Articles | Volume 41, issue 2
https://doi.org/10.5194/jm-41-149-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-41-149-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Anieke Brombacher
CORRESPONDING AUTHOR
School of Ocean and Earth Science, University of Southampton,
Southampton, SO14 3ZH, United Kingdom
Alex Searle-Barnes
School of Ocean and Earth Science, University of Southampton,
Southampton, SO14 3ZH, United Kingdom
Wenshu Zhang
Department of Computer Science, Cardiff Metropolitan University,
Cardiff, CF5 2YB, United Kingdom
Thomas H. G. Ezard
School of Ocean and Earth Science, University of Southampton,
Southampton, SO14 3ZH, United Kingdom
Related subject area
Planktic foraminifera
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Spine-like structures in Paleogene muricate planktonic foraminifera
Taxonomic review of living planktonic foraminifera
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Jurassic planktic foraminifera from the Polish Basin
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Ontogenetic disparity in early planktic foraminifers
Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea)
Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows
Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Julia L. Seidenstein, R. Mark Leckie, Robert McKay, Laura De Santis, David Harwood, and IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 211–238, https://doi.org/10.5194/jm-43-211-2024, https://doi.org/10.5194/jm-43-211-2024, 2024
Short summary
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary
Short summary
Three well-preserved new species of Middle Jurassic (Bajocian) planktonic foraminifera from the continental margin of northwest Australia are described. This is on the southern shelf of the Tethys Ocean, and these planktonics are the first to be reported from the Jurassic Southern Hemisphere. Described as new are Globuligerina bathoniana australiana n. ssp., G. altissapertura n. sp. and Mermaidogerina loopae n. gen. n. sp. The research is part of a study of regional Jurassic foraminifera.
Sophie Kendall, Felix Gradstein, Christopher Jones, Oliver T. Lord, and Daniela N. Schmidt
J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, https://doi.org/10.5194/jm-39-27-2020, 2020
Short summary
Short summary
Changes in morphology during development can have profound impacts on an organism but are hard to quantify as we lack preservation in the fossil record. As they grow by adding chambers, planktic foraminifera are an ideal group to study changes in growth in development. We analyse four different species of Jurassic foraminifers using a micro-CT scanner. The low morphological variability suggests that strong constraints, described in the modern ocean, were already acting on Jurassic specimens.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Cited articles
Apthorpe, M.: Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin, J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, 2020.
Beldade, P., Mateus, A. R. A., and Keller, R. A.: Evolution and molecular
mechanisms of adaptive developmental plasticity, Mol. Ecol., 20,
1347–1363, https://doi.org/10.1111/j.1365-294X.2011.05016.x, 2011.
Biolzi, M.: Morphometric analyses of the Late Neogene planktonic
foraminiferal lineage Neogloboquadrina dutertrei, Mar. Micropaleontol., 18, 129–142,
https://doi.org/10.1016/0377-8398(91)90009-U, 1991.
Brigulgio, A., Metscher, B., and Hohenegger, J.: Growth rate biometric
qunatification by X-ray microtomography on larger benthic foraminifera:
three-dimensional measurements push Nummulitids into the fourth dimension,
Turk. J. Earth Sci., 20, 683–699, https://doi.org/10.3906/yer-0910-44, 2011.
Brombacher, A., Elder, L. E., Hull, P. M., Wilson, P. A., and Ezard, T. H.
G.: Calibration of test diameter and area as proxies for body size in the
planktonic foraminifer Globoconella puncticulata, J. Foramin. Res., 48, 241–245,
https://doi.org/10.2113/gsjfr.48.3.241, 2018.
Brombacher, A., Schmidt, D. N., and Ezard, T. H. G.: Developmental
plasticity in deep time: a window to population ecological inference,
Paleobiology, https://doi.org/10.1017/pab.2022.26, online first, 2022a.
Brombacher, A., Searle-Barnes, A., Zhang, W., Ezard, T.H.G.: AniekeBrombacher/foram3D: Release for publication (v1.1.0), Zenodo [code, data set], https://doi.org/10.5281/zenodo.7252765, 2022b.
Brummer, G.-J. A., Hemleben, C., and Spindler, M.: Planktonic foraminiferal
ontogeny and new perspectives for micropalaeontology, Nature, 319, 50–52,
https://doi.org/10.1038/319050a0, 1986.
