Articles | Volume 41, issue 2
https://doi.org/10.5194/jm-41-107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-41-107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spine-like structures in Paleogene muricate planktonic foraminifera
School of Earth and Environmental Sciences, Main Building, Park Place,
Cardiff University, Cardiff CF10 3AT, UK
now at: Department of Earth Sciences, University College London, Gower
Street, London WC1E 6BT, UK
Eleanor John
School of Earth and Environmental Sciences, Main Building, Park Place,
Cardiff University, Cardiff CF10 3AT, UK
Bridget S. Wade
Department of Earth Sciences, University College London, Gower Street,
London WC1E 6BT, UK
Simon D'haenens
Department of Earth and Planetary Sciences, Yale University, 210
Whitney Avenue, New Haven, CT 06511, USA
now at: Research Coordination Office, Hasselt University,
Martelarenlaan 42, 3500 Hasselt, Belgium
now at: Data Science Institute, Hasselt
University, Agoralaan, 3500 Diepenbeek, Belgium
Caroline H. Lear
School of Earth and Environmental Sciences, Main Building, Park Place,
Cardiff University, Cardiff CF10 3AT, UK
Related authors
Flavia Boscolo-Galazzo, David Evans, Elaine Mawbey, William Gray, Paul Pearson, and Bridget Wade
EGUsphere, https://doi.org/10.5194/egusphere-2024-1608, https://doi.org/10.5194/egusphere-2024-1608, 2024
Short summary
Short summary
Here we present a comparison of results from the Mg/Ca and oxygen stable isotopes paleothermometers obtained from 57 modern to fossil species of planktonic foraminifera from the last 15 million of years. We find that the occurrence (or not) of species-species offsets in Mg/Ca is conservative between ancestor-descendent species, and that taking into account species kinship can significantly improve temperature reconstructions by several degrees.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Paul N. Pearson and IODP Expedition 363 Shipboard Scientific
Party
J. Micropalaeontol., 37, 97–104, https://doi.org/10.5194/jm-37-97-2018, https://doi.org/10.5194/jm-37-97-2018, 2018
Short summary
Short summary
We describe an unusual millimetre-long tube that was discovered in sediment from the deep sea floor. The tube was made by a single-celled organism by cementing together sedimentary grains from its environment. The specimen is unusual because it implies that the organism used a very high degree of discrimination in selecting its grains, as they are all of one type and most are oriented the same way. It raises intriguing questions of how the organism accomplished this activity.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
P. N. Pearson and E. Thomas
Clim. Past, 11, 95–104, https://doi.org/10.5194/cp-11-95-2015, https://doi.org/10.5194/cp-11-95-2015, 2015
Short summary
Short summary
The Paleocene-to-Eocene thermal maximum was a period of extreme global warming caused by perturbation to the global carbon cycle 56Mya. Evidence from marine sediment cores has been used to suggest that the onset of the event was very rapid, over just 11 years of annually resolved sedimentation. However, we argue that the supposed annual layers are an artifact caused by drilling disturbance, and that the microfossil content of the cores shows the onset took in the order of thousands of years.
Paul N. Pearson, Sam L. Evans, and James Evans
J. Micropalaeontol., 34, 59–64, https://doi.org/10.1144/jmpaleo2013-032, https://doi.org/10.1144/jmpaleo2013-032, 2015
P. N. Pearson and W. Hudson
Sci. Dril., 18, 13–17, https://doi.org/10.5194/sd-18-13-2014, https://doi.org/10.5194/sd-18-13-2014, 2014
Flavia Boscolo-Galazzo, David Evans, Elaine Mawbey, William Gray, Paul Pearson, and Bridget Wade
EGUsphere, https://doi.org/10.5194/egusphere-2024-1608, https://doi.org/10.5194/egusphere-2024-1608, 2024
Short summary
Short summary
Here we present a comparison of results from the Mg/Ca and oxygen stable isotopes paleothermometers obtained from 57 modern to fossil species of planktonic foraminifera from the last 15 million of years. We find that the occurrence (or not) of species-species offsets in Mg/Ca is conservative between ancestor-descendent species, and that taking into account species kinship can significantly improve temperature reconstructions by several degrees.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024, https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Short summary
This study uses novel techniques to look at the microstructure of planktonic foraminifera (single-celled marine organisms) fossils, to further our understanding of how they form their hard exterior shells and how the microstructure and chemistry of these shells can change as a result of processes that occur after deposition on the seafloor. Understanding these processes is of critical importance for using planktonic foraminifera for robust climate and environmental reconstructions of the past.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Jakub Witkowski, Karolina Bryłka, Steven M. Bohaty, Elżbieta Mydłowska, Donald E. Penman, and Bridget S. Wade
Clim. Past, 17, 1937–1954, https://doi.org/10.5194/cp-17-1937-2021, https://doi.org/10.5194/cp-17-1937-2021, 2021
Short summary
Short summary
We reconstruct the history of biogenic opal accumulation through the early to middle Paleogene in the western North Atlantic. Biogenic opal accumulation was controlled by deepwater temperatures, atmospheric greenhouse gas levels, and continental weathering intensity. Overturning circulation in the Atlantic was established at the end of the extreme early Eocene greenhouse warmth period. We also show that the strength of the link between climate and continental weathering varies through time.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020, https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary
Short summary
We identify the first continuous carbonate-bearing sediment record from the tropical ocean that spans the entirety of the global warming event, the Middle Eocene Climatic Optimum, ca. 40 Ma. We determine significant mismatches between middle Eocene calcareous microfossil datums from the tropical Pacific Ocean and established low-latitude zonation schemes. We highlight the potential of ODP Site 865 for future investigations into environmental and biotic changes throughout the early Paleogene.
