Articles | Volume 40, issue 1
https://doi.org/10.5194/jm-40-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-40-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Jurassic planktic foraminifera from the Polish Basin
Maria Gajewska
University of Warsaw, Faculty of Geology, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
University of Warsaw, Faculty of Geology, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
Malcolm B. Hart
School of Geography, Earth & Environmental Sciences, University of
Plymouth, Drake Circus, Plymouth PL4 8AA, UK
Related authors
Zofia Dubicka, Maria Gajewska, Wojciech Kozłowski, Pamela Hallock, and Johann Hohenegger
Biogeosciences, 18, 5719–5728, https://doi.org/10.5194/bg-18-5719-2021, https://doi.org/10.5194/bg-18-5719-2021, 2021
Short summary
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Zofia Dubicka, Maria Gajewska, Wojciech Kozłowski, Pamela Hallock, and Johann Hohenegger
Biogeosciences, 18, 5719–5728, https://doi.org/10.5194/bg-18-5719-2021, https://doi.org/10.5194/bg-18-5719-2021, 2021
Short summary
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Simina Dumitriţa Dumitriu, Zofia Dubicka, and Viorel Ionesi
J. Micropalaeontol., 37, 153–166, https://doi.org/10.5194/jm-37-153-2018, https://doi.org/10.5194/jm-37-153-2018, 2018
Malcolm B. Hart, Alex De Jonghe, Adrian J. Rundle, and Christopher W. Smart
J. Micropalaeontol., 32, 219–220, https://doi.org/10.1144/jmpaleo2012-016, https://doi.org/10.1144/jmpaleo2012-016, 2013
Malcolm B. Hart, Wendy Hudson, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 31, 97–109, https://doi.org/10.1144/0262-821X11-015, https://doi.org/10.1144/0262-821X11-015, 2012
Related subject area
Planktic foraminifera
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Spine-like structures in Paleogene muricate planktonic foraminifera
Taxonomic review of living planktonic foraminifera
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Ontogenetic disparity in early planktic foraminifers
Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea)
Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows
Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Anieke Brombacher, Alex Searle-Barnes, Wenshu Zhang, and Thomas H. G. Ezard
J. Micropalaeontol., 41, 149–164, https://doi.org/10.5194/jm-41-149-2022, https://doi.org/10.5194/jm-41-149-2022, 2022
Short summary
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary
Short summary
Three well-preserved new species of Middle Jurassic (Bajocian) planktonic foraminifera from the continental margin of northwest Australia are described. This is on the southern shelf of the Tethys Ocean, and these planktonics are the first to be reported from the Jurassic Southern Hemisphere. Described as new are Globuligerina bathoniana australiana n. ssp., G. altissapertura n. sp. and Mermaidogerina loopae n. gen. n. sp. The research is part of a study of regional Jurassic foraminifera.
Sophie Kendall, Felix Gradstein, Christopher Jones, Oliver T. Lord, and Daniela N. Schmidt
J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, https://doi.org/10.5194/jm-39-27-2020, 2020
Short summary
Short summary
Changes in morphology during development can have profound impacts on an organism but are hard to quantify as we lack preservation in the fossil record. As they grow by adding chambers, planktic foraminifera are an ideal group to study changes in growth in development. We analyse four different species of Jurassic foraminifers using a micro-CT scanner. The low morphological variability suggests that strong constraints, described in the modern ocean, were already acting on Jurassic specimens.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Cited articles
Apthorpe, M.: Middle Jurassic (Bajocian) planktonic foraminifera from the
northwest Australian margin, J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, 2020.
Barski, M., Dembicz, K., and Praszkier, T.: Biostratigraphy and the
Mid-Jurassic environment from the Ogrodzieniec quarry, Tomy Jurajskie, 2,
61–68, 2004.
Bé, A. W. H.: An ecological, zoogeographic and taxonomic review of
recent planktonic foraminifera, in: Oceanic Micropaleontology, edited by:
Ramsey, A. T. S., Academic Press, London, 76–88, 1977.
Bé, A. W. H. and Hamlin, W. H.: Ecology of recent planktonic
forminifera, Part III. Distribution in the North Atlantic during the summer
of 196, Micropaleontology, 13, 87–106, 1967.
Bielecka, W.: Stratygrafia mikropaleontologiczna dolnego malmu okolic
Krakowa, Prace Instytutu Geologicznego, 31, 60–78, 1960.