Brummer, G.-J. A., Hemleben, C., and Spindler, M.: Ontogeny of extant
spinose planktonic foraminifera (Globigerinidae): A concept exemplified by
Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny), Mar. Micropaleontol., 12, 357–381,
https://doi.org/10.1016/0377-8398(87)90028-4, 1987.
Burke, J. E., Renema, W., Schiebel, R., and Hull, P. M.: Three-dimensional
analysis of inter- and intraspecific variation in ontogenetic growth
trajectories of planktonic foraminifera, Mar. Micropaleontol., 155,
1–12, https://doi.org/10.1016/j.marmicro.2019.101794, 2020.
Caromel, A. G., Schmidt, D. N., Fletcher, I., and Rayfield, E. J.:
Morphological change during the ontogeny of the planktic foraminifera,
J. Micropalaeontol., 35, 2–19, https://doi.org/10.1144/jmpaleo2014-017, 2016.
Caromel, A. G. M., Schmidt, D. N., and Rayfield, E. J.: Ontogenetic
constraints on foraminiferal test construction, Evol. Dev.,
19, 157–168, https://doi.org/10.1111/ede.12224, 2017.
Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.: A resolution for the
coiling direction paradox in Neogloboquadrina pachyderma, Paleoceanography, 21, 1–14,
https://doi.org/10.1029/2005pa001189, 2006.
Davis, C. V., Livsey, C. M., Palmer, H. M., Hull, P. M., Thomas, E., Hill,
T. M., and Benitez-Nelson, C. R.: Extensive morphological variability in
asexually produced planktic foraminifera, Sci. Adv., 6, 1–7,
https://doi.org/10.1126/sciadv.abb8930, 2020.
DeWitt, T. J., Sih, A., and Sloan Wilson, D.: Costs and limits of phenotypic
plasticity, Trends Ecol. Evol., 13, 77–81,
https://doi.org/10.1016/S0169-5347(97)01274-3, 1998.
Duan, B., Li, T., and Pearson, P. N.: Three dimensional analysis of
ontogenetic variation in fossil globorotaliiform planktic foraminiferal
tests and its implications for ecology, life processes and functional
morphology, Mar. Micropaleontol., 165, 1–9,
https://doi.org/10.1016/j.marmicro.2021.101989, 2021.
Fabbrini, A., Zaminga, I., Ezard, T. H. G., and Wade, B. S.: Systematic
taxonomy of middle Miocene Sphaeroidinellopsis (planktonic foraminifera), J. Syst.
Palaeontol., 19, 953–968, https://doi.org/10.1080/14772019.2021.1991500, 2021.
Fox, L., Stukins, S., Hill, T., and Miller, C. G.: Quantifying the effect of
anthropogenic climate change on calcifying plankton, Sci. Rep. UK, 10,
1–9, https://doi.org/10.1038/s41598-020-58501-w, 2020.
Gradstein, F. and Waskowska, A.: New insights into the taxonomy and
evolution of Jurassic planktonic foraminifera, Swiss Journal of
Palaeontology, 140, 1–12, https://doi.org/10.1186/s13358-020-00214-8, 2021.
Holbourn, A., Henderson, A. S., and Macleod, N.: Atlas of benthic
foraminifera, Wiley-Blackwell, London, UK, 656 pp., ISBN 9781118452493, 2013.
Huang, C.-Y.: Observations on the interior of some late Neogene planktonic
foraminifera, J. Foramin. Res., 11, 173–190,
https://doi.org/10.2113/gsjfr.11.3.173, 1981.
Iwasaki, S., Kimoto, K., Sasaki, O., Kano, H., Honda, M. C., and Okazaki,
Y.: Observation of the dissolution process of Globigerina bulloides tests (planktic foraminifera)
by X-ray microcomputed tomography, Paleoceanography, 30, 317–331,
https://doi.org/10.1002/2014pa002639, 2015.
Iwasaki, S., Kimoto, K., Okazaki, Y., and Ikehara, M.: Micro-CT scanning of
tests of three planktic foraminiferal species to clarify dissolution process
and progress, Geochem. Geophy. Geosy., 20, 6051–6065,
https://doi.org/10.1029/2019gc008456, 2019a.
