Articles | Volume 42, issue 2
https://doi.org/10.5194/jm-42-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-42-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benthic foraminiferal patchiness – revisited
Joachim Schönfeld
CORRESPONDING AUTHOR
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany
Nicolaas Glock
Institute for Geology, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
Irina Polovodova Asteman
Department of Marine Sciences, University of Gothenburg, P.O. Box 461, 40530 Gothenburg, Sweden
Alexandra-Sophie Roy
German Marine Research Consortium, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany
Marié Warren
Department of Biochemistry, Genetics and Microbiology, Division Genetics, University of Pretoria, Private Bag x 20, Hatfield 0028, South Africa
Julia Weissenbach
Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Universitetsplatsen 1, 39231 Kalmar, Sweden
Julia Wukovits
Department of Palaeontology, University of Vienna, Geozentrum, Althanstraße 14, 1090 Vienna, Austria
Related authors
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Michael Lintner, Irina Polovodova Asteman, Wolfgang Wanek, Petra Heinz, Jan Goleń, and Jarosław Tyszka
J. Micropalaeontol., 44, 263–273, https://doi.org/10.5194/jm-44-263-2025, https://doi.org/10.5194/jm-44-263-2025, 2025
Short summary
Short summary
Foraminifera are microorganisms which, due to their abundance and diversity, are often used as proxies to describe climatic changes in marine environments. For this purpose, experiments containing antibiotics that are intended to reduce the activity of other microorganisms are carried out with foraminifera. In our study, we examined the influence of antibiotics on foraminifera and tested whether these chemicals are really harmless for foraminifera or not.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Hannah Krüger, Gerhard Schmiedl, Zvi Steiner, Zhouling Zhang, Eric P. Achterberg, and Nicolaas Glock
J. Micropalaeontol., 44, 193–211, https://doi.org/10.5194/jm-44-193-2025, https://doi.org/10.5194/jm-44-193-2025, 2025
Short summary
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
Irina Polovodova Asteman, Emilie Jaffré, Agata Olejnik, Maria Holzmann, Mary McGann, Kjell Nordberg, Jean-Charles Pavard, Delia Rösel, and Magali Schweizer
J. Micropalaeontol., 44, 119–143, https://doi.org/10.5194/jm-44-119-2025, https://doi.org/10.5194/jm-44-119-2025, 2025
Short summary
Short summary
Small boat harbours are suggested to cause pollution and alien species introductions. Here we analysed surface sediments in Hinsholmskilen harbour (Sweden) for benthic foraminifera and potentially toxic elements. Molecular and morphological analyses of foraminifera show the presence of two alien species, Trochammina hadai and Ammonia confertitesta, whilst pollution is mostly low for Cd, Co, Ni, and Pb. In contrast, As, Zn, Cu, Hg, and Cr have high levels due to the use of these elements in boat paints.
Anjaly Govindankutty Menon, Aaron L. Bieler, Hanna Firrincieli, Rachel Alcorn, Niko Lahajnar, Catherine V. Davis, Ralf Schiebel, Dirk Nürnberg, Gerhard Schmiedl, and Nicolaas Glock
EGUsphere, https://doi.org/10.5194/egusphere-2025-1182, https://doi.org/10.5194/egusphere-2025-1182, 2025
Short summary
Short summary
The pore density (number of pores per unit area) of unicellular eukaryotes is used to reconstruct past bottom-water nitrate at the Sea of Okhotsk, the Gulf of California, the Mexican Margin and the Gulf of Guayaquil. The reconstructed bottom-water nitrate at the Sea of Okhotsk, the Gulf of California and the Gulf of Guayaquil are influenced by the intermediate water masses, while the nitrate at the Mexican Margin is related to the deglacial NO3− variability in the Pacific Deep Water.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Nicolaas Glock
Biogeosciences, 20, 3423–3447, https://doi.org/10.5194/bg-20-3423-2023, https://doi.org/10.5194/bg-20-3423-2023, 2023
Short summary
Short summary
Ocean deoxygenation due to climate warming is an evolving threat for organisms that are not well adapted to O2 depletion, such as many pelagic fish species. Other better-adapted organisms, such as some benthic foraminifera species, might benefit from ocean deoxygenation. Benthic foraminifera are a group of marine protists and can have specific adaptations to O2 depletion such as the ability to respire nitrate instead of O2. This paper reviews the current state of knowledge about these organisms.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Cited articles
Altenbach, A. V.: Short term processes and patterns in the foraminiferal response to organic flux rates, Mar. Micropaleontol., 19, 119–129, https://doi.org/10.1016/0377-8398(92)90024-E, 1992.
Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S., and Trauth, M.: Scaling percentages and distributional patterns of benthic foraminifera with Flux rates of organic carbon, J. Foramin. Res., 29, 173–185, 1999.
Alve, E.: Benthic foraminiferal responses to absence of fresh phytodetritus: A two year experiment, Mar. Micropaleontol., 76, 67–75, https://doi.org/10.1016/j.marmicro.2010.05.003, 2010.
Alve, E., Murray, J. W., and Skei, J.: Deep-sea benthic foraminifera, carbonate dissolution and species diversity in Hardangerfjord, Norway: An initial assessment, Estuar. Coast. Shelf Sci., 92, 90–102, https://doi.org/10.1016/j.ecss.2010.12.018, 2011.
Austen, M. C. and Wibdom, B.: Changes in and slow recovery of a meiobenthic nematode assemblage following a hypoxic period in the Gullmar Fjord basin, Sweden, Mar. Biol., 111, 139–145, https://doi.org/10.1007/BF01986355, 1991.
Baas, I. H., Schönfeld, J., and Zahn, R.: Mid-depth oxygen drawdown during Heinrich events: evidence from benthic foraminiferal community structure, trace-fossil tiering, and benthic δ13C at the Portuguese Margin, Mar. Geol., 152, 25–55, https://doi.org/10.1016/S0025-3227(98)00063-2, 1998.
Bailey, J. W.: Microscopical examination of soundings made by the United States Coast Survey off the Atlantic Coast of the United States, Smithsonian Contributions to Knowledge, Part. 3, 1–15, 1851.
Barras, C., Fontanier, C., Jorissen, F., and Hohenegger, J.: A comparison of spatial and temporal variability of living benthic foraminiferal faunas at 550m depth in the Bay of Biscay, Micropaleontology, 56, 275–295, https://doi.org/10.2307/40959485, 2010.
Bartels-Joìnsdoìttir, H. B., Knudsen, K. L., Abrantes, F., Lebreiro, S., and Eiriìksson, J.: Climate variability during the last 2000 years in the Tagus Prodelta, western Iberian Margin: Benthic foraminifera and stable isotopes, Mar. Micropaleontol., 59, 83–103, https://doi.org/10.1016/j.marmicro.2006.01.002, 2006.
Bergstrand, C.: A comparison between the living (stained) foraminifera fauna 2011 and 1993/1994 in the deep basin of Gullmar Fjord, including comparisons with Höglund's material from 1927, Bachelor of Science thesis, B690, Department of Earth Sciences, University of Gothenburg, Sweden, 22 pp., https://studentportal.gu.se/digitalAssets/1393/1393672_b690-klar.pdf (last access: 11 October 2023), 2012.
Bernhard, J. M.: Benthic foraminiferal distribution and biomass related to pore-water oxygen content: central California continental slope and rise, Deep-Sea Res., 39, 585–605, https://doi.org/10.1016/0198-0149(92)90090-G, 1992.
Bernhard, J.,M. and Alve, E.: Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway): response to anoxia, Mar. Micropaleontol., 28, 5–17, https://doi.org/10.1016/0377-8398(95)00036-4, 1996.
Bernhard, J. M., Habura, A., and Bowser, S. S.: An endobiont-bearing allogromiid from the Santa Barbara Basin: Implications for the early diversification of foraminifera, J. Geophys. Res., 111, G03002, 10 pp., https://doi.org/10.1029/2005JG000158, 2006.
Bernhard, J. M., Sen Gupta, B. K., and Borne, P. F.: Benthic foraminiferal proxy to estimate dysoxic bottom-water oxygen concentrations: Santa Barbara Basin, U.S. Pacific Continental Margin, J. Foramin. Res., 27, 301–310, https://doi.org/10.2113/gsjfr.27.4.301, 1997.
Bernstein, B. B., Hessler, R. R., Smith, R., and Jumars, P. A.: Spatial dispersion of benthic foraminifera in the central North Pacific, Limnol. Oceanogr., 23, 401–416, https://doi.org/10.4319/lo.1978.23.3.0401, 1978.
Bernstein, B. B. and Meador, J. P.: Temporal persistence of biological patch structure in an abyssal benthic community, Mar. Biol., 51, 179–183, 1979.
Brenchley, G. A.: Mechanisms of spatial competition in marine soft-bottom communities, J. Exp. Mar. Biol. Ecol., 60, 17–33, https://doi.org/10.1016/0022-0981(81)90177-5, 1982.
Brooks, A. L.: Standing crop, vertical distribution, and morphometrics of Ammonia beccarii (Linne), Limnol. Oceanogr., 12, 667–684, https://doi.org/10.4319/lo.1967.12.4.0667, 1967.
