Articles | Volume 42, issue 2
https://doi.org/10.5194/jm-42-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-42-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benthic foraminiferal patchiness – revisited
Joachim Schönfeld
CORRESPONDING AUTHOR
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany
Nicolaas Glock
Institute for Geology, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Irina Polovodova Asteman
Department of Marine Sciences, University of Gothenburg, P.O. Box 461, 40530 Gothenburg, Sweden
Alexandra-Sophie Roy
German Marine Research Consortium, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
Marié Warren
Department of Biochemistry, Genetics and Microbiology, Division Genetics, University of Pretoria, Private Bag x 20, Hatfield 0028, South Africa
Julia Weissenbach
Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, 39231 Kalmar, Sweden
Julia Wukovits
Department of Palaeontology, University of Vienna, Geozentrum, Althanstraße 14, 1090 Vienna, Austria
Related authors
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
K. Haynert, J. Schönfeld, R. Schiebel, B. Wilson, and J. Thomsen
Biogeosciences, 11, 1581–1597, https://doi.org/10.5194/bg-11-1581-2014, https://doi.org/10.5194/bg-11-1581-2014, 2014
Joachim Schönfeld, Elena Golikova, Sergei Korsun, and Silvia Spezzaferri
J. Micropalaeontol., 32, 161–182, https://doi.org/10.1144/jmpaleo2012-022, https://doi.org/10.1144/jmpaleo2012-022, 2013
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Nicolaas Glock
Biogeosciences, 20, 3423–3447, https://doi.org/10.5194/bg-20-3423-2023, https://doi.org/10.5194/bg-20-3423-2023, 2023
Short summary
Short summary
Ocean deoxygenation due to climate warming is an evolving threat for organisms that are not well adapted to O2 depletion, such as many pelagic fish species. Other better-adapted organisms, such as some benthic foraminifera species, might benefit from ocean deoxygenation. Benthic foraminifera are a group of marine protists and can have specific adaptations to O2 depletion such as the ability to respire nitrate instead of O2. This paper reviews the current state of knowledge about these organisms.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Michael Lintner, Bianca Biedrawa, Julia Wukovits, Wolfgang Wanek, and Petra Heinz
Biogeosciences, 17, 3723–3732, https://doi.org/10.5194/bg-17-3723-2020, https://doi.org/10.5194/bg-17-3723-2020, 2020
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changing salinity in the German Wadden Sea immediately influences the foraminiferal community. It seems that A. tepida is better adapted to salinity fluctuations than H. germanica.
Zeynep Erdem, Joachim Schönfeld, Anthony E. Rathburn, Maria-Elena Pérez, Jorge Cardich, and Nicolaas Glock
Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, https://doi.org/10.5194/bg-17-3165-2020, 2020
Short summary
Short summary
Recent observations from today’s oceans revealed that oxygen concentrations are decreasing, and oxygen minimum zones are expanding together with current climate change. With the aim of understanding past climatic events and their relationship with oxygen content, we looked at the fossils, called benthic foraminifera, preserved in the sediment archives from the Peruvian margin and quantified the bottom-water oxygen content for the last 22 000 years.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Anna Jentzen, Dirk Nürnberg, Ed C. Hathorne, and Joachim Schönfeld
Biogeosciences, 15, 7077–7095, https://doi.org/10.5194/bg-15-7077-2018, https://doi.org/10.5194/bg-15-7077-2018, 2018
Julia Wukovits, Max Oberrauch, Annekatrin J. Enge, and Petra Heinz
Biogeosciences, 15, 6185–6198, https://doi.org/10.5194/bg-15-6185-2018, https://doi.org/10.5194/bg-15-6185-2018, 2018
Short summary
Short summary
Single-celled, benthic foraminifera play a major role in marine biogeochemical cycling. This study compares the organic-matter-derived carbon and nitrogen processing of two abundant intertidal foraminifera species. The results of our laboratory feeding experiments suggest a significant difference in the contributions of each species to coastal carbon and nitrogen fluxes, which is mainly attributed to their different metabolic lifestyles.
Jacqueline Bertlich, Dirk Nürnberg, Ed C. Hathorne, Lennart J. de Nooijer, Eveline M. Mezger, Markus Kienast, Steffanie Nordhausen, Gert-Jan Reichart, Joachim Schönfeld, and Jelle Bijma
Biogeosciences, 15, 5991–6018, https://doi.org/10.5194/bg-15-5991-2018, https://doi.org/10.5194/bg-15-5991-2018, 2018
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Julia Wukovits, Annekatrin Julie Enge, Wolfgang Wanek, Margarete Watzka, and Petra Heinz
Biogeosciences, 14, 2815–2829, https://doi.org/10.5194/bg-14-2815-2017, https://doi.org/10.5194/bg-14-2815-2017, 2017
Short summary
Short summary
This study reports the response of two intertidal foraminifera to increased temperatures on the level of carbon and nitrogen uptake. Interspecific variations in the ability to cope with shifting environmental variables within the two commonly associated species show that temperature and food source might be critical factors that control their abundances. This should support the interpretation of sediment samples and increase knowledge about nutrient fluxes through foraminiferal communities.
