Articles | Volume 41, issue 2
J. Micropalaeontol., 41, 149–164, 2022
https://doi.org/10.5194/jm-41-149-2022
J. Micropalaeontol., 41, 149–164, 2022
https://doi.org/10.5194/jm-41-149-2022
Research article
01 Nov 2022
Research article | 01 Nov 2022

Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans

Anieke Brombacher et al.

Related subject area

Planktic foraminifera
Spine-like structures in Paleogene muricate planktonic foraminifera
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022,https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Taxonomic review of living planktonic foraminifera
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022,https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021,https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Jurassic planktic foraminifera from the Polish Basin
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021,https://doi.org/10.5194/jm-40-1-2021, 2021
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020,https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary

Cited articles

Apthorpe, M.: Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin, J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, 2020. 
Beldade, P., Mateus, A. R. A., and Keller, R. A.: Evolution and molecular mechanisms of adaptive developmental plasticity, Mol. Ecol., 20, 1347–1363, https://doi.org/10.1111/j.1365-294X.2011.05016.x, 2011. 
Biolzi, M.: Morphometric analyses of the Late Neogene planktonic foraminiferal lineage Neogloboquadrina dutertrei, Mar. Micropaleontol., 18, 129–142, https://doi.org/10.1016/0377-8398(91)90009-U, 1991. 
Brigulgio, A., Metscher, B., and Hohenegger, J.: Growth rate biometric qunatification by X-ray microtomography on larger benthic foraminifera: three-dimensional measurements push Nummulitids into the fourth dimension, Turk. J. Earth Sci., 20, 683–699, https://doi.org/10.3906/yer-0910-44, 2011. 
Brombacher, A., Elder, L. E., Hull, P. M., Wilson, P. A., and Ezard, T. H. G.: Calibration of test diameter and area as proxies for body size in the planktonic foraminifer Globoconella puncticulata, J. Foramin. Res., 48, 241–245, https://doi.org/10.2113/gsjfr.48.3.241, 2018. 
Download
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.