Brown, J. H.: On the relationship between abundance and distribution of species, Am. Naturalist, 124, 255–279, https://doi.org/10.1086/284267, 1984.
Buhl-Mortensen, L., Vanreusel, A., Gooday, A. J., Levin, L. A., Priede, I. G., Buhl-Mortensen, P., Gheerardyn, H., King, N. J., and Raes, M.: Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins, Mar. Ecol., 31, 21–50, https://doi.org/10.1111/j.1439-0485.2010.00359.x, 2010.
Buzas, M. A.: On the spatial distribution of foraminifera, Contributions from the Cushman Foundation for Foraminiferal Research, 19, 1–11, 1968.
Buzas, M. A., Hayek, L. C., Jett, J. A., and Reed, S. A.: Pulsating patches: History and Analyses of spatial, seasonal, and yearly distribution of living benthic foraminifera, Smithsonian Contributions to Paleobiology, 97, 1–91, 2015.
Buzas, M. A., Smith, R. K., Reed, S. A., and Jett, J. A.: Foraminiferal densities over five years in the Indian River Lagoon, Florida: a model of pulsating patches. J. Foramin. Res., 32, 68–92, https://doi.org/10.2113/0320068, 2002.
Cedhagen, T.: Foraminiferans as food for Cephalaspideans (Gastropoda: Opisthobranchia), with notes on secondary tests around calcareous foraminiferans, Phuket Marine Biological Center Special Publication, 16, 279–290, 1996.
Choquel, C., Geslin, E., Metzger, E., Filipsson, H. L., Risgaard-Petersen, N., Launeau, P., Giraud, M., Jauffrais, T., Jesus, B., and Mouret, A.: Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment, Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, 2021.
Cole, R. G., Hull, P. J., and Healy, T. R.: Assemblage structure, spatial patterns, recruitment, and post-settlement mortality of subtidal bivalve molluscs in a larger harbour in north-eastern New Zealand, New Zealand J. Mar. Freshw. Res., 34, 317–329, https://doi.org/10.1080/00288330.2000.9516935, 2000.
Corliss, B. H.: Microhabitats of benthic foraminifera within deep-sea sediments, Nature, 314, 435–438, https://doi.org/10.1038/314435a0, 1985.
Danovaro, R., Carugati, L., Corinaldesi, C., Gambi, C., Guilini, K., Pusceddu, A., and Vanreusel, A.: Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity, Deep-Sea Res. Pt. II, 92, 97–106, https://doi.org/10.1016/j.dsr2.2013.03.035II, 2013.
Darling, K. F., Schweizer, M., Knudsen, K. L., Evans, K. M., Bird, C., Roberts, A., Filipsson, H. L., Kim, J.-H., Gudmundsson, G., Wade, C. M., Sayer, M. D. J., and Austin, W. E. N.: The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic, Mar. Micropaleontol., 129, 1–23, https://doi.org/10.1016/j.marmicro.2016.09.001, 2016.
de Chanvalon, A. T., Geslin, E., Mojtahid, M., Métais, I., Méléder, V., and Metzger, E.: Multiscale analysis of living benthic foraminiferal heterogeneity: Ecological advances from an intertidal mudflat (Loire estuary, France), Cont. Shelf Res., 232, 104627, https://doi.org/10.1016/j.csr.2021.104627, 2022.
de Nooijer, L.: Shallow-water benthic foraminifera as proxy for natural versus human-induced environmental change, Geol. Ultraiectina, 272, 1–152, 2007.
Deldicq, N., Alve, E., Schweizer, M., Polovodova Asteman, I., Hess, S., Darling, K., and Bouchet, V. M. P.: History of the introduction of a species resembling benthic foraminifera Nonionella stella in the Oslofjord (Norway): morphological, molecular and paleo-ecological evidences, Aquat. Invas., 14, 182–205, https://doi.org/10.3391/ai.2019.14.2.03, 2019.
Deldicq, N., Langlet, D., Delaeter, C., Beaugrand, G., Seuront, L., and Bouchet, V. M. P.: Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning, Sci. Rep., 11, 4013, https://doi.org/10.1038/s41598-021-83311-z, 2021.
Dorst, S. and Schönfeld, J.: Diversity of benthic foraminifera on the shelf and slope of the NE Atlantic: analysis of datasets, J. Foramin. Res., 43, 238–254, https://doi.org/10.2113/gsjfr.43.3.238, 2013.