Bielecka, W.: Wyniki badań mikrofaunistycznych jury środkowej i
górnej, in: Profile Głębokich Otworów Wiertniczych Instytutu
Geologicznego: Bartoszyce IG1, Gołdap IG1, edited by: Modliński, Z.,
Instytut Geologiczny, Wydawnictwa Geologiczne, Warszawa, 14, 171–180, 1974.
Bielecka, W. and Styk, O.: Stratygrafia mikropaleontologiczna jury
górnej w wierceniu Kcynia I, II, III, Biul. Państw. Instyt. Geol.,
175, 129–152, 1964.
Bielecka, W. and Styk, O.: Mikrofauna malmu południowej części
syneklizy perybałtyckiej, Kwartalnik Geologiczny, 10, 350–367, 1966.
Bielecka, W. and Styk, O.: The Callovian and Oxfordian in the vicinity of
Ogrodzieniec, Biul. Państw. Instyt. Geol., 211, 128–146, 1967.
Bielecka, W. and Styk, O.: Biostratygrafia batonu i keloweju północno-zachodniej Polski na podstawie otwornic i małżoraczków, Pr.
Inst. Geol., 100, 5–56, 1981.
BouDagher-Fadel, M. K.: The Mesozoic planktonic foraminifera: The Late
Triassic-Jurassic, in: Biostratigraphic and Geological Significance of
Planktonic Foraminifera, UCL Press, London, 39–60,
https://doi.org/10.2307/j.ctt1g69xwk.6, 2015.
Carron, M. and Homewood, P.: Evolution of early planktic foraminifers, Mar.
Micropaleontol., 7, 453–462, https://doi.org/10.1016/0377-8398(83)90010-5,
1983.
Carsey, D. O.: Foraminifera of the Cretaceous of central Texas, University of Texas Bulletin, 2612, 1–56, 1926.
Colpaert, C., Nikitenko, B., Khafaeva, S., and Wall, A. F.: The evolution of
Late Callovian to Early Kimmeridgian foraminiferal associations from the
central part of the Russian Sea (Makar'yev section, Volga River Basin,
Russia), Palaeogeogr. Palaeocl., 451, 97–109,
https://doi.org/10.1016/j.palaeo.2016.03.014, 2016.
Dąbrowska, Z.: Paleogeografia, Obszar pozakarpacki, Jura górna, in:
Budowa Geologiczna Polski, Stratygrafia, Cz. 2., Mezozoik, Wydawnictwa
Geologiczne, Warszawa, 453–461, 1973.
Dadlez, R., Marek, S., and Pokorski, J.: Paleozoogeographical Atlas of the
Epicontinental Permian and Mesozoic in Poland, Pol. Geol. Inst., Warszawa, 82 pp.,
1998.
Dayczak-Calikowska, K.: Middle Jurassic: Sedimentation, palaeogeography and
palaeotectonics, Pr. Panstw. Inst. Geol., 153, 269–282, 1997.
Dayczak-Calikowska, K. and Kopik, J.: Obszary występowania i stratygrafia,
Jura środkowa, Wyżyna Krakowsko-Wieluńska, in: Budowa
Geologiczna Polski, Stratygrafia, Cz. 2., Mezozoik, Wydawnictwa Geologiczne,
Warszawa, 237–249, 1973a.
Dayczak-Calikowska, K. and Kopik, J.: Paleografia, Obszar pozakarpacki, Jura
środkowa, in: Budowa Geologiczna Polski, Stratygrafia, Cz. 2., Mezozoik,
Wydawnictwa Geologiczne, Warszawa, 444–452, 1973b.
Dembicz, K. and Praszkier, T.: Zróżnicowanie litofacjalne osadów
keloweju w rejonie Zawiercia, Volumina Jurassica, 1, 49–52, 2003.
Dembicz, K., Głowniak, E., Matyja, B., and Praszkier, T.: Stop B1.4
– Ogrodzieniec Quarry, uppermost Bathonian to Middle Oxfordian ammonite
succession, in: Jurassic of Poland and adjacent Slovakian Carpathians, Field
trip guidebook of 7th International Congress on the Jurassic System
Poland, edited by: Wierzbowski, A., Aubrecht, R., Golonka, J., Gutowski, J.,
Krobicki, M., Matyja, B. A., Pieńkowski, G., and Uchman, A., Pol. Geol.
Inst., Warszawa, 144–148, 2006.
Fuchs, W.: Über Ursprung und Phylogenie de Trias-“Globigerinen” und die
Bedeutung Dieses Formenkreises für das echte Plankton, Ver. Geol.