J. Schönfeld, W. Kuhnt, Z. Erdem, S. Flögel, N. Glock, M. Aquit, M. Frank, and A. Holbourn
Biogeosciences, 12, 1169–1189, https://doi.org/10.5194/bg-12-1169-2015, https://doi.org/10.5194/bg-12-1169-2015, 2015
Short summary
Short summary
Today’s oceans show distinct mid-depth oxygen minima while whole oceanic basins became transiently anoxic in the Mesozoic. To constrain past bottom-water oxygenation, we compared sediments from the Peruvian OMZ with the Cenomanian OAE 2 from Morocco. Corg accumulation rates in laminated OAE 2 sections match Holocene rates off Peru. Laminated deposits are found at oxygen levels of < 7µmol kg-1; crab burrows appear at 10µmol kg-1 today, both defining threshold values for palaeoreconstructions.
N. Glock, V. Liebetrau, and A. Eisenhauer
Biogeosciences, 11, 7077–7095, https://doi.org/10.5194/bg-11-7077-2014, https://doi.org/10.5194/bg-11-7077-2014, 2014
Short summary
Short summary
Our study explores the correlation of I/Ca ratios in four benthic foraminiferal species (three calcitic, one aragonitic) from the Peruvian OMZ with bottom water oxygenation ([O2]BW), and evaluates foraminiferal I/Ca ratios as a possible redox proxy. All species have a positive trend in the I/Ca ratios as a function of [O2]BW. Only for the aragonitic species Hoeglundina elegans is this trend not significant. The highest significance has been found for Uvigerina striata.
K. Haynert, J. Schönfeld, R. Schiebel, B. Wilson, and J. Thomsen
Biogeosciences, 11, 1581–1597, https://doi.org/10.5194/bg-11-1581-2014, https://doi.org/10.5194/bg-11-1581-2014, 2014
N. Glock, J. Schönfeld, A. Eisenhauer, C. Hensen, J. Mallon, and S. Sommer
Biogeosciences, 10, 4767–4783, https://doi.org/10.5194/bg-10-4767-2013, https://doi.org/10.5194/bg-10-4767-2013, 2013
Joachim Schönfeld, Elena Golikova, Sergei Korsun, and Silvia Spezzaferri
J. Micropalaeontol., 32, 161–182, https://doi.org/10.1144/jmpaleo2012-022, https://doi.org/10.1144/jmpaleo2012-022, 2013
Related subject area
Benthic foraminifera
Miocene Climatic Optimum and Middle Miocene Climate Transition: a foraminiferal record from the central Ross Sea, Antarctica
Distribution of two notodendrodid foraminiferal congeners in McMurdo Sound, Antarctica: an example of extreme regional endemism?
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Maria Elena Gastaldello, Claudia Agnini, and Laia Alegret
J. Micropalaeontol., 43, 1–35, https://doi.org/10.5194/jm-43-1-2024, https://doi.org/10.5194/jm-43-1-2024, 2024
Short summary
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Altenbach, A. V.: Short term processes and patterns in the foraminiferal response to organic flux rates, Mar. Micropaleontol., 19, 119–129, https://doi.org/10.1016/0377-8398(92)90024-E, 1992.
Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S., and Trauth, M.: Scaling percentages and distributional patterns of benthic foraminifera with Flux rates of organic carbon, J. Foramin. Res., 29, 173–185, 1999.
Alve, E.: Benthic foraminiferal responses to absence of fresh phytodetritus: A two year experiment, Mar. Micropaleontol., 76, 67–75, https://doi.org/10.1016/j.marmicro.2010.05.003, 2010.
Alve, E., Murray, J. W., and Skei, J.: Deep-sea benthic foraminifera, carbonate dissolution and species diversity in Hardangerfjord, Norway: An initial assessment, Estuar. Coast. Shelf Sci., 92, 90–102, https://doi.org/10.1016/j.ecss.2010.12.018, 2011.
Austen, M. C. and Wibdom, B.: Changes in and slow recovery of a meiobenthic nematode assemblage following a hypoxic period in the Gullmar Fjord basin, Sweden, Mar. Biol., 111, 139–145, https://doi.org/10.1007/BF01986355, 1991.
Baas, I. H., Schönfeld, J., and Zahn, R.: Mid-depth oxygen drawdown during Heinrich events: evidence from benthic foraminiferal community structure, trace-fossil tiering, and benthic δ13C at the Portuguese Margin, Mar. Geol., 152, 25–55, https://doi.org/10.1016/S0025-3227(98)00063-2, 1998.
Bailey, J. W.: Microscopical examination of soundings made by the United States Coast Survey off the Atlantic Coast of the United States, Smithsonian Contributions to Knowledge, Part. 3, 1–15, 1851.
Barras, C., Fontanier, C., Jorissen, F., and Hohenegger, J.: A comparison of spatial and temporal variability of living benthic foraminiferal faunas at 550m depth in the Bay of Biscay, Micropaleontology, 56, 275–295, https://doi.org/10.2307/40959485, 2010.