Dorst, S., Schönfeld, J., and Walter, L.: Recent benthic foraminiferal assemblages from the Celtic Sea (South Western Approaches, NE Atlantic), Paläontologische Z., 89, 287–302, https://doi.org/10.1007/s12542-014-0240-6, 2015.
Ellis, B. F. and Messina, A.: Cataloque of Foraminifera, Micropaleontology Press, New York, http://www.micropress.org (last access: 1 February 2023), 1940.
Filipsson, H. L. and Nordberg, K.: Climate variations, an overlooked factor influencing the recent marine environment. An example from Gullmar Fjord, Sweden, illustrated by benthic foraminifera and hydrographic data, Estuaries, 27, 867–881, https://doi.org/10.1007/BF02912048, 2004.
Findlay, S. E.: Small-scale spatial distribution of meiofauna on a mud-and sandflat, Estuar. Coast. Shelf Sc., 12, 471–484, https://doi.org/10.1016/S0302-3524(81)80006-0, 1981.
Gallucci, F., Moens, T., and Fonseca, G.: Small-scale spatial patterns of meiobenthos in the Arctic deep sea, Mar. Biodivers., 39, 9–25, https://doi.org/10.1007/s12526-009-0003-x, 2009.
Gleason, H. A.: Some applications of the quadrat method, B. Torrey Bot. Club, 47, 21–33, https://doi.org/10.2307/2480223, 1920.
Glock, N., Wukovits, J., and Roy, A. S.: Interactions of Globobulimina auriculata with nematodes: predator or prey?, J. Foramin. Res., 49, 66–75, https://doi.org/10.2113/gsjfr.49.1.66, 2019.
Goldstein, S. T. and Corliss, B. H.: Deposit feeding in selected deep-sea and shallow-water benthic foraminifera, Deep-Sea Res., 41, 229–241, https://doi.org/10.1016/0967-0637(94)90001-9, 1994.
Gooday, A. J.: A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea, Nature, 332, 70–73, https://doi.org/10.1038/332070a0, 1988.
Gooday, A. J.: Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: a review of environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–90, https://doi.org/10.1016/s0065-2881(03)46002-1, 2003.
Griveaud, C., Jorissen, F., and Anschutz, P.: Spatial variability of live benthic foraminiferal faunas on the Portuguese margin, Micropaleontol., 56, 297–322, https://doi.org/10.2307/40959486, 2010.
Gross, O.: Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments, Hydrobiologia, 426, 123–137, https://doi.org/10.1023/A:1003930831220, 2000.
Gustafsson, M. and Nordberg, K.: Living (stained) benthic foraminiferal response to primary production and hydrography in the deepest part of the Gullmar Fjord, Swedish West Coast, with comparisons to Hoglund's 1927 material, J. Foramin. Res., 31, 2–11, https://doi.org/10.2113/0310002, 2001.
Haake, F.-W.: Zum Jahresgang von Populationen einer Foraminiferen-Art in der westlichen Ostsee, Meyniana, 17, 13–27, 1967.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: paleontological statistics software package for education and data analysis, Palaeontol. Elec., 4, 9 pp., https://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 11 October 2023), 2001.
Hasemann, C. and Soltwedel, T.: Small-scale heterogeneity in deep-sea nematode communities around biogenic structures, PLoS ONE, 6, e29152, https://doi.org/10.1371/journal.pone.0029152, 2011.
Hassellöv, M., Lyveìn, B., Bengtsson, H., Jansen, R., Turner, D. R., and Beckett, R.: Particle size distributions of clay-rich sediments and pure clay minerals: a comparison of grain size analysis with sedimentation field-flow fractionation, Aquat. Geochem., 7, 155–171, https://doi.org/10.1023/A:1017905822612, 2001.
Heinz, P., Ruepp, D., and Hemleben, C.: Benthic foraminifera assemblages at Great Meteor Seamount, Mar. Biol., 144, 985–998, https://doi.org/10.1007/s00227-003-1257-7, 2004.
Heinz, P., Sommer, S., Pfannkuche, O., and Hemleben, C.: Living benthic foraminifera in sediments influenced by gas hydrates at the Cascadia convergent margin, NE Pacific, Mar. Ecol. Prog. Ser., 304, 77–89, https://doi.org/10.3354/meps304077, 2005.
Hemmerich, W.: StatistikGuru: Normalverteilung online prüfen, https://statistikguru.de/rechner/normalverteilung-rechner.html (last access 25 November 2022), 2018.
Hess, S., Alve, E., and Reuss, N. S.: Benthic foraminiferal recovery in the Oslofjord (Norway): Responses to capping and re-oxygenation, Estuar. Coast. Shelf Sc., 147, 87–102, https://doi.org/10.1016/j.ecss.2014.05.012, 2014.
