160 pp., 1985.
Schulze, F., Lewy, Z., Kuss, J., and Gharaibeh, A.: Cenomanian–Turonian
carbonate platform deposits in west central Jordan, Int. J.
Earth Sci., 92, 641–660, 2003.
Schulze, F., Marzouk, A. M., Bassiouni, M. A., and Kuss, J.: The late
Albian–Turonian carbonate platform succession of west-central Jordan:
stratigraphy and crises, Cretaceous Res., 25, 709–737, 2004.
Schulze, F., Kuss, J., and Marzouk, A.: Platform configuration, microfacies
and cyclicities of the upper Albian to Turonian of west-central Jordan,
Facies, 50, 505–527, 2005.
Şengör, A. C. and Yılmaz, Y.: Tethyan evolution of Turkey: a plate
tectonic approach, Tectonophysics, 75, 181–241, 1981.
Shahin, A. and Elbaz, S.: Foraminiferal biostratigraphy, paleoenvironment
and paleobiogeography of Cenomanian–Lower Turonian shallow marine carbonate
platform in west central Sinai, Egypt, Micropaleontology, 59, 249–283, 2013.
Sharland, P. R., Archer, R., Casey, D. M., Davies, R. B., Hall, S. H., Heward,
A. P., Horbury, A. D., and Simmons, M. D.: Arabian Plate Sequence Stratigraphy,
GeoArabia Special Publication, 2, 371 pp., 2001.
Sharp, I., Gillesoie, P., Morsalnezhad, D., Taberner, C., Karpuz, R.,
Verges, J., Horbury, A., Pickard, N., Garland, J., and Hunt, D.:
Stratigraphic architecture and fracture controlled dolomitization of the
Cretaceous Khami and Bangestan groups: an outcrop case study, Zagros
Mountains, Iran, in: Mesozoic and Cenozoic Carbonate Systems of the Mediterranean and the Middle
East: Stratigraphic and Diagenetic Reference Models, edited by: van Buchem, F., Gerdes, K., and Esteban, M., Geological Society, London, Special
Publications, 329, 343–396, 2010.
Shirazi, M. P. N.: Calcareous algae from the Cretaceous of Zagros Mountains
(SW Iran), World Appl. Sci. J., 4, 803–807, 2008.
Shirazi, M. P. N., Bahrami, M., Rezaee, B., and Gharamani, S.:
Microbiostratigraphy of Kazhdumi formation in the Northwestern Shiraz
(Southwest Iran) on the basis of foraminifera and calcareous algae, Acta
Geol. Sin.-Engl., 85, 777–783, 2011.
Simmons, M. D. and Hart, M. B.: The biostratigraphy and microfacies of the
Early to mid-Cretaceous carbonates of Wadi Mi'aidin, central Oman Mountains,
in: Micropalaeontology of Carbonate Environments, John Wiley & Sons, Chichester, UK, 176–207, 1987.
Simmons, M. D., Miller, K. G., Ray, D. C., Davies, A., van Buchem, F. S. P., and
Gréselle, B.: Phanerozoic eustasy, in: A Geological Time Scale 2020,
Elsevier, Amsterdam, 357–400, 2020.
Smith, A. B., Simmons, M. D., and Racey, A.: Cenomanian echinoids, larger
foraminifera and calcareous algae from the Natih Formation, central Oman
Mountains, Cretaceous Res., 11, 29–69, 1990.
Solak, C., Taslı, K., Özer, S., and Koç, H.: The Madenli (Central
Taurides) Upper Cretaceous platform carbonate succession: Benthic
foraminiferal biostratigraphy and platform evolution, Geobios, 52, 67–83,
2019.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic and
Mesozoic constrained by dynamic plate boundaries and restored synthetic
oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33, 2002.