Bundesanst., Wien, 135–176, 1967.
Fuchs, W.: Eine alpine, tiefliassische Foraminiferenfauna von Hernstein in
Niederösterreich, Verhandlungen der Geologischen Bundesanstalt, 66–145,
1970.
Fuchs, W.: Ein Beitrag zur Kenntnis der Jura-“Globigerinen” und verwandter
Formen an Hand polnischen Materials des Callovien und Oxfordien,
Verhandlungen der Geologischen Bundesanstalt, 3, 445–487, 1973.
Giżejewska, M. and Wieczorek, J.: Remarks on the Callovian and Lower
Oxfordian of the Zalas area (Cracow Upland, Southern Poland), Bulletin de
l'Acade'mie Polonaise des Sciences, Se'rie
Sciences des Sciences de la Terre, 24, 167–175, 1977.
Głowniak, E.: The perisphinctid genus Prososphinctes (Ammonoidea,
subfamily Prososphinctinae): an indicator of palaeoecological chnages in the
Early Oxfordian Submediterranean sea of southern Poland, N. Jb. Geol.
Paläont. Abh., 264, 117–179, https://doi.org/10.1127/0077-7749/2012/0235, 2012.
Gorbachik, T. N. and Kuznetsova, K. I.: Jurassic and Early Cretaceous
planktonic foraminifera (Favusellidae), Stratigraphy and paleobiogeography,
Zitteliana, 10, 459–466, 1983.
Gordon, W. A.: Biogeography of Jurassic Foraminifera, GSA Bulletin, 81,
1689–1704, 1970.
Görög, A.: Early Jurassic planktonic foraminifera from Hungary,
Micropaleontology, 40, 255–260, https://doi.org/10.2307/1485819, 1994.
Görög, A. and Wernli, R.: Protoglobigerinids of the Early
Kimmeridgian of the Jura Mountains (France), J. Foramin. Res., 43, 280–290,
2013.
Gradstein, F.: Jurassic foraminifera of the Grand Banks, Ciencias da Terra,
5, 85–96, 1979.
Gradstein, F. M.: New and emended species of Jurassic planktonic
foraminifera, Swiss J. Palaeontol., 136, 161–185,
https://doi.org/10.1007/s13358-017-0127-8, 2017.
Gradstein, F., Gale, A., Kopaevich, L., Waskowska, A., Grigelis, A., and
Glinskikh, L.: The planktonic foraminifera of the Jurassic, Part I: Material
and taxonomy, Swiss J. Palaeontol., 136, 187–257, 2017a.
Gradstein, F., Gale, A., Kopaevich, L., Waskowska, A., Grigelis, A.,
Glinskikh, L., and Görög, Á.: The planktonic foraminifera of the
Jurassic, Part II: Stratigraphy, palaeoecology and palaeobiogeography, Swiss
J. Palaeontol., 136, 259–271, 2017b.
Grigelis, A. A.: Globigerina oxfordiana sp. n. – an occurrence of Globigerina in the Upper
Jurassic deposits of Lithuania, Nauchnyye Doklady Vysshey Shkoly, Geol.-Geogr.
Nauki, 1958, 109–111, 1958.
Grigelis, A. A., Mesezhnikov, M. S., Yakovleva, S. P., and Kozlova, G. E.:
The first finds of planktonic foraminifers in the Upper Jurassic of the
Pechora river basin, Dokl. Akad. Nauk SSSR, 233, 926–927, 1977.
Grigelis, A.: Globuligerina oxfordiana (Grigelis, 1958) – revision of the first planktonic
foraminifera discovered in the Upper Jurassic of Lithuania, Geologija
Geografija, 2, 62–83, 2016.
Hart, M. B.: A water depth model for the evolution of the planktonic
Foraminiferida, Nature, 286, 252–254, 1980.
Hart, M. B.: The evolution and biodiversity of Cretaceous planktonic
Foraminiferida, Geobios, 32, 247–255, 1999.
Hart, M. B. and Bailey, H. W.: The distribution of planktonic Foraminiferida
in the mid–Cretaceous of NW Europe, Aspekte der Kreide Europas, IUGS,
Series A, 6, 527–542, 1979.
Hart, M. B., Hudson, W., Smart, C. W., and Tyszka, J.: A reassessment of
“Globigerina bathoniana” Pazdrowa, 1969 and the palaeoceanographic
significance of Jurassic planktic foraminifera from southern Poland, J.
Micropalaeontol., 31, 97–109, https://doi.org/10.1144/0262-821X11-015,
2012.