Hessler, R. R. and Jumars, P. A.: Abyssal community analysis from replicate box cores in the central North Pacific, Deep-Sea Res.-Ocean., 21, 185–209, https://doi.org/10.1016/0011-7471(74)90058-8, 1974.
Höglund, H.: Foraminifera in the Gullmar Fjord and the Skagerak, Zoologiske Bidrag fran Uppsala, 26, 1–328, 1947.
Hohenegger, J., Piller, W. E., and Baal, Ch.: Horizontal and vertical spatial microdistribution of foraminifers in the shallow subtidal Gulf of Trieste, Northern Adriatic Sea, J. Foramin. Res., 23, 79–101, https://doi.org/10.2113/gsjfr.23.2.79, 1993.
Ingels, J., Billett, D. S. M., Kiriakoulakis, K., Wolff, G. A., and Vanreusel, A.: Structural and functional diversity of Nematoda in relation with environmental variables in the Setúbal and Cascais canyons, Western Iberian Margin, Deep-Sea Res. Pt. II, 58, 2354–2368, https://doi.org/10.1016/j.dsr2.2011.04.002, 2011.
Jepps, M. W.: The Protozoa, Sarcodina, Oliver and Boyd, Edinburgh, United Kingdom, 183 pp., 1956.
Jorissen, F. J.: Benthic foraminiferal successions across late Quaternary Mediterranean sapropels, Mar. Geol., 153, 91–101, https://doi.org/10.1016/S0025-3227(98)00088-7, 1999.
Kaminski, M. A.: Evidence for control of abyssal agglutinated foraminiferal community structure by substrate disturbance: Results from the HEBBLE Area, Mar. Geol., 66, 113–131, https://doi.org/10.1016/0025-3227(85)90025-8, 1985.
Kershaw, K. A.: Pattern in vegetation and its causality, Ecology, 44, 377–388, https://doi.org/10.2307/1932185, 1963.
Kester, D. R., Duedall, I. W., Connors, D. N., and Pytkowicz, R. M.: Preparation of artificial seawater, Limnol. Oceanogr., 12, 176–179, https://doi.org/10.4319/lo.1967.12.1.0176, 1967.
Koho, K. A., Piña-Ochoa, E., Geslin, E., and Risgaard-Petersen, N.: Vertical migration, nitrate uptake and denitrification: Survival mechanisms of foraminifers (Globobulimina turgida) under low oxygen conditions, FEMS Microbiol. Ecol., 75, 273–283, https://doi.org/10.1111/j.1574-6941.2010.01010.x, 2011.
Kuhn, G. and Dunker, E.: Der Minicorer, ein Gerät zur Beprobung der Sediment/Bodenwasser-Grenze, Greifswalder Geowissenschaftliche Beiträge, 2, 99–100, 1994.
Lambshead, P. J. D. and Gooday, A. J.: The impact of seasonally deposited phytodetritus on epifaunal and shallow infaunal benthic foraminiferal populations in the bathyal northeast Atlantic: the assemblage response, Deep Sea Res., 37, 1263–1283, https://doi.org/10.1016/0198-0149(90)90042-T, 1990.
Legendre, P. and Fortin, M.-J.: Spatial patterning and ecological analysis, Vegetatio, 80, 107–138, https://doi.org/10.1007/BF00048036, 1989.
Lehmann, G.: Vorkommen, Populationsentwicklung, Ursache flächenhafter Besiedlung und Fortpflanzungsbiologie von Foraminiferen in Salzwiesen und Flachwasser der Nord- und Ostseeküste Schleswig-Holsteins, Doctoral Thesis, University of Kiel, Germany, 218 pp., http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_413 (last access: 11 October 2023), 2000.
Lejzerowicz, F., Esling, P., and Pawlowski, J.: Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing, Deep Sea Res. Pt. II, 108, 17–26, https://doi.org/10.1016/j.dsr2.2014.07.018, 2014.
Loeblich Jr., A. R. and Tappan, H.: Foraminiferal Genera and Their Classification, Van Nostrand Reinhold Company, New York, U.S.A., 970 pp., ISBN 0-442-25937-9, 1988.
Lutze, G. F.: Zur Foraminiferen-Fauna der Ostsee, Meyniana, 15, 75–142, 1965.
Lutze, G. F.: Siedlungs-Strukturen rezenter Foraminiferen, Meyniana, 18, 31–34, 1968a.
Lutze, G. F.: Jahresgang der Foraminiferen-Fauna in der Bottsand Lagune (westliche Ostsee), Meyniana, 18, 13–30, https://doi.org/10.2312/meyniana.1968.18.13, 1968b.