Bartels-Joìnsdoìttir, H. B., Knudsen, K. L., Abrantes, F., Lebreiro, S., and Eiriìksson, J.: Climate variability during the last 2000 years in the Tagus Prodelta, western Iberian Margin: Benthic foraminifera and stable isotopes, Mar. Micropaleontol., 59, 83–103, https://doi.org/10.1016/j.marmicro.2006.01.002, 2006.
Bergstrand, C.: A comparison between the living (stained) foraminifera fauna 2011 and 1993/1994 in the deep basin of Gullmar Fjord, including comparisons with Höglund's material from 1927, Bachelor of Science thesis, B690, Department of Earth Sciences, University of Gothenburg, Sweden, 22 pp., https://studentportal.gu.se/digitalAssets/1393/1393672_b690-klar.pdf (last access: 11 October 2023), 2012.
Bernhard, J. M.: Benthic foraminiferal distribution and biomass related to pore-water oxygen content: central California continental slope and rise, Deep-Sea Res., 39, 585–605, https://doi.org/10.1016/0198-0149(92)90090-G, 1992.
Bernhard, J.,M. and Alve, E.: Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway): response to anoxia, Mar. Micropaleontol., 28, 5–17, https://doi.org/10.1016/0377-8398(95)00036-4, 1996.
Bernhard, J. M., Habura, A., and Bowser, S. S.: An endobiont-bearing allogromiid from the Santa Barbara Basin: Implications for the early diversification of foraminifera, J. Geophys. Res., 111, G03002, 10 pp., https://doi.org/10.1029/2005JG000158, 2006.
Bernhard, J. M., Sen Gupta, B. K., and Borne, P. F.: Benthic foraminiferal proxy to estimate dysoxic bottom-water oxygen concentrations: Santa Barbara Basin, U.S. Pacific Continental Margin, J. Foramin. Res., 27, 301–310, https://doi.org/10.2113/gsjfr.27.4.301, 1997.
Bernstein, B. B., Hessler, R. R., Smith, R., and Jumars, P. A.: Spatial dispersion of benthic foraminifera in the central North Pacific, Limnol. Oceanogr., 23, 401–416, https://doi.org/10.4319/lo.1978.23.3.0401, 1978.
Bernstein, B. B. and Meador, J. P.: Temporal persistence of biological patch structure in an abyssal benthic community, Mar. Biol., 51, 179–183, 1979.
Brenchley, G. A.: Mechanisms of spatial competition in marine soft-bottom communities, J. Exp. Mar. Biol. Ecol., 60, 17–33, https://doi.org/10.1016/0022-0981(81)90177-5, 1982.
Brooks, A. L.: Standing crop, vertical distribution, and morphometrics of Ammonia beccarii (Linne), Limnol. Oceanogr., 12, 667–684, https://doi.org/10.4319/lo.1967.12.4.0667, 1967.
Brown, J. H.: On the relationship between abundance and distribution of species, Am. Naturalist, 124, 255–279, https://doi.org/10.1086/284267, 1984.
Buhl-Mortensen, L., Vanreusel, A., Gooday, A. J., Levin, L. A., Priede, I. G., Buhl-Mortensen, P., Gheerardyn, H., King, N. J., and Raes, M.: Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins, Mar. Ecol., 31, 21–50, https://doi.org/10.1111/j.1439-0485.2010.00359.x, 2010.
Buzas, M. A.: On the spatial distribution of foraminifera, Contributions from the Cushman Foundation for Foraminiferal Research, 19, 1–11, 1968.
Buzas, M. A., Hayek, L. C., Jett, J. A., and Reed, S. A.: Pulsating patches: History and Analyses of spatial, seasonal, and yearly distribution of living benthic foraminifera, Smithsonian Contributions to Paleobiology, 97, 1–91, 2015.
Buzas, M. A., Smith, R. K., Reed, S. A., and Jett, J. A.: Foraminiferal densities over five years in the Indian River Lagoon, Florida: a model of pulsating patches. J. Foramin. Res., 32, 68–92, https://doi.org/10.2113/0320068, 2002.
Cedhagen, T.: Foraminiferans as food for Cephalaspideans (Gastropoda: Opisthobranchia), with notes on secondary tests around calcareous foraminiferans, Phuket Marine Biological Center Special Publication, 16, 279–290, 1996.
Choquel, C., Geslin, E., Metzger, E., Filipsson, H. L., Risgaard-Petersen, N., Launeau, P., Giraud, M., Jauffrais, T., Jesus, B., and Mouret, A.: Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment, Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, 2021.
Cole, R. G., Hull, P. J., and Healy, T. R.: Assemblage structure, spatial patterns, recruitment, and post-settlement mortality of subtidal bivalve molluscs in a larger harbour in north-eastern New Zealand, New Zealand J. Mar. Freshw. Res., 34, 317–329, https://doi.org/10.1080/00288330.2000.9516935, 2000.