Hart, M. B., Hylton, M. D., Oxford, M. J., Price, G. D., Hudson, W., and
Smart, C. W.: The search for the origin of the planktic Foraminifera, J.
Geol. Soc., 160, 341–343, https://doi.org/10.1144/0016-764903-003, 2003.
Hart, M. B., Oxford, M. J., and Hudson, W.: The early evolution and
palaeobiogeography of Mesozoic planktonic foraminifera, in:
Palaeobiogeography and biodiversity change: the Ordovician and
Mesozoic-Cenozoic radiations, edited by: Crame, J. A. and Owen, A. W.,
Geological Society, London, Special Publications, 194, 115–125, 2002.
Hart, M. B., Page, K. N., Price, G. D., and Smart, C. W.: Reconstructing the
Christian Malford ecosystem in the Oxford Clay Formation (Callovian,
Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and
compaction, J. Micropalaeont., 38, 133–142, 2019.
Haeusler, R.: Untersuchungen ueber die microscopischen
Structurverhaeltnisse der Aargauer Jurakalke, mit besonderes
Beruecksichtigung iherer Foraminiferenfauna, Dissertation,
University of Zurich, 47 pp., 1881.
Hudson, W.: The evolution and palaeobiogeography of Mesozoic planktonic
foraminifera, Unpublished PhD Thesis, University of Plymouth, 541 pp., 2007.
Hudson, W., Hart, M. B., and Smart, C. W.: Palaeobiogeography of early
planktonic foraminifera, Bull. Soc. Géol. Fr., 180, 27–38, 2009.
Hylton, M. D.: Microfaunal investigation of the Early Toarcian (Lower
Jurassic) extinction event in N. W. Europe, Unpublished PhD Thesis,
University of Plymouth, 331 pp., 2000.
Jurkowska, A. and Kołodziej, B.: Taphonomic differentiation of Oxfordian
ammonites from the Cracow Upland, Poland, Paleontol Z., 87, 67–82,
https://doi.org/10.1007/s12542-012-0149-x, 2013.
Keller, G.: Depth stratification of planktonic foraminifers in the Miocene
Ocean, GSA Memoir., 163, 177–195, 1985.
Kendall, S., Gradstein, F., Jones, C., Lord, O. T., and Schmid, D. N.:
Ontogenetic disparity in early planktic foraminifers, J. Micropalaeontol.,
39, 27–39, 2020.
Leckie, R. M.: A paleoceanographic model for the early evolutionary history
of planktonic foraminifera, Palaeogeogr. Palaeocl., 73,
107–138, 1987.
Leckie, R. M.: Seeking a better life in the plankton, P. Natl. Acad. Sci. USA, 106,
14183–14184, https://doi.org/10.1073/pnas.0907091106, 2009.
Leonowicz, P.: Sedimentology and ichnology of Bathonian (Middle Jurassic)
ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland, Acta
Geol. Pol., 62, 281–296, https://doi.org/10.2478/v10263-012-0015-x,
2012.
Leonowicz, P.: The significance of mudstone fabric combined with
palaeoecological evidence in determining sedimentary processes – an example
from the Middle Jurassic of southern Poland, Geol. Q., 57, 243–260,
https://doi.org/10.7306/gq.1092, 2013.
Leonowicz, P.: Nearshore transgressive black shale from the Middle Jurassic
shallow-marine succession from southern Poland, Facies, 62, 1–23,
https://doi.org/10.1007/s10347-016-0467-7, 2016.
Loeblich, A. R. and Tappan, H.: Foraminiferal genera and their
classification, van Nostrand Reinhold, Hew York, 2 Volumes, 695–714, 1987.
Masters, B. A.: Mesozoic planktonic Foraminifera, in: Oceanic
Micropalaeontology, edited by: Ramsay, A. T. S., Academic Press,
London, 1, 301–731, 1977.
Matyja, B. and Głowniak, E.: Następstwo amonitów dolnego i
środkowego oksfordu
w profilu kamieniołomu w Ogrodzieńcu i ich znaczenie biogeograficzne,
Volumina Jurassica, 1, 53–58, 2003.
Matyja, B. and Wierzbowski, A.: Biostratygrafia amonitowa formacji
częstochowskich iłów rudonośnych (najwyższy bajos–górny baton) z odsłonięć w Chęstochowie, Volumina
Jurassica, 1, 3–6, 2003.