Iwasaki, S., Kimoto, K., Sasaki, O., Kano, H., and Uchida, H.: Sensitivity
of planktic foraminiferal test bulk density to ocean acidification,
Sci. Rep. UK, 9, 1–9, https://doi.org/10.1038/s41598-019-46041-x, 2019b.
Johnstone, H. J. H., Schulz, M., Barker, S., and Elderfield, H.: Inside
story: An X-ray computed tomography method for assessing dissolution in the
tests of planktonic foraminifera, Mar. Micropaleontol., 77, 58–70,
https://doi.org/10.1016/j.marmicro.2010.07.004, 2010.
Johnstone, H. J. H., Yu, J., Elderfield, H., and Schulz, M.: Improving
temperature estimates derived from Mg/Ca of planktonic foraminifera using
X-ray computed tomography–based dissolution index, XDX, Paleoceanography,
26, 1–17, https://doi.org/10.1029/2009pa001902, 2011.
Kendall, S., Gradstein, F., Jones, C., Lord, O. T., and Schmidt, D. N.: Ontogenetic disparity in early planktic foraminifers, J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, 2020.
Kennett, J. P. and Srinivasan, M. S.: Neogene planktonic foraminifera. A
phylogenetic atlas, Hutchinson Ross Publishing Company, Stroudsburg,
Pennsylvania, ISBN 9780879330705, 1983.
Lipps, J. H.: Wall structure, systematics, and phylogeny studies of Cenozoic
planktonic foraminifera, J. Paleontol., 40, 1257–1274, 1966.
Moczek, A. P., Sultan, S., Foster, S., Ledon-Rettig, C., Dworkin, I.,
Nijhout, H. F., Abouheif, E., and Pfennig, D. W.: The role of developmental
plasticity in evolutionary innovation, P. Roy. Soc. B
Biol. Sci., 278, 2705–2713, https://doi.org/10.1098/rspb.2011.0971, 2011.
Morard, R., Füllberg, A., Brummer, G. A., Greco, M., Jonkers, L.,
Wizemann, A., Weiner, A. K. M., Darling, K., Siccha, M., Ledevin, R.,
Kitazato, H., de Garidel-Thoron, T., de Vargas, C., and Kucera, M.: Genetic
and morphological divergence in the warm-water planktonic foraminifera genus
Globigerinoides, PLoS One, 14, e0225246, https://doi.org/10.1371/journal.pone.0225246, 2019.
Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C.
A., Heskel, M. A., Kingsolver, J. G., Maclean, H. J., Masel, J., Maughan,
H., Pfennig, D. W., Relyea, R. A., Seiter, S., Snell-Rood, E., Steiner, U.
K., and Schlichting, C. D.: Constraints on the evolution of phenotypic
plasticity: limits and costs of phenotype and plasticity, Heredity, 115,
293–301, https://doi.org/10.1038/hdy.2015.8, 2015.
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T.: Atlas of
Paleocene Planktonic Foraminifera, Smithsonian Institution Press, Washington, DC, https://doi.org/10.5479/si.00810266.85.1, 1999.
Pearson, P. N. and Coxall, H. K.: Origin of the Eocene planktonic
foraminifer Hantkenina by gradual evolution, Palaeontology, 57, 243–267,
https://doi.org/10.1111/pala.12064, 2014.
Pearson, P. N. and Ezard, T. H. G.: Evolution and speciation in the Eocene
planktonic foraminifer Turborotalia, Paleobiology, 40, 130–143, https://doi.org/10.1666/13004, 2014.
Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben, C., and Berggren, W.
A. (Eds.): Atlas of Eocene planktonic foraminifera, Vol. 41, Cushman Foundation for
Foraminiferal Research Special Publication,
9–211, 213–375, 377–411, 413–459, 461–507, ISBN 9781970168365, 2006.
Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T.,
Schlichting, C. D., and Moczek, A. P.: Phenotypic plasticity's impacts on
diversification and speciation, Trends Ecol. Evol., 25,
459–467, https://doi.org/10.1016/j.tree.2010.05.006, 2010.
Pigliucci, M., Murren, C. J., and Schlichting, C. D.: Phenotypic plasticity
and evolution by genetic assimilation, J. Exp. Biol., 209,
2362–2367, https://doi.org/10.1242/jeb.02070, 2006.