Corliss, B. H.: Microhabitats of benthic foraminifera within deep-sea sediments, Nature, 314, 435–438, https://doi.org/10.1038/314435a0, 1985.
Danovaro, R., Carugati, L., Corinaldesi, C., Gambi, C., Guilini, K., Pusceddu, A., and Vanreusel, A.: Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity, Deep-Sea Res. Pt. II, 92, 97–106, https://doi.org/10.1016/j.dsr2.2013.03.035II, 2013.
Darling, K. F., Schweizer, M., Knudsen, K. L., Evans, K. M., Bird, C., Roberts, A., Filipsson, H. L., Kim, J.-H., Gudmundsson, G., Wade, C. M., Sayer, M. D. J., and Austin, W. E. N.: The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic, Mar. Micropaleontol., 129, 1–23, https://doi.org/10.1016/j.marmicro.2016.09.001, 2016.
de Chanvalon, A. T., Geslin, E., Mojtahid, M., Métais, I., Méléder, V., and Metzger, E.: Multiscale analysis of living benthic foraminiferal heterogeneity: Ecological advances from an intertidal mudflat (Loire estuary, France), Cont. Shelf Res., 232, 104627, https://doi.org/10.1016/j.csr.2021.104627, 2022.
de Nooijer, L.: Shallow-water benthic foraminifera as proxy for natural versus human-induced environmental change, Geol. Ultraiectina, 272, 1–152, 2007.
Deldicq, N., Alve, E., Schweizer, M., Polovodova Asteman, I., Hess, S., Darling, K., and Bouchet, V. M. P.: History of the introduction of a species resembling benthic foraminifera Nonionella stella in the Oslofjord (Norway): morphological, molecular and paleo-ecological evidences, Aquat. Invas., 14, 182–205, https://doi.org/10.3391/ai.2019.14.2.03, 2019.
Deldicq, N., Langlet, D., Delaeter, C., Beaugrand, G., Seuront, L., and Bouchet, V. M. P.: Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning, Sci. Rep., 11, 4013, https://doi.org/10.1038/s41598-021-83311-z, 2021.
Dorst, S. and Schönfeld, J.: Diversity of benthic foraminifera on the shelf and slope of the NE Atlantic: analysis of datasets, J. Foramin. Res., 43, 238–254, https://doi.org/10.2113/gsjfr.43.3.238, 2013.
Dorst, S., Schönfeld, J., and Walter, L.: Recent benthic foraminiferal assemblages from the Celtic Sea (South Western Approaches, NE Atlantic), Paläontologische Z., 89, 287–302, https://doi.org/10.1007/s12542-014-0240-6, 2015.
Ellis, B. F. and Messina, A.: Cataloque of Foraminifera, Micropaleontology Press, New York, http://www.micropress.org (last access: 1 February 2023), 1940.
Filipsson, H. L. and Nordberg, K.: Climate variations, an overlooked factor influencing the recent marine environment. An example from Gullmar Fjord, Sweden, illustrated by benthic foraminifera and hydrographic data, Estuaries, 27, 867–881, https://doi.org/10.1007/BF02912048, 2004.
Findlay, S. E.: Small-scale spatial distribution of meiofauna on a mud-and sandflat, Estuar. Coast. Shelf Sc., 12, 471–484, https://doi.org/10.1016/S0302-3524(81)80006-0, 1981.
Gallucci, F., Moens, T., and Fonseca, G.: Small-scale spatial patterns of meiobenthos in the Arctic deep sea, Mar. Biodivers., 39, 9–25, https://doi.org/10.1007/s12526-009-0003-x, 2009.
Gleason, H. A.: Some applications of the quadrat method, B. Torrey Bot. Club, 47, 21–33, https://doi.org/10.2307/2480223, 1920.
Glock, N., Wukovits, J., and Roy, A. S.: Interactions of Globobulimina auriculata with nematodes: predator or prey?, J. Foramin. Res., 49, 66–75, https://doi.org/10.2113/gsjfr.49.1.66, 2019.
Goldstein, S. T. and Corliss, B. H.: Deposit feeding in selected deep-sea and shallow-water benthic foraminifera, Deep-Sea Res., 41, 229–241, https://doi.org/10.1016/0967-0637(94)90001-9, 1994.
Gooday, A. J.: A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea, Nature, 332, 70–73, https://doi.org/10.1038/332070a0, 1988.
Gooday, A. J.: Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: a review of environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–90, https://doi.org/10.1016/s0065-2881(03)46002-1, 2003.
Griveaud, C., Jorissen, F., and Anschutz, P.: Spatial variability of live benthic foraminiferal faunas on the Portuguese margin, Micropaleontol., 56, 297–322, https://doi.org/10.2307/40959486, 2010.
Gross, O.: Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments, Hydrobiologia, 426, 123–137, https://doi.org/10.1023/A:1003930831220, 2000.
Gustafsson, M. and Nordberg, K.: Living (stained) benthic foraminiferal response to primary production and hydrography in the deepest part of the Gullmar Fjord, Swedish West Coast, with comparisons to Hoglund's 1927 material, J. Foramin. Res., 31, 2–11, https://doi.org/10.2113/0310002, 2001.