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Paul N. Pearson and IODP Expedition 363 Shipboard Scientific
Party
J. Micropalaeontol., 37, 97–104, https://doi.org/10.5194/jm-37-97-2018, https://doi.org/10.5194/jm-37-97-2018, 2018
Short summary
Short summary
We describe an unusual millimetre-long tube that was discovered in sediment from the deep sea floor. The tube was made by a single-celled organism by cementing together sedimentary grains from its environment. The specimen is unusual because it implies that the organism used a very high degree of discrimination in selecting its grains, as they are all of one type and most are oriented the same way. It raises intriguing questions of how the organism accomplished this activity.
Rosanna Greenop, Mathis P. Hain, Sindia M. Sosdian, Kevin I. C. Oliver, Philip Goodwin, Thomas B. Chalk, Caroline H. Lear, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 13, 149–170, https://doi.org/10.5194/cp-13-149-2017, https://doi.org/10.5194/cp-13-149-2017, 2017
Short summary
Short summary
Understanding the boron isotopic composition of seawater (δ11Bsw) is key to calculating absolute estimates of CO2 using the boron isotope pH proxy. Here we use the boron isotope gradient, along with an estimate of pH gradient, between the surface and deep ocean to show that the δ11Bsw varies by ~ 2 ‰ over the past 23 million years. This new record has implications for both δ11Bsw and CO2 records and understanding changes in the ocean isotope composition of a number of ions through time.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
David Evans, Bridget S. Wade, Michael Henehan, Jonathan Erez, and Wolfgang Müller
Clim. Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, https://doi.org/10.5194/cp-12-819-2016, 2016
Short summary
Short summary
We show that seawater pH exerts a substantial control on planktic foraminifera Mg / Ca, a widely applied palaeothermometer. As a result, temperature reconstructions based on this proxy are likely inaccurate over climatic events associated with a significant change in pH. We examine the implications of our findings for hydrological and temperature shifts over the Paleocene-Eocene Thermal Maximum and for the degree of surface ocean precursor cooling before the Eocene-Oligocene transition.
P. N. Pearson and E. Thomas
Clim. Past, 11, 95–104, https://doi.org/10.5194/cp-11-95-2015, https://doi.org/10.5194/cp-11-95-2015, 2015
Short summary
Short summary
The Paleocene-to-Eocene thermal maximum was a period of extreme global warming caused by perturbation to the global carbon cycle 56Mya. Evidence from marine sediment cores has been used to suggest that the onset of the event was very rapid, over just 11 years of annually resolved sedimentation. However, we argue that the supposed annual layers are an artifact caused by drilling disturbance, and that the microfossil content of the cores shows the onset took in the order of thousands of years.
Paul N. Pearson, Sam L. Evans, and James Evans
J. Micropalaeontol., 34, 59–64, https://doi.org/10.1144/jmpaleo2013-032, https://doi.org/10.1144/jmpaleo2013-032, 2015
P. N. Pearson and W. Hudson
Sci. Dril., 18, 13–17, https://doi.org/10.5194/sd-18-13-2014, https://doi.org/10.5194/sd-18-13-2014, 2014
Related subject area
Planktic foraminifera
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Taxonomic review of living planktonic foraminifera
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Jurassic planktic foraminifera from the Polish Basin
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Ontogenetic disparity in early planktic foraminifers
Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea)
Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows
Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Anieke Brombacher, Alex Searle-Barnes, Wenshu Zhang, and Thomas H. G. Ezard
J. Micropalaeontol., 41, 149–164, https://doi.org/10.5194/jm-41-149-2022, https://doi.org/10.5194/jm-41-149-2022, 2022
Short summary
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary
Short summary
Three well-preserved new species of Middle Jurassic (Bajocian) planktonic foraminifera from the continental margin of northwest Australia are described. This is on the southern shelf of the Tethys Ocean, and these planktonics are the first to be reported from the Jurassic Southern Hemisphere. Described as new are Globuligerina bathoniana australiana n. ssp., G. altissapertura n. sp. and Mermaidogerina loopae n. gen. n. sp. The research is part of a study of regional Jurassic foraminifera.