Lutze, G. F. and Wefer, G.: Habitat and asexual reproduction of Cyclorbiculina compressa (Orbigny), Soritidae, J. Foramin. Res., 10, 251–260, https://doi.org/10.2113/gsjfr.10.4.251, 1980.
Lutze, G. F. and Altenbach, A. V.: Technik und Signifikanz der Lebendfärbung benthischer Foraminiferen in Bengalrot, Geologisches Jahrbuch, Reihe A, 128, 251–265, 1991.
Lutze, G. F., Pflaumann, D., and Weinholz, P.: Jungquartäre Fluktuationen der benthischen Foraminiferenfaunen in Tiefsee-Sedimenten vor NW-Afrika Eine Reaktion auf Produktivitäsänderungen im Oberflächenwasser, “Meteor” Forschungs-Ergebnisse, 40, 63–180, 1986.
Lynts, G. W.: Variation of foraminiferal standing crop over short lateral distances in Buttonwood Sound, Florida Bay, Limnol. Oceanogr., 11, 562–566, https://doi.org/10.4319/lo.1966.11.4.0562, 1966.
McClain, C. R., Nekola, J. C., Kuhnz, L., and Barry, J. P.: Local-scale faunal turnover on the deep Pacific seafloor, Mar. Ecol. Prog. Ser., 422, 193–200, https://doi.org/10.3354/meps08924, 2011.
Mosch, T., Sommer, S., Dengler, M., Noffke, A., Bohlen, L., Pfannkuche, O., Liebetrau, V., and Wallmann, K.: Factors influencing the distribution of epibenthic megafauna across the Peruvian oxygen minimum zone, Deep-Sea Res. Pt. I, 68, 123–135, https://doi.org/10.1016/j.dsr.2012.04.014, 2012.
Muller, P. H.: Sediment production and population biology of the benthic foraminifer Amphistegina madagascariensis, Limnol. Oceanogr., 19, 802–809, https://doi.org/10.4319/LO.1974.19.5.0802, 1974.
Murray, J. W.: Unravelling the life cycle of Polystomella crispa: the roles of Lister, Jepps and Myers, J. Micropalaeontol., 31, 121–129, https://doi.org/10.1144/0262-821X11-034, 2012.
Murray, J. W. and Alve, E.: Benthic foraminiferal biogeography in NW European fjords: A baseline for assessing future change, Estuar. Coast. Shelf Sc., 181, 218–230, https://doi.org/10.1016/j.ecss.2016.08.014, 2016.
Murray, J. W. and Bowser, S. S.: Mortality, protoplasm decay rate, and reliability of staining techniques to recognize “living” foraminifera: a review, J. Foramin. Res., 30, 66–77, https://doi.org/10.2113/0300066, 2000.
Nomaki, H., Heinz, P., Hemleben, C., and Kitazato, H.: Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments, J. Foramin. Res., 35, 103–113, https://doi.org/10.2113/35.2.103, 2005.
Parker, F. L. and Athearn, W. D.: Ecology of Marsh Foraminifera in Poponesset Bay, Massachusetts, J. Paleontol., 33, 333–343, 1959.
Perry, J. N., Leibhold, A. M., Rosenberg, M. S., Dungan, J., Miriti, M., Jakomulska, A., and Citron-Pousty, S.: Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data, Ecography, 25, 578–600, https://doi.org/10.1034/j.1600-0587.2002.250507.x, 2002.
Piña-Ochoa, E., Koho, K. A., Geslin, E., and Risgaard-Petersen, N.: Survival and life strategy of the foraminiferan Globobulimina turgida through nitrate storage and denitrification, Mar. Ecol. Prog. Ser., 417, 39–49, https://doi.org/10.3354/meps08805, 2010.
Polovodova, I., Nikulina, A., Schönfeld, J., and Dullo, W-C.: Recent benthic foraminifera in the Flensburg Fjord (western Baltic Sea), J. Micropalaeontol., 28, 131–142, https://doi.org/10.1144/jm.28.2.131, 2009.
Polovodova Asteman, I. and Nordberg, K.: Foraminiferal fauna from a deep basin in Gullmar Fjord: The influence of seasonal hypoxia and North Atlantic Oscillation, J. Sea Res.,, 79, 40–49, https://doi.org/10.1016/j.seares.2013.02.001, 2013.
Polovodova Asteman, I. and Schönfeld, J.: Recent invasion of the foraminifer Nonionella stella Cushman & Moyer, 1930 in northern European waters: evidence from the Skagerrak and its fjords, J. Micropalaeontol., 35, 20–25, https://doi.org/10.1144/jmpaleo2015-007, 2016.