Haake, F.-W.: Zum Jahresgang von Populationen einer Foraminiferen-Art in der westlichen Ostsee, Meyniana, 17, 13–27, 1967.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: paleontological statistics software package for education and data analysis, Palaeontol. Elec., 4, 9 pp., https://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 11 October 2023), 2001.
Hasemann, C. and Soltwedel, T.: Small-scale heterogeneity in deep-sea nematode communities around biogenic structures, PLoS ONE, 6, e29152, https://doi.org/10.1371/journal.pone.0029152, 2011.
Hassellöv, M., Lyveìn, B., Bengtsson, H., Jansen, R., Turner, D. R., and Beckett, R.: Particle size distributions of clay-rich sediments and pure clay minerals: a comparison of grain size analysis with sedimentation field-flow fractionation, Aquat. Geochem., 7, 155–171, https://doi.org/10.1023/A:1017905822612, 2001.
Heinz, P., Ruepp, D., and Hemleben, C.: Benthic foraminifera assemblages at Great Meteor Seamount, Mar. Biol., 144, 985–998, https://doi.org/10.1007/s00227-003-1257-7, 2004.
Heinz, P., Sommer, S., Pfannkuche, O., and Hemleben, C.: Living benthic foraminifera in sediments influenced by gas hydrates at the Cascadia convergent margin, NE Pacific, Mar. Ecol. Prog. Ser., 304, 77–89, https://doi.org/10.3354/meps304077, 2005.
Hemmerich, W.: StatistikGuru: Normalverteilung online prüfen, https://statistikguru.de/rechner/normalverteilung-rechner.html (last access 25 November 2022), 2018.
Hess, S., Alve, E., and Reuss, N. S.: Benthic foraminiferal recovery in the Oslofjord (Norway): Responses to capping and re-oxygenation, Estuar. Coast. Shelf Sc., 147, 87–102, https://doi.org/10.1016/j.ecss.2014.05.012, 2014.
Hessler, R. R. and Jumars, P. A.: Abyssal community analysis from replicate box cores in the central North Pacific, Deep-Sea Res.-Ocean., 21, 185–209, https://doi.org/10.1016/0011-7471(74)90058-8, 1974.
Höglund, H.: Foraminifera in the Gullmar Fjord and the Skagerak, Zoologiske Bidrag fran Uppsala, 26, 1–328, 1947.
Hohenegger, J., Piller, W. E., and Baal, Ch.: Horizontal and vertical spatial microdistribution of foraminifers in the shallow subtidal Gulf of Trieste, Northern Adriatic Sea, J. Foramin. Res., 23, 79–101, https://doi.org/10.2113/gsjfr.23.2.79, 1993.
Ingels, J., Billett, D. S. M., Kiriakoulakis, K., Wolff, G. A., and Vanreusel, A.: Structural and functional diversity of Nematoda in relation with environmental variables in the Setúbal and Cascais canyons, Western Iberian Margin, Deep-Sea Res. Pt. II, 58, 2354–2368, https://doi.org/10.1016/j.dsr2.2011.04.002, 2011.
Jepps, M. W.: The Protozoa, Sarcodina, Oliver and Boyd, Edinburgh, United Kingdom, 183 pp., 1956.
Jorissen, F. J.: Benthic foraminiferal successions across late Quaternary Mediterranean sapropels, Mar. Geol., 153, 91–101, https://doi.org/10.1016/S0025-3227(98)00088-7, 1999.
Kaminski, M. A.: Evidence for control of abyssal agglutinated foraminiferal community structure by substrate disturbance: Results from the HEBBLE Area, Mar. Geol., 66, 113–131, https://doi.org/10.1016/0025-3227(85)90025-8, 1985.
Kershaw, K. A.: Pattern in vegetation and its causality, Ecology, 44, 377–388, https://doi.org/10.2307/1932185, 1963.
Kester, D. R., Duedall, I. W., Connors, D. N., and Pytkowicz, R. M.: Preparation of artificial seawater, Limnol. Oceanogr., 12, 176–179, https://doi.org/10.4319/lo.1967.12.1.0176, 1967.
Koho, K. A., Piña-Ochoa, E., Geslin, E., and Risgaard-Petersen, N.: Vertical migration, nitrate uptake and denitrification: Survival mechanisms of foraminifers (Globobulimina turgida) under low oxygen conditions, FEMS Microbiol. Ecol., 75, 273–283, https://doi.org/10.1111/j.1574-6941.2010.01010.x, 2011.
Kuhn, G. and Dunker, E.: Der Minicorer, ein Gerät zur Beprobung der Sediment/Bodenwasser-Grenze, Greifswalder Geowissenschaftliche Beiträge, 2, 99–100, 1994.
Lambshead, P. J. D. and Gooday, A. J.: The impact of seasonally deposited phytodetritus on epifaunal and shallow infaunal benthic foraminiferal populations in the bathyal northeast Atlantic: the assemblage response, Deep Sea Res., 37, 1263–1283, https://doi.org/10.1016/0198-0149(90)90042-T, 1990.