Matyja, B. and Wierzbowski, A.: Field Trip B1 – Biostratigraphical framework
from Bajocian – Oxfordian, in: Jurassic of Poland and adjacent Slovakian
Carpathians, edited by: Wierzbowski, A., Aubrecht, R., Golonka, J., Gutowski,
J., Krobicki, M., Matyja, B. A., Pieńkowski, G., and Uchman, A., Field
Trip Guidebook of the 7th International Symposium on the Jurassic System,
133–168, 2006.
Matyja, B., Dembicz, K., and Praszkier, T.: Stop B1.8 – Wrzosowa Quarry,
condensed Callovian and Lower Oxfordian ammonite succession, in: Jurassic of
Poland and adjacent Slovakian Carpathians, Field trip guidebook of
7th International Congress on the Jurassic System Poland, edited by:
Wierzbowski, A., Aubrecht, R., Golonka, J., Gutowski, J., Krobicki, M.,
Matyja, B. A., Pieńkowski, G., and Uchman, A., Pol. Geol. Inst.,
Warszawa, 157–160, 2006a.
Matyja, B., Wierzbowski, A., Gedl. P., Boczarowski, A., Dudek, T., Kaim, A.,
Kędzierski, M., Leonowicz, P., Smoleń, J., Szczepanik, P.,
Witkowska, M., Ziaja, J., and Ostrowski, S.: Stop B1.7 – Gnaszyn clay pit
(Middle Bathonian-lowermost Upper Bathonian), in: Jurassic of Poland and
adjacent Slovakian Carpathians, Field trip guidebook of
7th International Congress on the Jurassic System Poland, edited by:
Wierzbowski, A., Aubrecht, R., Golonka, J., Gutowski, J., Krobicki, M.,
Matyja, B. A., Pieńkowski, G., and Uchman, A., Pol. Geol. Inst.,
Warszawa, 154–156, 2006b.
Morozova, V. G. and Moskalenko, T. A.: Foraminiferes planctoniques des
depots limitrophes du Bajocien et du Bathonien du Daghestan central
(Nord-Est du Caucase), Voprosy Mikropaleontologii, 5, 3–30, 1961.
Oberhauser, R.: Foraminiferen und Mikrofossilien “incertae sedis” der Ladinischen und
Karnischen Stufe der Trias aus den Ostalpen und aus Persien, in:
Beiträge zur Mikropaläontologie der Alpinen Trias, edited by:
Oberhauser, R., Kristan-Tollmann, Kollman, K., and Klaus, W., Jb. Geol.
Bundesanst., Wien, Special, 5, 5–46, 1960.
Ogg , J. G., Ogg, G. M., and Gradstein, F.: A concise geologic time scale
2016, Cambridge, Elsevier, 240 pp., 2016.
Olszewska, B. and Wieczorek, J.: Callovian-Oxfordian foraminifera from the
Northern Tethyan Shelf: An example from the Cracow Upland (Southern Poland),
Revue de Paléobiologie, 2, 191–196, 1988.
Parent, H. and Zatoń, M.: Sexual dimorphism in the Bathonian
morphoceratid ammonite Polysphinctites tenuiplicatus, Acta Palaeontol. Pol.,
61, 4, 875–884, https://doi.org/10.4202/app.00261.2016, 2016.
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J.,
Cedhagen, T., Habura, A., and Bowser, S. S.: The evolution of early
Foraminifera, P. Natl. Acad. Sci. USA, 100, 11494–11498,
https://doi.org/10.1073/pnas.2035132100, 2003.
Pazdrowa, O.: Bathonian Globigerina of Poland, Rocznik Polskiego Towarzystwa
Geologicznego, 39, 41–56, 1969.
Premoli Silva, I. and Sliter, W. V.: Cretaceous paleoceanography: evidence
from planktonic foraminiferal evolution, Geol. Soc. Am., Special Paper, 332,
301–328, 1999.
Remin, Z., Dubicka, Z., Kozłowska, A., and Kuchta, B.: A new method of rock
disintegration and foraminiferal extraction with the use of liquid nitrogen,
Mar. Micropaleontol., 86, 11–14,
https://doi.org/10.1016/j.marmicro.2011.12.001, 2012.
Riegraf, W.: Planktonic Foraminifera (Globuligerinidae) from the Callovian
(Middle Jurassic) of Southwest Germany, J. Foraminiferal Res., 17,
190–211, 1987.
Różycki, S.: Górny dogger i dolny malm Jury
Krakowsko-Częstochowskiej, Opis odsłonięć, Prace Instytutu
Geologicznego, 17, 250–259, 1953.