Sophie Kendall, Felix Gradstein, Christopher Jones, Oliver T. Lord, and Daniela N. Schmidt
J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, https://doi.org/10.5194/jm-39-27-2020, 2020
Short summary
Short summary
Changes in morphology during development can have profound impacts on an organism but are hard to quantify as we lack preservation in the fossil record. As they grow by adding chambers, planktic foraminifera are an ideal group to study changes in growth in development. We analyse four different species of Jurassic foraminifers using a micro-CT scanner. The low morphological variability suggests that strong constraints, described in the modern ocean, were already acting on Jurassic specimens.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Cited articles
Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016.
Anagnostou, E., John, E. H., Babila, T. L., Sexton, P. F., Ridgwell, A., Lunt,
D. J., Pearson, P. N., Chalk, T. B., Pancost, R. D., and Foster, G. L.: Proxy
evidence for state-dependence of climate sensitivity in the Eocene
greenhouse, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-17887-x, 2020.
André, A., Quillévéré, F., Morard, R., Ujiié, Y.,
Escarguel, G., de Vargas, C., de Garidel-Thoron, T., Douady, C. J., and Ketmaier, V.: SSU rDNA divergence in planktonic
Foraminifera: molecular taxonomy and biogeographic implications, PLoS ONE,
2014, 0104641, https://doi.org/10.1371/journal.pone.0104641, 2014.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, https://doi.org/10.1111/j.1469-185X.2011.00178.x, 2011.
Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost,
R. D., Gibbs, S. J., Huber, B. T., Leng, M. J., Coe, A. S., Cohen, A. S., and
Foster, G. L.: Extreme warming of tropical waters during the Paleocene-Eocene
Thermal Maximum, Geology, 42, 739–742, https://doi.org/10.1130/G35637.1, 2014.
Bé, A. W. H.: Gametogenic calcification in a spinose planktonic
foraminifer, Globigerinoides sacculifer (Brady), Marine Micropaleontol., 5, 283–310, 1980.
Benjamini, C. and Reiss, Z.: Wall-hispidity and -perforation in Eocene
planktonic foraminifera, Micropaleontology, 25, 141–150, 1979.
Berggren, W. A.: Phylogenetic and taxonomic problems of some Tertiary
planktonic foraminiferal lineages, Tulane Stud. Geol. Paleont., 6, 1–22,
1968.
Berggren, W. A.: Review of Blow, Walter H., The Cainozoic Globigerinida: A
study of the morphology, taxonomy, evolutionary relationships and the
stratigraphical distribution of some Globigerinida (mainly Globigerinacea),
Micropaleontology, 27, 99–108, 1981.
Berggren, W. A., Pearson, P. N., Huber, B. T., and Wade, B. S.: Taxonomy,
biostratigraphy and phylogeny of Eocene Acarinina, in: Atlas of Eocene Planktonic
Foraminifera, edited by: Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben,
C., and Berggren, W. A., Cushman Foundation, Special Publication 41, 257–326,
2006a.
Berggren, W. A., Olsson, R. K., and Premoli Silva, I.: Taxonomy,
biostratigraphy and phylogenetic affinities of Eocene Astrorotalia, Igorina, Planorotalites, and Problematica (Praemurica? lozanoi), in: Atlas of Eocene
Planktonic Foraminifera, edited by: Pearson, P. N., Olsson, R. K., Huber, B. T.,
Hemleben, C., and Berggren, W. A., Cushman Foundation, Special Publication 41,
377–400, 2006b.
Bijma, J., Erez, J., and Hemleben, C.: Lunar and semilunar reproductive cycles
in some spinose planktonic foraminifers, J. Foramin. Res., 20, 117–127,
https://doi.org/10.2113/gsjfr.20.2.117, 1990.
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D., and O'Regan, M.:
Planktonic foraminifera stable isotopes and water column structure:
Disentangling ecological signals, Mar. Micropaleontol., 101, 127–145, https://doi.org/10.1016/j.marmicro.2013.02.002, 2013.
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D., and Schmidt, D.: Partial
collapse of the marine carbon pump after the Cretaceous-Paleogene boundary,
Geology, 44, 287–290, https://doi.org/10.1130/G37581.1, 2016.
Blow, W. H.: The Cainozoic Globigerinida, E.J. Brill, Leiden, 3 Volumes, 1413 pp., 1979.
Boersma, A., Premoli Silva, I., and Shackleton, N. J.: Atlantic Eocene
planktonic foraminiferal paleohydrographic indicators and stable isotope
paleoceanography, Paleoceanography, 2, 287–331, 1987.
