Articles | Volume 41, issue 2
J. Micropalaeontol., 41, 107–127, 2022
https://doi.org/10.5194/jm-41-107-2022
J. Micropalaeontol., 41, 107–127, 2022
https://doi.org/10.5194/jm-41-107-2022
Research article
01 Aug 2022
Research article | 01 Aug 2022

Spine-like structures in Paleogene muricate planktonic foraminifera

Paul N. Pearson et al.

Related authors

Late Neogene evolution of modern deep-dwelling plankton
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022,https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021,https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021,https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021,https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
New composite bio- and isotope stratigraphies spanning the Middle Eocene Climatic Optimum at tropical ODP Site 865 in the Pacific Ocean
Kirsty M. Edgar, Steven M. Bohaty, Helen K. Coxall, Paul R. Bown, Sietske J. Batenburg, Caroline H. Lear, and Paul N. Pearson
J. Micropalaeontol., 39, 117–138, https://doi.org/10.5194/jm-39-117-2020,https://doi.org/10.5194/jm-39-117-2020, 2020
Short summary

Related subject area

Planktic foraminifera
Taxonomic review of living planktonic foraminifera
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022,https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021,https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Jurassic planktic foraminifera from the Polish Basin
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021,https://doi.org/10.5194/jm-40-1-2021, 2021
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020,https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020,https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary

Cited articles

Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016. 
Anagnostou, E., John, E. H., Babila, T. L., Sexton, P. F., Ridgwell, A., Lunt, D. J., Pearson, P. N., Chalk, T. B., Pancost, R. D., and Foster, G. L.: Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-17887-x, 2020. 
André, A., Quillévéré, F., Morard, R., Ujiié, Y., Escarguel, G., de Vargas, C., de Garidel-Thoron, T., Douady, C. J., and Ketmaier, V.: SSU rDNA divergence in planktonic Foraminifera: molecular taxonomy and biogeographic implications, PLoS ONE, 2014, 0104641, https://doi.org/10.1371/journal.pone.0104641, 2014. 
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927, https://doi.org/10.1111/j.1469-185X.2011.00178.x, 2011. 
Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost, R. D., Gibbs, S. J., Huber, B. T., Leng, M. J., Coe, A. S., Cohen, A. S., and Foster, G. L.: Extreme warming of tropical waters during the Paleocene-Eocene Thermal Maximum, Geology, 42, 739–742, https://doi.org/10.1130/G35637.1, 2014. 
Download
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.