Polovodova Asteman, I., Nordberg, K., and Filipsson, H. L.: The Little Ice Age: evidence from a sediment record in Gullmar Fjord, Swedish west coast, Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, 2013.
Rathburn, A. E. and Corliss, B. H.: The ecology of deep-sea benthic foraminifera from the Sulu Sea, Paleoceanography, 9, 87–150, https://doi.org/10.1029/93PA02327, 1994.
Reise, K.: Spatial configurations generated by motile benthic polychaetes, Helgoländer wissenschaftliche Meeresuntersuchungen, 32, 55–72, https://doi.org/10.1007/BF02189892, 1979.
Reiss, H., Degraer, S., Duineveld, G. C .A., Kröncke, I., Aldridge, J., Craeymeersch, J., Eggleton, J. D., Hillewaert, H., Lavaleye, M. S. S., Moll, A., Pohlmann, T., Rachor, E., Robertson, M., van den Berghe, E., van Hoey, G., and Rees, H. L.: Spatial patterns of infauna, epifauna, and demersal fish communities in the North Sea, ICES J. Mar. Sci., 67, 278–293, https://doi.org/10.1093/icesjms/fsp253, 2010.
Rice, A. L. and Lambshead, P. J. D.: Patch dynamics in the deep-sea benthos: the role of a heterogeneous supply of organic matter, in: Aquatic ecology. Scale, pattern arid process – The 34th Symposium of the British Ecological Society, Blackwell Scientific, Oxford, United Kingdom, 469–497, 1994.
Richter, G.: Beobachtungen zur Ökologie einiger Foraminiferen des Jade Gebietes, Natur und Volk, 91, 163–170, 1961.
Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S. M., Op den Camp, H. J. M., Derksen, J. W. M., Piña-Ochoa, E., Eriksson, S. P., Nielsen, L. P., Revsbech, N. P., Cedhagen, T., and van der Zwaan, G. J.: Evidence for complete denitrification in a benthic foraminifer, Nature, 443, 93–96, https://doi.org/10.1038/nature05070, 2006.
Sachs, L. and Hedderich, J.: Angewandte Statistik Methodensammlung mit R, 12th edition, Springer, Berlin, Germany, 702 pp., ISBN 3540321608, 2006.
Schafer, C. T.: Sampling and spatial distribution of benthonic foraminifera, Limnol. Oceanogr., 16, 944–951, https://doi.org/10.4319/lo.1971.16.6.0944, 1971.
Schönfeld, J.: Benthic foraminifera and pore-water oxygen profiles. A re-assessment of species boundary conditions at the western Iberian Margin, J. Foramin. Res., 31, 86–107, https://doi.org/10.2113/0310086, 2001.
Schönfeld, J.: History and development of methods in Recent benthic foraminiferal studies, J. Micropalaeontol., 31, 53–72, https://doi.org/10.1144/0262-821X11-008, 2012.
Schönfeld, J.: Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea), J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, 2018.
Schönfeld, J. and Altenbach, A. V.: Late Glacial to Recent distribution pattern of deep-water Uvigerina species in the northeastern Atlantic, Mar. Micropaleontol., 57, 1–24, https://doi.org/10.1016/j.marmicro.2005.05.004, 2005.
Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., Spezzaferri, S., Abramovich, S., Almogi- Labin, A., Armynot du Chatelet, E., Barras, C., Bergamin, L., Bicchi, E., Bouchet, V., Cearreta, A., Di Bella, L., Dijkstra, N., Trevisan Disaro, S., Ferraro, L., Frontalini, F., Gennari, G., Golikova, E., Haynert, K., Hess, S., Husum, K., Martins, V., McGann, M., Oron, S., Romano, E., Mello Sousa, S., and Tsujimoto A.: The FOBIMO (FOraminiferal BIo-MOnitoring) initiative – Towards a standardized protocol for soft-bottom benthic foraminiferal monitoring studies, Mar. Micropaleontol., 94, 1–13, https://doi.org/10.1016/j.marmicro.2012.06.001, 2012.
Schönfeld, J., Beccari, V., Schmidt, S., and Spezzaferri, S.: Biometry and taxonomy of adriatic Ammonia species from Bellaria–Igea Marina (Italy), J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, 2021.
Schönfeld, J., Golikova, E., Korsun, S., and Spezzaferri, S.: The Helgoland Experiment – assessing the influence of methodologies on Recent benthic foraminiferal assemblage composition, J. Micropalaeontol., 32, 161–182, https://doi.org/10.1144/jmpaleo2012-022, 2013.