Bolli, H. M.: Planktonic foraminifera from the Eocene Navet and San Fernando
formations of Trinidad, B.W.I, United States National Museum Bulletin, 215,
155–172, 1957.
Boscolo-Galazzo, F., Crichton, K. A., Ridgwell, A., Mawbey, E. N., Wade, B. S.,
and Pearson, P. N.: Temperature controls carbon cycling and biological
evolution in the ocean twilight zone, Science, 371, 1148–1152, https://doi.org/10.1126/science.abb6643, 2021.
Bown, P. R., Dunkley Jones, T., Lees, J. A., Randell, R. D., Mizzi, J. A.,
Pearson, P. N., Coxall, H. K., Young, J. R., Nicholas, C. J., Karega, A.,
Singano, J., and Wade, B. S.: A Paleogene calcareous microfossil
Konservat-Lagerstätte from the Kilwa Group of coastal Tanzania, Geol.
Soc. Am. Bull., 120, 3–12, https://doi.org/10.1130/B26261.1, 2008.
Brummer, G.-J. and Kučera, M.: Taxonomic review of living planktonic
foraminifera, J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022,
2022.
Cande, S. C. and Kent, D. V.: Revised calibration of the geomagnetic polarity
timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res.-Solid, 100,
6093–6095, https://doi.org/10.1029/94JB03098, 1995.
Caron, D. A., Anderson, O. R., Lindsey, J. L., Faber Jr., W. W., and Lim, E. L.:
Effects of gametogenesis on test structure and dissolution of some spinose
planktonic foraminifera and implications for test preservation, Mar.
Micropaleontol., 16, 93–116, 1990.
Coxall, H. K. and Pearson, P. N.: Taxonomy, biostratigraphy, and phylogeny of
the Hantkeninidae (Clavigerinella, Hantkenina, and Cribrohantkenina), in: Atlas of Eocene Planktonic Foraminifera,
edited by: Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and
Berggren, W. A., Cushman Foundation, Special Publication 41, 216–225, 2006.
Coxall, H. K., D'Hondt, S., and Zachos, J. C.: Pelagic evolution and
environmental recovery after the Cretaceous-Paleogene mass extinction,
Geology, 34, 297–300, https://doi.org/10.1130/G21702.1, 2006.
Cushman, J. A.: Foraminifera their classification and economic use, Cushman
Lab Foram. Res. Spec. Publ., 1, 1–401, 1928.
Darling, K. F. and Wade, C. M.: The genetic diversity of planktic foraminifera
and the global distribution of ribosomal RNA genotypes, Mar.
Micropaleontol., 67, 216–238, https://doi.org/10.1016/j.marmicro.2008.01.009, 2008.
D'Hondt, S., Zachos, J. C., and Schultz, G.: Stable isotope signals and
photosymbiosis in late Paleocene planktic foraminifera, Paleobiology, 20,
391–406, 1994.
Douglas, R. G. and Savin, S. M.: Oxygen isotopic evidence for the depth
stratification of Tertiary and Cretaceous planktic foraminifera, Mar.
Micropaleontol., 3, 175–196, 1978.
Dunkley Jones, T., Bown, P. R., and Pearson, P. N.: Exceptionally well
preserved upper Eocene to lower Oligocene calcareous nannofossils
(Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania, J.
Syst. Palaeontol., 7, 359–411, https://doi.org/10.1017/S1477201909990010, 2009.
Edgar, K. M., Bohaty, S. M., Gibbs, S. J., Sexton, P. F., Norris, R. D., and
Wilson, P. A.: Symbiont “bleaching” in planktic foraminifera during the
Middle Eocene Climatic Optimum, Geology, 41, 15–18, https://doi.org/10.1130/G33388.1,
2013.
Edgar, K. M., Anagnostou, E., Pearson, P. N., and Foster, G. L.: Assessing the
impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite,
Geochim Cosmochim. Ac., 166, 189–209, https://doi.org/10.1016/j.gca.2015.06.018, 2015.
Edgar, K. M., Hull, P. M., and Ezard, T. H.: Evolutionary history biases
inferences of ecology and environment from δ13C but not δ18O
values, Nat. Commun., 8, 1–9, https://doi.org/10.1038/s41467-017-01154-7, 2017.
Eggins, S., De Deckker, P., and Marshall, J.: Mg/Ca variation in planktonic
foraminifera tests: implications for reconstructing palaeo-seawater
temperature and habitat migration, Earth Plan. Sc. Lett., 212, 291–306,
https://doi.org/10.1016/S0012-821X(03)00283-8, 2003.
Erez, J.: The source of ions for biomineralization in foraminifera and their
implications for paleoceanographic proxies, Rev. Mineral. Geochem., 54,
115–149, https://doi.org/10.2113/0540115, 2003.
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A.: Interplay between
changing climate and species' ecology drives macroevolutionary dynamics,
Science, 332, 349–351, https://doi.org/10.1126/science.1203060, 2011.