Legendre, P. and Fortin, M.-J.: Spatial patterning and ecological analysis, Vegetatio, 80, 107–138, https://doi.org/10.1007/BF00048036, 1989.
Lehmann, G.: Vorkommen, Populationsentwicklung, Ursache flächenhafter Besiedlung und Fortpflanzungsbiologie von Foraminiferen in Salzwiesen und Flachwasser der Nord- und Ostseeküste Schleswig-Holsteins, Doctoral Thesis, University of Kiel, Germany, 218 pp., http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_413 (last access: 11 October 2023), 2000.
Lejzerowicz, F., Esling, P., and Pawlowski, J.: Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing, Deep Sea Res. Pt. II, 108, 17–26, https://doi.org/10.1016/j.dsr2.2014.07.018, 2014.
Loeblich Jr., A. R. and Tappan, H.: Foraminiferal Genera and Their Classification, Van Nostrand Reinhold Company, New York, U.S.A., 970 pp., ISBN 0-442-25937-9, 1988.
Lutze, G. F.: Zur Foraminiferen-Fauna der Ostsee, Meyniana, 15, 75–142, 1965.
Lutze, G. F.: Siedlungs-Strukturen rezenter Foraminiferen, Meyniana, 18, 31–34, 1968a.
Lutze, G. F.: Jahresgang der Foraminiferen-Fauna in der Bottsand Lagune (westliche Ostsee), Meyniana, 18, 13–30, https://doi.org/10.2312/meyniana.1968.18.13, 1968b.
Lutze, G. F. and Wefer, G.: Habitat and asexual reproduction of Cyclorbiculina compressa (Orbigny), Soritidae, J. Foramin. Res., 10, 251–260, https://doi.org/10.2113/gsjfr.10.4.251, 1980.
Lutze, G. F. and Altenbach, A. V.: Technik und Signifikanz der Lebendfärbung benthischer Foraminiferen in Bengalrot, Geologisches Jahrbuch, Reihe A, 128, 251–265, 1991.
Lutze, G. F., Pflaumann, D., and Weinholz, P.: Jungquartäre Fluktuationen der benthischen Foraminiferenfaunen in Tiefsee-Sedimenten vor NW-Afrika Eine Reaktion auf Produktivitäsänderungen im Oberflächenwasser, “Meteor” Forschungs-Ergebnisse, 40, 63–180, 1986.
Lynts, G. W.: Variation of foraminiferal standing crop over short lateral distances in Buttonwood Sound, Florida Bay, Limnol. Oceanogr., 11, 562–566, https://doi.org/10.4319/lo.1966.11.4.0562, 1966.
McClain, C. R., Nekola, J. C., Kuhnz, L., and Barry, J. P.: Local-scale faunal turnover on the deep Pacific seafloor, Mar. Ecol. Prog. Ser., 422, 193–200, https://doi.org/10.3354/meps08924, 2011.
Mosch, T., Sommer, S., Dengler, M., Noffke, A., Bohlen, L., Pfannkuche, O., Liebetrau, V., and Wallmann, K.: Factors influencing the distribution of epibenthic megafauna across the Peruvian oxygen minimum zone, Deep-Sea Res. Pt. I, 68, 123–135, https://doi.org/10.1016/j.dsr.2012.04.014, 2012.
Muller, P. H.: Sediment production and population biology of the benthic foraminifer Amphistegina madagascariensis, Limnol. Oceanogr., 19, 802–809, https://doi.org/10.4319/LO.1974.19.5.0802, 1974.
Murray, J. W.: Unravelling the life cycle of Polystomella crispa: the roles of Lister, Jepps and Myers, J. Micropalaeontol., 31, 121–129, https://doi.org/10.1144/0262-821X11-034, 2012.
Murray, J. W. and Alve, E.: Benthic foraminiferal biogeography in NW European fjords: A baseline for assessing future change, Estuar. Coast. Shelf Sc., 181, 218–230, https://doi.org/10.1016/j.ecss.2016.08.014, 2016.
Murray, J. W. and Bowser, S. S.: Mortality, protoplasm decay rate, and reliability of staining techniques to recognize “living” foraminifera: a review, J. Foramin. Res., 30, 66–77, https://doi.org/10.2113/0300066, 2000.
Nomaki, H., Heinz, P., Hemleben, C., and Kitazato, H.: Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments, J. Foramin. Res., 35, 103–113, https://doi.org/10.2113/35.2.103, 2005.
Parker, F. L. and Athearn, W. D.: Ecology of Marsh Foraminifera in Poponesset Bay, Massachusetts, J. Paleontol., 33, 333–343, 1959.
Perry, J. N., Leibhold, A. M., Rosenberg, M. S., Dungan, J., Miriti, M., Jakomulska, A., and Citron-Pousty, S.: Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data, Ecography, 25, 578–600, https://doi.org/10.1034/j.1600-0587.2002.250507.x, 2002.