Toulabi, L. and Roozbahani, P. R.: Stratigraphy and foraminiferal biozonation
of Upper Cretaceous deposits in south-west of Iran (Khorramabad-Kuhdasht),
Buletin Teknologi Tanaman, 12, 92–95, 2015.
van Buchem, F. S., Razin, P., Homewood, P. W., Philip, J. M., Eberli, G. P.,
Platel, J. P., Roger, J., Eschard, R., Desaubliaux, G. M., Boisseau, T., and
Leduc, J. P.: High resolution sequence stratigraphy of the Natih Formation
(Cenomanian/Turonian) in northern Oman: distribution of source rocks and
reservoir facies, GeoArabia, 1, 65–91, 1996.
van Buchem, F. S. P., Simmons, M. D., Droste, H. J., and Davies, R. B.: Late Aptian
to Turonian stratigraphy of the eastern Arabian Plate-depositional sequences
and lithostratigraphic nomenclature, Petrol. Geosci., 17, 211–222,
2011.
Velić, I.: Stratigraphy and palaeobiogeography of Mesozoic benthic
foraminifera of the Karst Dinarides (SE Europe), Geol. Croat., 60,
1–60, 2007.
Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., and Liu, M.:
Geodynamic evolution of the Earth over the Phanerozoic: Plate tectonic
activity and palaeoclimatic indicators, J. Palaeogeogr., 4,
167–188, 2015.
Vicedo, V.: Morfoestructura de los géneros cretácicos de los
Rhapydioninidae (Foraminifera), Universitat Autònoma de Barcelona, 2009.
Vicedo, V. and Piuz, A.: Evolutionary trends and biostratigraphical
application of new Cenomanian alveolinoids (Foraminifera) from the Natih
Formation of Oman, J. Syst. Palaeontol., 15, 821–850, 2017.
Vicedo, V. and Serra-Kiel, J.: Decastroia razini n. gen. n. sp. – A new alveolinacean
(foraminifera) from the Cenomanian of Socotra Island (Yemen), GeoArabia, 16,
17–26, 2011.
Vicedo, V., Calonge, A., and Caus, E.: Cenomanian rhapydioninids
(Foraminiferida): architecture of the shell and stratigraphy, J.
Foramin. Res., 41, 41–52, 2011.
Vincent, B., van Buchem, F. S., Bulot, L. G., Jalali, M., Swennen, R.,
Hosseini, A. S., and Baghbani, D.: Depositional sequences, diagenesis and
structural control of the Albian to Turonian carbonate platform systems in
coastal Fars (SW Iran), Mar. Petrol. Geol., 63, 46–67, 2015.
Wendler, J. E., Wendler, I., Huber, B., and Macleod, K. G.: What are
calcispheres? Pristine specimens from the Tanzania drilling project provide
unprecedented insight into an enigmatic Cretaceous Microfossil Group,
Geological Society of America, Abstracts with Program, Boulder, USA, Vol. 42, p. 131, 2010.
Wilmsen, M. and Nagm, E.: Sequence stratigraphy of the lower Upper
Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert, Egypt,
Newsl. Stratigr., 46, 23–46, 2013.
Wohlwend, S., Hart, M., and Weissert, H.: Chemostratigraphy of the Upper
Albian to mid-Turonian Natih Formation (Oman) – how authigenic carbonate
changes a global pattern, Depositional Record, 2, 97–117, 2016.
Yetim, S. M. and Altıner, D.: Evaluation of Reservoir Quality of Mardin Group
Carbonates within the Sequence Stratigraphy Framework in Adiyaman and
Diyarbakir Regions, SE Turkey, Geophys. Res. Abstr.,
EGU2019-982, EGU General Assembly 2019, Vienna, Austria, 2019.
Yılmaz, İ. Ö.: Taxonomic and paleogeographic approaches to the dasyclad algae in the Upper Jurassic (Kimmeridgian) and Upper Cretaceous (Cenomanian) peritidal carbonates of the Fele (Yassıbel) area (Western Taurides, Turkey), Turkish J. Earth Sci., 8, 81–101, 1999.
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to...