Fayolle, F. and Wade, B. S.: The evolution of Eocene planktonic foraminifera
Dentoglobigerina, J. Syst. Palaeontol., 19, 333–376, https://doi.org/10.1080/14772019.2021.1904021,
2021.
Fehrenbacher, J. S., Russell, A. D., Davis, C. V., Gagnon, A. C., Spero, H. J., Cliff, J. B., Zhu, Z., and Martin, P.: Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei, Nat. Commun., 8, 15441, https://doi.org/10.1038/ncomms15441, 2017.
Fraass, A., Kelly, D. C., and Peters, S. E.: Macroevolutionary history of the
planktic foraminifera, Annu. Rev. Earth Pl. Sc., 43, 150112145716004, https://doi.org/10.1146/annurev-earth-060614-105059, 2014.
Frieling, J., Gebhardt, H., Huber, M., Adekeye, O. A., Akande, S. O.,
Reichart, G. J., Middelburg, J. J., Schouten, S., and Sluijs, A.: Extreme
warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene
Thermal Maximum, Sci. Adv., 3, e1600891, https://doi.org/10.1126/sciadv.1600891, 2017.
Furbish, D. J. and Arnold, A. J.: Hydrodynamic strategies in the morphological
evolution of spinose planktonic foraminifera, Oceanographic Literature
Review, 3, 504–505, 1988.
Gaskell, D. E. and Hull, P. M.: Symbiont arrangement and metabolism can
explain high δ13C in Eocene planktonic foraminifera, Geology,
47, 1156–1160, https://doi.org/10.1130/G46304.1, 2019.
Gaskell, D. E., Ohman, M. D., and Hull, P. M.: Zooglider-based measurements of
planktonic foraminifera in the California Current System, J. Foramin. Res.,
49, 390–404, 2019.
Grigoratou, M., Monteiro, F. M., Ridgwell, A., and Schmidt, D. N.:
Investigating the benefits and costs of spines and diet on planktonic
foraminifera distribution with a trait-based ecosystem model, Mar.
Micropaleontol., 166, 102004, https://doi.org/10.1016/j.marmicro.2021.102004, 2021.
Hemleben, C.: Spine and pustule relationship in some Recent planktonic
foraminifera, Micropaleontology, 21, 334–341, 1975.
Hemleben, C. and Olsson, R. K.: Wall textures of Eocene planktonic
foraminifera, in: Atlas of Eocene Planktonic Foraminifera, edited by:
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A.,
Cushman Foundation for Foraminiferal Research, Special Publication 41,
47–68, 2006.
Hemleben, C., Brönniman, P., and Renz, H. H.: Ultramicroscopic shell and
spine structure of some spinose planktonic Foraminifera, in: Proceedings of
the First International Conference on Planktonic Microfossils, Geneva, 1967, edited by: Bronnimann, P. and Renz, H. H.,
E.J. Brill, Leiden, Vol. 2, 254–256, 1969.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern Planktonic
Foraminifera, Springer, New York, 363 pp., 1989.
Hemleben, C., Muhlen, D., Olsson, R. K., and Berggren, W. A.: Surface texture
and the first occurrence of spines in planktonic foraminifera from the early
Tertiary, Geologisches Jahrbuch A, 128, 117–146, 1991.
Hemleben, C., Olsson, R. K., Premec Fucek, V., and Hernitz-Kucenjac, M.: Wall
textures of Oligocene normal perforate planktonic Foraminifera, in: Atlas of
Oligocene Planktonic Foraminifera, edited by: Wade, B. S., Olsson, R. K.,
Pearson, P. N., Huber, B. T., and Berggren, W. A., Cushman Foundation of
Foraminiferal Research, Special Publication 46, 55–78, 2018.
Henehan, M. J., Edgar, K. M., Foster, G. L., Penman, D. E., Hull, P. M., Greenop,
R., Anagnostou, E., and Pearson, P. N.: Revisiting the Middle Eocene Climatic
Optimum “carbon cycle conundrum” with new estimates of atmospheric pCO2
from boron isotopes, Paleoceanogr. Paleocl., 35,
e2019PA003713, https://doi.org/10.1029/2019PA003713, 2020.
Huber, B. T. and Leckie, R. M.: Planktic foraminiferal species turnover
across deep-sea Aptian/Albian boundary sections, J. Foramin. Res., 41,
53–95, 2011.
Hull, P. M., Osborn, K. J., Norris, R. D., and Robison, B. H.: Seasonality and
depth distribution of a mesopelagic foraminifer, Hastigerinella digitata, in Monterey Bay,
California, Limnol. Oceanogr., 56, 562–576, https://doi.org/10.4319/lo.2011.56.2.0562,
2011.