Ruebsam, W., Mayer, B., and Schwark, L.: Cryosphere carbon dynamics control
early Toarcian global warming and sea level evolution, Global Planet. Change, 172, 440–453, 2019.
Salata, D.: Heavy minerals as detritus provenance indicators for the
Jurassic pre-Callovian palaeokarst infill from the Czatkowice Quarry
(Kraków–Wieluń Upland, Poland), Geol. Q., 57, 537–550, 2013.
Schiebel, R. and Hemleben, C.: Modern planktonic foraminifera, Palaontol.
Z., 79, 135–148, https://doi.org/10.1007/BF03021758, 2005.
Schiebel, R. and Hemleben, C.: Planktonic foraminifers in the modern oceans,
Springer, Berlin, Heidelberg, Germany, 358 pp., https://doi.org/10.1007/978-3-662-50297-6, 2017.
Simmons, M. D., BouDagher-Fadel, M. K., Banner, F. T., and Whittaker, J. E.:
The Jurassic Favusellacea, the earliest Globigerinina, in: Early
Evolutionary History of Planktonicm Foraminifera, edited by:
BouDagher-Fadel, M. K., Banner, F. T., and Whittaker, J. E., British
Micropalaeontological Society Publication Series, Chapman and Hall
Publishers, London, 17–50, 1997.
Smoleń, J.: Faunal dynamics of foraminiferal assemblages in the
Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia
Homocline, Poland, Acta Geol. Pol., 62, 403–419,
https://doi.org/10.2478/v10263-012-0023-x, 2012.
Stam, B.: Quantitative analysis of Middle and Late Jurassic foraminifera
from Portugal and its implications for the Grand Banks of Newfoundland,
Utrecht Micropaleontological Bulletins, 34, 1–168, 1986.
Trammer, J.: Biohermy gąbkowe warstw jasnogórskich (oksford Jury
Polskiej), Przeglad Geol., 33, 78–81, 1985.
von Hillebrandt, A.: Are the Late Triassic to Early Jurassic aragonitic
Oberhauserellidae (Robertinina) the ancestors of planktonic Foraminifera?,
N. Jb. Geol. Paläont. Abh., 266, 199–215,
https://doi.org/10.1127/0077-7749/2012/0279, 2012.
Wendler, I., Brian, H. T., MacLeod, K. G., and Wendler, J. E.: Stable oxygen and
carbon isotope systematics of exquisitely preserved Turonian foraminifera
from Tanzania – understanding isotopic signatures in fossils, Mar.
Micropaleontol., 102, 1–33, 2013.
Wernli, R.: Les protoglobige'rines (foraminiferes) du Toarcien
et de l'Aale'nien du Domuz Dag (Taurus occidental, Turquie),
Eclogae geologicae Helvetiae, 81, 661–668, 1988.
Wernli, R.: Les Foraminifères globigériniformes (Oberhauserellidae)
du Toarcien Inférieur de Teysachaux (Préalpes médianes,
Fribourg, Suisse), Rev. Paléobiologie, 14, 257–269, 1995.
Wernli, R. and Görög, A.: Protoglobigerinids (Foraminifera) acid
extracted from Bajocian limestones (Hungary), Rev. Esp. Micropaleontol., 31,
3, 419–426, 1999.
Wernli, R. and Görög, A.: Determination of Bajocian
protoglobigerinids (Foraminifera) in thin sections, Rev. Paléobiologie,
19, 399–407, 2000.
Wierzbowski, A., Matyja, B., Gajewska, M., Dubicka, Z., and Barski, M.: The
Middle/Upper Callovian to Oxfordian deep-water marly succesion at Stare
Gliny Quarry, Polish Jura Area, Southern Poland: Ammonite stratigraphy,
microfossil (Dinoflagellate cysts and Foraminifers) assemblages and
paleogeographical-paleotectonical implications – in preparation, 2021.
Wierzbowski, H., Dembicz, K., and Praszkier, T.: Oxygen and carbon isotope
composition of Callovian-Lower Oxfordian (Middle-Upper Jurassic) belemnite
rostra from central Poland: A record of a Late Callovian global sea-level
rise? Palaeogeogr. Palaeocl., 283, 182–194,
https://doi.org/10.1016/j.palaeo.2009.09.020, 2009.
Witwicka, E., Bielecka, W., Styk, O., and Sztejn, J.: Metody opracowywania
mikroskamieniałości, Biul. Państw. Instyt. Geol., 134, 5–156,
1958.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7043 KB) - Full-text XML