Piña-Ochoa, E., Koho, K. A., Geslin, E., and Risgaard-Petersen, N.: Survival and life strategy of the foraminiferan Globobulimina turgida through nitrate storage and denitrification, Mar. Ecol. Prog. Ser., 417, 39–49, https://doi.org/10.3354/meps08805, 2010.
Polovodova, I., Nikulina, A., Schönfeld, J., and Dullo, W-C.: Recent benthic foraminifera in the Flensburg Fjord (western Baltic Sea), J. Micropalaeontol., 28, 131–142, https://doi.org/10.1144/jm.28.2.131, 2009.
Polovodova Asteman, I. and Nordberg, K.: Foraminiferal fauna from a deep basin in Gullmar Fjord: The influence of seasonal hypoxia and North Atlantic Oscillation, J. Sea Res.,, 79, 40–49, https://doi.org/10.1016/j.seares.2013.02.001, 2013.
Polovodova Asteman, I. and Schönfeld, J.: Recent invasion of the foraminifer Nonionella stella Cushman & Moyer, 1930 in northern European waters: evidence from the Skagerrak and its fjords, J. Micropalaeontol., 35, 20–25, https://doi.org/10.1144/jmpaleo2015-007, 2016.
Polovodova Asteman, I., Nordberg, K., and Filipsson, H. L.: The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast, Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, 2013.
Rathburn, A. E. and Corliss, B. H.: The ecology of deep-sea benthic foraminifera from the Sulu Sea, Paleoceanography, 9, 87–150, https://doi.org/10.1029/93PA02327, 1994.
Reise, K.: Spatial configurations generated by motile benthic polychaetes, Helgoländer wissenschaftliche Meeresuntersuchungen, 32, 55–72, https://doi.org/10.1007/BF02189892, 1979.
Reiss, H., Degraer, S., Duineveld, G. C .A., Kröncke, I., Aldridge, J., Craeymeersch, J., Eggleton, J. D., Hillewaert, H., Lavaleye, M. S. S., Moll, A., Pohlmann, T., Rachor, E., Robertson, M., van den Berghe, E., van Hoey, G., and Rees, H. L.: Spatial patterns of infauna, epifauna, and demersal fish communities in the North Sea, ICES J. Mar. Sci., 67, 278–293, https://doi.org/10.1093/icesjms/fsp253, 2010.
Rice, A. L. and Lambshead, P. J. D.: Patch dynamics in the deep-sea benthos: the role of a heterogeneous supply of organic matter, in: Aquatic ecology. Scale, pattern arid process – The 34th Symposium of the British Ecological Society, Blackwell Scientific, Oxford, United Kingdom, 469–497, 1994.
Richter, G.: Beobachtungen zur Ökologie einiger Foraminiferen des Jade Gebietes, Natur und Volk, 91, 163–170, 1961.
Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S. M., Op den Camp, H. J. M., Derksen, J. W. M., Piña-Ochoa, E., Eriksson, S. P., Nielsen, L. P., Revsbech, N. P., Cedhagen, T., and van der Zwaan, G. J.: Evidence for complete denitrification in a benthic foraminifer, Nature, 443, 93–96, https://doi.org/10.1038/nature05070, 2006.
Sachs, L. and Hedderich, J.: Angewandte Statistik Methodensammlung mit R, 12th edition, Springer, Berlin, Germany, 702 pp., ISBN 3540321608, 2006.
Schafer, C. T.: Sampling and spatial distribution of benthonic foraminifera, Limnol. Oceanogr., 16, 944–951, https://doi.org/10.4319/lo.1971.16.6.0944, 1971.
Schönfeld, J.: Benthic foraminifera and pore-water oxygen profiles. A re-assessment of species boundary conditions at the western Iberian Margin, J. Foramin. Res., 31, 86–107, https://doi.org/10.2113/0310086, 2001.
Schönfeld, J.: History and development of methods in Recent benthic foraminiferal studies, J. Micropalaeontol., 31, 53–72, https://doi.org/10.1144/0262-821X11-008, 2012.
Schönfeld, J.: Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea), J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, 2018.
Schönfeld, J. and Altenbach, A. V.: Late Glacial to Recent distribution pattern of deep-water Uvigerina species in the northeastern Atlantic, Mar. Micropaleontol., 57, 1–24, https://doi.org/10.1016/j.marmicro.2005.05.004, 2005.
Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., Spezzaferri, S., Abramovich, S., Almogi- Labin, A., Armynot du Chatelet, E., Barras, C., Bergamin, L., Bicchi, E., Bouchet, V., Cearreta, A., Di Bella, L., Dijkstra, N., Trevisan Disaro, S., Ferraro, L., Frontalini, F., Gennari, G., Golikova, E., Haynert, K., Hess, S., Husum, K., Martins, V., McGann, M., Oron, S., Romano, E., Mello Sousa, S., and Tsujimoto A.: The FOBIMO (FOraminiferal BIo-MOnitoring) initiative – Towards a standardized protocol for soft-bottom benthic foraminiferal monitoring studies, Mar. Micropaleontol., 94, 1–13, https://doi.org/10.1016/j.marmicro.2012.06.001, 2012.