Hull, P. M., Bohaty, S. M., Cameron, A., Coxall, H. K., D'haenens, S., De Vleeschouwer, D., Elder, L. E., Friedrich, O., Kerr, K., Turner, S. K., Kordesch, W. E. C., Morlua, K., Norris, P. D., Opdyke, B. N., Penman, D. E., Palike, H., Wilson, P. A., Sexton, P. F., Vaklenkamp, M., Wu, F., and Zachos, J. C.: Data report: coarse fraction record for the Eocene
megasplice at IODP Sites U1406, U1408, U1409, and U1411, Proceedings of the
Integrated Ocean Drilling Program, 342, 1–9, https://doi.org/10.2204/iodp.proc.342.203.2017, 2017.
John, E. H., Pearson, P. N., Coxall, H. K., Birch, H., Wade, B. S., and Foster,
G. L.: Warm ocean processes and carbon cycling in the Eocene, Philos. T. R.
Soc. A, 371, 20130099, https://doi.org/10.1098/rsta.2013.0099, 2013.
John, E. H., Wilson, J. D., Pearson, P. N., and Ridgwell, A.:
Temperature-dependent remineralization and carbon cycling in the warm Eocene
oceans, Palaeogeogr. Palaeocl., 413, 158–166, https://doi.org/10.1016/j.palaeo.2014.05.019, 2014.
Koutsoukos, E. A.: Phenotypic plasticity, speciation, and phylogeny in early
Danian planktic foraminifera, J. Foramin. Res., 44, 109–142, 2014.
Liu, C. and Olsson, R. K.: On the origin of Danian normal perforate
planktonic foraminifera from Hedbergella, J. Foramin. Res., 24, 61–74, 1994.
Loeblich Jr., A. R. and Tappan, H.: Suprageneric classification of the
Rhizopodea, J. Paleontol., 35, 245–330, 1961.
Loeblich Jr., A. R. and Tappan, H.: Foraminiferal genera and their
classification, New York, Van Nostrand Reinhold, 970 pp., 1988.
Luciani, V., Dickens, G. R., Backman, J., Fornaciari, E., Giusberti, L., Agnini, C., and D'Onofrio, R.: Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene, Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, 2016.
Luciani, V., D'Onofrio, R., Dickens, G. R., and Wade, B. S.: Planktic
foraminiferal response to early Eocene carbon cycle perturbations in the
southeast Atlantic Ocean (ODP Site 1263), Global Planet. Change, 158,
119–133, https://doi.org/10.1016/j.gloplacha.2017.09.007, 2017.
McGowran, B.: Reclassification of early Tertiary Globorotalia, Micropaleontology, 14,
179–198, 1968.
Nicholas, C. J., Pearson, P. N., Bown, P. R., Jones, T. D., Huber, B. T., Karega,
A., Lees, J. A., McMillan, I. K., O'Halloran, A., Singano, J. M., and Wade,
B. S.: Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene
Kilwa Group, southern coastal Tanzania, J. Afr. Earth Sci., 45, 431–466,
https://doi.org/10.1130/B26261.1, 2006.
Nicholas, C. J., Pearson, P. N., McMillan, I. K., Ditchfield, P. W., and
Singano, J. M.: Structural evolution of southern coastal Tanzania since the
Jurassic, J. Afr. Earth Sci., 48, 273–297, https://doi.org/10.1016/j.jafrearsci.2007.04.003, 2007.
Norris, R. D.: Symbiosis as an evolutionary innovation in the radiation of
Paleocene planktonic foraminifera, Paleobiology, 22, 386–405, 1996.
Norris, R. D., Wilson, P. A., Blum, P. Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P. R., Cournede, C., Friedrich, O., Ghosh, A. K., Hollis, C. J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P. C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B. N., Penman, D., Romans, B., Scher, H. D., Sexton, P., Takagi, H., Kirtland Turner, S. Whiteside, J. H., Yamaguchi, T., and Yamamoto, Y.: Site U1408. Proceedings of the Integrated Ocean
Drilling Program, 342, 91, https://doi.org/10.2204/iodp.proc.342.109.2014, 2014.
Olsson, R. K., Hemleben, C., Berggren, W. A., and Liu, C.: Wall texture
classification of planktonic foraminifera genera in the lower Danian, J.
Foramin. Res., 22, 195–213, 1992.
Olsson, R. K., Berggren, W. A., Hemleben, C., and Huber, B. T.: Atlas of
Paleocene planktonic foraminifera, Smithsonian Contributions to
Paleobiology, Vol. 85, 252 pp., 1999.
Olsson, R. K., Hemleben, C., Huber, B. T., and Bergrren, W. A.: Taxonomy,
biostratigraphy, and phylogeny of Eocene Globigerina, Globoturborotalita, Subbotina, and Turborotalita, in: Atlas of Eocene Planktonic
Foraminifera, edited by: Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben,
C., and Berggren, W. A., Cushman Foundation, Special Publication 41, 111–168,
2006.