Poole, C. R. and Wade, B. S.: Systematic taxonomy of the Trilobatus sacculifer plexus and
descendant Globigerinoidesella fistulosa (planktonic foraminifera), J. Syst. Palaeontol.,
17, 1989–2030, https://doi.org/10.1080/14772019.2019.1578831, 2019.
Price, T. D., Qvarnstrom, A., and Irwin, D. E.: The role of phenotypic
plasticity in driving genetic evolution, P. R. Soc. B, 270, 1433–1440, https://doi.org/10.1098/rspb.2003.2372, 2003.
Raup, D. M.: Geometric analysis of shell coiling: general problems, J. Paleontol., 40, 1178–1190, 1966.
Raup, D. M.: Geometric analysis of shell coiling: coiling in Ammonoids,
J. Paleontol., 41, 43–65, 1967.
Schmidt, D. N., Rayfield, E. J., Cocking, A., and Marone, F.: Linking
evolution and development: Synchrotron Radiation X-ray tomographic
microscopy of planktic foraminifers, Palaeontology, 56, 741–749,
https://doi.org/10.1111/pala.12013, 2013.
Signes, M., Bijma, J., Hemleben, C., and Ott, R.: A model for planktic
foraminiferal shell growth, Paleobiology, 19, 71–91,
https://doi.org/10.1017/S009483730001232X, 1993.
Speijer, R. P., Van Loo, D., Masschaele, B., Vlassenbroeck, J., Cnudde, V.,
and Jacobs, P.: Quantifying foraminiferal growth with high-resolution X-ray
computed tomography: New opportunities in foraminiferal ontogeny, phylogeny,
and paleoceanographic applications, Geosphere, 4, 760–763,
https://doi.org/10.1130/ges00176.1, 2008.
Sverdlove, M. S. and Be, A. W.: Taxonomic and ecological significance of
embryonic and juvenile planktonic foraminifera, J. Foramin.
Res., 15, 235–241, https://doi.org/10.2113/gsjfr.15.4.235, 1985.
Takagi, H., Kurasawa, A., and Kimoto, K.: Observation of asexual
reproduction with symbiont transmission in planktonic foraminifera, J. Plankton Res., 42, 403–410, https://doi.org/10.1093/plankt/fbaa033, 2020.
Todd, C. L., Schmidt, D. N., Robinson, M. M., and De Schepper, S.: Planktic
foraminiferal test size and weight response to the Late Pliocene
environment, Paleoceanogr. Paleocl., 35, 1–15,
https://doi.org/10.1029/2019pa003738, 2020.
Vanadzina, K. and Schmidt, D. N.: Developmental change during a speciation
event: evidence from planktic foraminifera, Paleobiology, 48, 120–136,
https://doi.org/10.1017/pab.2021.26, 2022.
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H.: Review and
revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and
calibration to the geomagnetic polarity and astronomical time scale,
Earth-Sci. Rev., 104, 111–142, https://doi.org/10.1016/j.earscirev.2010.09.003, 2011.
Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T., and Berggren, W.
A.: Atlas of Oligocene planktonic foraminifera, Cushman Foundation for
Foraminiferal Research, London, UK, ISBN 9781970168419, 2018.
West-Eberhard, M. J.: Developmental plasticity and evolution, Oxford
University Press, New York, ISBN 9780195122343, 2003.
West-Eberhard, M. J.: Developmental plasticity and the origin of species
differences, P. Natl. Acad. Sci. USA, 102, 6543–6549, https://doi.org/10.1073/pnas.0501844102, 2005.
Zarkogiannis, S. D., Antonarakou, A., Tripati, A., Kontakiotis, G., Mortyn,
P. G., Drinia, H., and Greaves, M.: Influence of surface ocean density on
planktonic foraminifera calcification, Sci. Rep.-UK, 9, 533,
https://doi.org/10.1038/s41598-018-36935-7, 2019.
Zarkogiannis, S. D., Fernandez, V., Greaves, M., Mortyn, P. G., Kontakiotis,
G., and Antonarakou, A.: X-ray tomographic data of planktonic foraminifera
species Globigerina bulloides from the Eastern Tropical Atlantic across Termination II, GIGAbyte,
https://doi.org/10.46471/gigabyte.5, 2020.
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the...