Schönfeld, J. and Numberger, L.: The benthic foraminiferal response to the 2004 spring bloom in the western Baltic Sea, Mar. Micropaleontol., 65, 78–95, https://doi.org/10.1016/j.marmicro.2007.06.003, 2007.
Severin, K. P., Culver, S. J., and Blanpied, C.: Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer in fine-grained sediment, Sedimentology, 29, 897–901, https://doi.org/10.1111/j.1365-3091.1982.tb00093.x, 1982.
Sokal, R. R. and Rohlf, F. J.: Biometry: the Principles and Practice of Statistics in Biology Research, 3rd edition, edited by: Freeman, W. H. and Co, New York, U.S.A., 887 pp., ISBN 9780716724117, 1995.
Stefanoudis, P. V., Bett, B. J., and Gooday, A. J.: Abyssal hills: Influence of topography on benthic foraminiferal assemblages, Prog. Oceanogr., 148, 44–55, https://doi.org/10.1016/j.pocean.2016.09.005, 2016.
Steyaert, M., Moodley, L., Nadong, T., Moens, T., Soetaert, K., and Vincx, M.: Responses of intertidal nematodes to short-term anoxic events, J. Exp. Mar. Biol. Ecol., 345, 175–184, https://doi.org/10.1016/j.jembe.2007.03.001, 2007.
Sturtevant, A. H.: A new species closely resembling Drosophila melanogaster, Psyche, 26, 153–155, https://doi.org/10.1155/1919/97402, 1919.
Thrush, S. F.: Spatial patterns in soft-bottom communities, Trend Ecol. Evol., 6, 75–79, https://doi.org/10.1016/0169-5347(91)90178-Z, 1991.
Thrush, S. F.: Spatial heterogeneity in subtidal gravel generated by the pit-digging activities of Cancer pagurus, Mar. Ecol. Prog. Ser., 30, 221–227, https://doi.org/10.3354/meps030221, 1986.
Thibault de Chanvalon, A., Metzger, E., Mouret, A., Cesbron, F., Knoery, J., Rozuel, E., Launeau, P., Nardelli, M. P., Jorissen, F. J., and Geslin, E.: Two-dimensional distribution of living benthic foraminifera in anoxic sediment layers of an estuarine mudflat (Loire estuary, France), Biogeosciences, 12, 6219–6234, https://doi.org/10.5194/bg-12-6219-2015, 2015.
Todd, R. and Low, D.: Near-shore foraminifera from Martha's Vineyard Island, Massachusetts, Contributions from the Cushman Foundation for Foraminiferal Research, 12, 5–21, https://cushmanfoundation.org/PersonifyEbusiness/Portals/0/pdf/pubarchive/ccffr/12ccffr1.pdf (last access: 11 October 2023), 1961.
Vangerow, E. F.: Häufigkeitsverteilung der Foraminiferen im flachen Wasser der Rhonemündung, Paläontologische Z., 51, 145–151, https://doi.org/10.1007/BF02986564, 1977.
Warren, M., Chown, S. L., McGeoch, M. A., and Nicolson, S. W.: Body size patterns in Drosophila inhabiting a mesocosm: Interactive effects of spatial variation in temperature and abundance, Oecologia, 149, 245–255, https://doi.org/10.1007/s00442-006-0434-z, 2006.
Warren, M., McGeoch, M. A., and Chown, S. L.: Predicting abundance from occupancy: A test for an aggregated insect assemblage, J. Anim. Ecol., 72, 468–477, https://doi.org/10.1046/j.1365-2656.2003.00716.x, 2003.
Warren, M., McGeoch, M. A., and Chown, S. L.: The detection of spatial structure in populations and communities: an empirical case study, Écoscience, 16, 95–110, https://doi.org/10.2980/16-1-3185, 2009.
Wefer, G.: Umwelt, Produktion und Sedimentation benthischer Foraminiferen in der westlichen Ostsee, Reports Sonderforschungsbereich 95 Wechselwirkung Meer – Meeresboden, 14, 1–103, https://epic.awi.de/id/eprint/46945/ (last access: 11 October 2023), 1976.
Woehle, C., Roy, A. S., Glock, N., Wein, T., Weissenbach, J., Rosenstiel, P., Hiebenthal, C., Michels, J., Schönfeld, J., and Dagan, T.: A novel eukaryotic denitrification pathway in foraminifera, Curr. Biol., 28, 2536–2543, https://doi.org/10.1016/j.cub.2018.06.027, 2018.
WoRMS Editorial Board: World register of marine species, http://www.marinesp-ecies.org, last access: 18 April 2023.
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or...