Parker, F. L.: Planktonic foraminiferal species in Pacific sediments,
Micropaleontology, 8, 219–254, 1962.
Pearson, P. N.: Oxygen isotopes in foraminifera: overview and historical
review, in: Reconstructing Earth's Deep-Time Climate – The State of the Art
in 2012, edited by: Ivany, L. C. and Huber, B. T., Paleontological Society
Papers, Vol. 18, 1–38, 2012.
Pearson, P. N. and Berggren, W. A.: Taxonomy, biostratigraphy, and phylogeny
of Morozovelloides n. gen., in: Atlas of Eocene Planktonic Foraminifera, edited by: Pearson,
P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A., Cushman
Foundation for Foraminiferal Research, Special Publication 41, 327–342,
2006.
Pearson, P. N. and Coxall, H. K.: Origin of the Eocene planktonic foraminifer
Hantkenina by gradual evolution, Palaeontology, 57, 243–267, https://doi.org/10.1111/pala.12064,
2014.
Pearson, P. N. and Palmer, M. R.: Middle Eocene seawater pH and atmospheric
carbon dioxide concentrations, Science, 284, 1824–1826, https://doi.org/10.1126/science.284.5421.1824, 1999.
Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations
over the past 60 million years, Nature, 406, 695–699, https://doi.org/10.1038/35021000,
2000.
Pearson, P. N. and Wade, B. S.: Systematic taxonomy of exceptionally
well-preserved planktonic foraminifera from the Eocene/Oligocene boundary of
Tanzania, Cushman Foundation for Foraminiferal Research, Special Publication
45, 1–85, 2015.
Pearson, P. N., Shackleton, N. J., and Hall, M. A.: Stable isotope paleoecology
of middle Eocene planktonic foraminifera and multi-species isotope
stratigraphy, DSDP Site 523, South Atlantic, J. Foramin. Res., 23, 123–140,
1993.
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G.,
Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A.: Warm tropical
sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature,
413, 481–487, https://doi.org/10.1038/35097000, 2001.
Pearson P. N., Nicholas C. J., Singano J. M., Bown P. R., Coxall H. K., van
Dongen B. E., Huber B. T., Karega A., Lees J. A., Msaky, E., Pancost, R. D.,
Pearson, M., and Roberts, A. P.: Paleogene and Cretaceous sediment cores
from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling
Project Sites 1–5, J. Afr. Earth Sci., 39, 25–62, https://doi.org/10.1016/j.jafrearsci.2004.05.001, 2004.
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A.:
Atlas of Eocene planktonic foraminifera, Cushman Foundation for
Foraminiferal Research, Special Publication 41, 513 pp., 2006.
Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten,
S., Singano, J. M., and Wade, B. S.: Stable warm climate through the Eocene
epoch, Geology, 35, 211–214, https://doi.org/10.1130/G23175A.1, 2007.
Pearson, P. N., Evans, S. L., and Evans, J.: Effect of diagenetic recrystallization on the strength of planktonic foraminifer tests under compression, J. Micropalaeontol., 34, 59–64, https://doi.org/10.1144/jmpaleo2013-032, 2015.
Poole, C. R. and Wade, B. S.: Systematic taxonomy of the Trilobatus sacculifer plexus and descendant Globigerinoidesella fistulosa (planktonic foraminifera), J. Syst. Palaeontol., 17, 23, https://doi.org/10.1080/14772019.2019.1578831, 2019.
Premoli Silva, I., Wade, B. S., and Pearson, P. N.: Taxonomy, biostratigraphy,
and phylogeny of Globigerinatheka and Orbulinoides, in: Atlas of Eocene Planktonic Foraminifera, edited
by: Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren,
W. A., Cushman Foundation for Foraminiferal Research, Special Publication 41,
169–211, 2006.
Reiss, Z.: The Bilamellidea, nov. superfam. and remarks on Cretaceous
globorotaliids, Contrib. Cushman Found. Foram. Res., 8, 127–145, 1957.
Schiebel, R. and Hemleben, C.: Modern Planktic Foraminifera,
Paläont. Z., 79, 135–148, https://doi.org/10.1007/BF03021758,
2005.
Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean,
Berlin, Springer, 358 pp., ISBN 978-3-662-50297-6, 2017.
Sexton, P. F., Wilson, P. A., and Pearson, P. N.: Palaeoecology of late middle
Eocene planktic foraminifera and evolutionary implications, Mar.
Micropaleontol. 60, 1–16, https://doi.org/10.1016/j.marmicro.2006.02.006, 2006a.
Sexton, P. F., Wilson, P. A., and Pearson, P. N.: Microstructural and
geochemical perspectives on planktic foraminiferal preservation: “Glassy”
versus “Frosty”, Geochem. Geophy. Geosy., 7, Q12P19, https://doi.org/10.1029/2006GC001291, 2006b.