Schönfeld, J., Beccari, V., Schmidt, S., and Spezzaferri, S.: Biometry and taxonomy of adriatic Ammonia species from Bellaria–Igea Marina (Italy), J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, 2021.
Schönfeld, J., Golikova, E., Korsun, S., and Spezzaferri, S.: The Helgoland Experiment – assessing the influence of methodologies on Recent benthic foraminiferal assemblage composition, J. Micropalaeontol., 32, 161–182, https://doi.org/10.1144/jmpaleo2012-022, 2013.
Schönfeld, J. and Numberger, L.: The benthic foraminiferal response to the 2004 spring bloom in the western Baltic Sea, Mar. Micropaleontol., 65, 78–95, https://doi.org/10.1016/j.marmicro.2007.06.003, 2007.
Severin, K. P., Culver, S. J., and Blanpied, C.: Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer in fine-grained sediment, Sedimentology, 29, 897–901, https://doi.org/10.1111/j.1365-3091.1982.tb00093.x, 1982.
Sokal, R. R. and Rohlf, F. J.: Biometry: the Principles and Practice of Statistics in Biology Research, 3rd edition, edited by: Freeman, W. H. and Co, New York, U.S.A., 887 pp., ISBN 9780716724117, 1995.
Stefanoudis, P. V., Bett, B. J., and Gooday, A. J.: Abyssal hills: Influence of topography on benthic foraminiferal assemblages, Prog. Oceanogr., 148, 44–55, https://doi.org/10.1016/j.pocean.2016.09.005, 2016.
Steyaert, M., Moodley, L., Nadong, T., Moens, T., Soetaert, K., and Vincx, M.: Responses of intertidal nematodes to short-term anoxic events, J. Exp. Mar. Biol. Ecol., 345, 175–184, https://doi.org/10.1016/j.jembe.2007.03.001, 2007.
Sturtevant, A. H.: A new species closely resembling Drosophila melanogaster, Psyche, 26, 153–155, https://doi.org/10.1155/1919/97402, 1919.
Thrush, S. F.: Spatial patterns in soft-bottom communities, Trend Ecol. Evol., 6, 75–79, https://doi.org/10.1016/0169-5347(91)90178-Z, 1991.
Thrush, S. F.: Spatial heterogeneity in subtidal gravel generated by the pit-digging activities of Cancer pagurus, Mar. Ecol. Prog. Ser., 30, 221–227, https://doi.org/10.3354/meps030221, 1986.
Thibault de Chanvalon, A., Metzger, E., Mouret, A., Cesbron, F., Knoery, J., Rozuel, E., Launeau, P., Nardelli, M. P., Jorissen, F. J., and Geslin, E.: Two-dimensional distribution of living benthic foraminifera in anoxic sediment layers of an estuarine mudflat (Loire estuary, France), Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015, 2015.
Todd, R. and Low, D.: Near-shore foraminifera from Martha's Vineyard Island, Massachusetts, Contributions from the Cushman Foundation for Foraminiferal Research, 12, 5–21, https://cushmanfoundation.org/PersonifyEbusiness/Portals/0/pdf/pubarchive/ccffr/12ccffr1.pdf (last access: 11 October 2023), 1961.
Vangerow, E. F.: Häufigkeitsverteilung der Foraminiferen im flachen Wasser der Rhonemündung, Paläontologische Z., 51, 145–151, https://doi.org/10.1007/BF02986564, 1977.
Warren, M., Chown, S. L., McGeoch, M. A., and Nicolson, S. W.: Body size patterns in Drosophila inhabiting a mesocosm: Interactive effects of spatial variation in temperature and abundance, Oecologia, 149, 245–255, https://doi.org/10.1007/s00442-006-0434-z, 2006.
Warren, M., McGeoch, M. A., and Chown, S. L.: Predicting abundance from occupancy: A test for an aggregated insect assemblage, J. Anim. Ecol., 72, 468–477, https://doi.org/10.1046/j.1365-2656.2003.00716.x, 2003.
Warren, M., McGeoch, M. A., and Chown, S. L.: The detection of spatial structure in populations and communities: an empirical case study, Écoscience, 16, 95–110, https://doi.org/10.2980/16-1-3185, 2009.
Wefer, G.: Umwelt, Produktion und Sedimentation benthischer Foraminiferen in der westlichen Ostsee, Reports Sonderforschungsbereich 95 Wechselwirkung Meer – Meeresboden, 14, 1–103, https://epic.awi.de/id/eprint/46945/ (last access: 11 October 2023), 1976.
Woehle, C., Roy, A. S., Glock, N., Wein, T., Weissenbach, J., Rosenstiel, P., Hiebenthal, C., Michels, J., Schönfeld, J., and Dagan, T.: A novel eukaryotic denitrification pathway in foraminifera, Curr. Biol., 28, 2536–2543, https://doi.org/10.1016/j.cub.2018.06.027, 2018.
WoRMS Editorial Board: World register of marine species, http://www.marinesp-ecies.org, last access: 18 April 2023.
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or...