Shackleton, N. J. and Boersma, A.: The climate of the Eocene ocean, J. Geol.
Soc. Lond., 138, 153–157, 1981.
Shaw, J. O., D'haenens, S., Thomas, E., Norris, R. D., Lyman, J. A., Bornemann,
A., and Hull, P. M.: Photosymbiosis in planktonic foraminifera across the
Paleocene-Eocene thermal maximum, Paleobiology, 47, 632–647, https://doi.org/10.1017/pab.2021.7, 2021.
Spero, H. J., Eggins, S. M., Russell, A. D., Vetter, L., Kilburn, M. R., and
Hönisch, B.: Timing and mechanism for intratest Mg/Ca variability
in a living planktic foraminifer, Earth Planet. Sc. Lett., 409, 32–42,
https://doi.org/10.1016/j.epsl.2014.10.030, 2015.
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole,
C. R., Morard, R., and Stalder, C.: Fossil and genetic evidence for the
polyphyletic nature of the planktonic foraminifera “Globigerinoides”, and description of
the new genus Trilobatus, PLoS One, 10, e0128108, https://doi.org/10.1371/journal.pone.0128108,
2015.
Spindler, M., Hemleben, C., Salomons, J. B., and Smit, L. P.: Feeding behavior
of some planktonic foraminifers in laboratory cultures, J. Foramin. Res.,
14, 237–249, 1984.
Subbotina, N. N.: Fossil foraminifera of the USSR, Globigerinidae,
Hantkeninidae and Globorotaliidae, Trudy Vesooyznogo Neftyanogo
Nauchno-Issledovatel'skogo Geologo-Razvedochnogo Instituta (VNIGRI), 296 pp.
1953.
Van Dongen, B. E., Talbot, H. M., Schouten, S., Pearson, P. N., and Pancost,
R. D.: Well preserved Cretaceous and Paleogene biomarkers from the Kilwa
area, Tanzania, Org. Geochem., 37, 539–557, https://doi.org/10.1016/j.orggeochem.2006.01.003, 2006.
Wade, B. S.: Planktonic foraminiferal biostratigraphy and mechanisms in the
extinction of Morozovella in the late Middle Eocene, Mar. Micropaleontol., 51, 23–38,
https://doi.org/10.1016/j.marmicro.2003.09.001, 2004.
Wade, B. S. and Hernitz Kucenjak, M.: Taxonomy, biostratigraphy, and
phylogeny of Oligocene Acarinina, in: Atlas of Oligocene Planktonic Foraminifera,
edited by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and
Berggren, W. A., Cushman Foundation of Foraminiferal Research, Special
Publication 46, 393–402, 2018.
Wade, B. S., Al-Sabouni, N., Hemleben, C., and Kroon, D.: Symbiont bleaching
in fossil planktonic foraminifera, Evol. Ecol., 22, 253–265, https://doi.org/10.1007/s10682-007-9176-6, 2008.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and
revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and
calibration to the Geomagnetic Polarity and Astonomical Time Scale, Earth
Sci. Rev., 104, 111–142, https://doi.org/10.1016/j.earscirev.2010.09.003, 2011.
Wade, B. S., Premec-Fucek, V., Kamikuri, S., Bartol, M., Luciani, V., and
Pearson, P. N.: Successive extinctions of muricate planktonic foraminifera
(Morozovelloides and Acarinina) mark the base Priabonian, Newsl. Stratigr., 45, 245–262,
https://doi.org/10.1127/0078-0421/2012/0023, 2012.
Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A.
(Eds.): Atlas of Oligocene Planktonic Foraminifera, Cushman Foundation,
Special Publication 46, 528 pp., 2018a.
Wade, B. S., Pearson, P. N., Olsson, R. K., Fraass, A. J., Leckie, R. M., and
Hemleben, C.: Taxonomy, biostratigraphy, and phylogeny of Oligocene and
lower Miocene Dentoglobigerina and Globoquadrina, in: Atlas of Oligocene Planktonic Foraminifera, edited
by: Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W. A.,
Cushman Foundation of Foraminiferal Research, Special Publication 46,
331–384, 2018b.
Wade, B. S., Aljahdali, M. H., Mufrreh, Y. A., Memesh, A. M., AlSoubhi, S. A., and Zalmout, I. S.: Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges, J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, 2021.
Weinkauf, M. F. G., Siccha, M., and Weiner, A. K. M.: Reproduction dynamics of
planktonic microbial eukaryotes in the open ocean, J. R. Soc. Interface, 19,
20210860, https://doi.org/10.1098/rsif.2021.0860, 2022.
Zachos, J. C., Stott, L. D., and Lohmann, K. C.: Evolution of early Cenozoic
marine temperatures, Paleoceanography, 9, 353–387, 1994.
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of...