Articles | Volume 43, issue 1
https://doi.org/10.5194/jm-43-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (International Ocean Discovery Program Site U1506)
Maria Elena Gastaldello
CORRESPONDING AUTHOR
Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
Claudia Agnini
Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy
Laia Alegret
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
Instituto de Investigación en Ciencias Ambientales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
Related authors
No articles found.
Julia de Entrambasaguas, Thomas Westerhold, Heather L. Jones, and Laia Alegret
J. Micropalaeontol., 43, 303–322, https://doi.org/10.5194/jm-43-303-2024, https://doi.org/10.5194/jm-43-303-2024, 2024
Short summary
Short summary
The Gulf Stream plays a crucial role in the ocean stability and climate regulation of the Northern Hemisphere. By analysing the fossil microorganisms that lived in the water column and the ocean floor, as well as reconstructing the ancient ocean's biogeochemistry, we were able to trace longitudinal shifts in the Gulf Stream during the late Eocene (36 Ma). Our results provide insight into the Gulf Stream's behaviour and the NW Atlantic's palaeoceanography during the Late Eocene (ca. 36 Ma).
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Ji-Eun Kim, Thomas Westerhold, Laia Alegret, Anna Joy Drury, Ursula Röhl, and Elizabeth M. Griffith
Clim. Past, 18, 2631–2641, https://doi.org/10.5194/cp-18-2631-2022, https://doi.org/10.5194/cp-18-2631-2022, 2022
Short summary
Short summary
This study attempts to gain a better understanding of the marine biological carbon pump and ecosystem functioning under warmer-than-today conditions. Our records from marine sediments show the Pacific tropical marine biological carbon pump was driven by variations in seasonal insolation in the tropics during the Late Cretaceous and may play a key role in modulating climate and the carbon cycle globally in the future.
Claudia Agnini, Martha G. Pamato, Gabriella Salviulo, Kim A. Barchi, and Fabrizio Nestola
Adv. Geosci., 53, 155–167, https://doi.org/10.5194/adgeo-53-155-2020, https://doi.org/10.5194/adgeo-53-155-2020, 2020
Short summary
Short summary
This work provides updated scenario on the underrepresentation of women in the Italian university system in the area of geosciences in the last two decades. Data highlight an increase in the number of female full and associate professors whereas the low number of female non-permanent researchers raises strong concerns. Over different areas of geosciences, Paleontology represents the only field in which the gap is filled whereas all the other disciplines suffer a gender imbalance.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Thomas Westerhold, Ursula Röhl, Thomas Frederichs, Claudia Agnini, Isabella Raffi, James C. Zachos, and Roy H. Wilkens
Clim. Past, 13, 1129–1152, https://doi.org/10.5194/cp-13-1129-2017, https://doi.org/10.5194/cp-13-1129-2017, 2017
Short summary
Short summary
We assembled a very accurate geological timescale from the interval 47.8 to 56.0 million years ago, also known as the Ypresian stage. We used cyclic variations in the data caused by periodic changes in Earthäs orbit around the sun as a metronome for timescale construction. Our new data compilation provides the first geological evidence for chaos in the long-term behavior of planetary orbits in the solar system, as postulated almost 30 years ago, and a possible link to plate tectonics events.
Valeria Luciani, Gerald R. Dickens, Jan Backman, Eliana Fornaciari, Luca Giusberti, Claudia Agnini, and Roberta D'Onofrio
Clim. Past, 12, 981–1007, https://doi.org/10.5194/cp-12-981-2016, https://doi.org/10.5194/cp-12-981-2016, 2016
Short summary
Short summary
The symbiont-bearing planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of the early Paleogene tropical and subtropical oceans. However, a remarkable and permanent switch in the relative abundance of these genera happened in the early Eocene. We show that this switch occurred at low-latitude sites near the start of the Early Eocene Climatic Optimum (EECO), a multi-million-year interval when Earth surface temperatures reached their Cenozoic maximum.
Claudia Agnini, David J. A. Spofforth, Gerald R. Dickens, Domenico Rio, Heiko Pälike, Jan Backman, Giovanni Muttoni, and Edoardo Dallanave
Clim. Past, 12, 883–909, https://doi.org/10.5194/cp-12-883-2016, https://doi.org/10.5194/cp-12-883-2016, 2016
Short summary
Short summary
In this paper we present records of stable C and O isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages in a upper Paleocene-lower Eocene rocks now exposed in northeast Italy. Modifications of nannoplankton assemblages and carbon isotopes are strictly linked one to each other and always display the same ranking and spacing. The integration of this two data sets represents a significative improvement in our capacity to correlate different sections at a very high resolution.
N. Preto, C. Agnini, M. Rigo, M. Sprovieri, and H. Westphal
Biogeosciences, 10, 6053–6068, https://doi.org/10.5194/bg-10-6053-2013, https://doi.org/10.5194/bg-10-6053-2013, 2013
Related subject area
Benthic foraminifera
Miocene Climatic Optimum and Middle Miocene Climate Transition: a foraminiferal record from the central Ross Sea, Antarctica
Distribution of two notodendrodid foraminiferal congeners in McMurdo Sound, Antarctica: an example of extreme regional endemism?
Benthic foraminifers in coastal habitats of Ras Mohamed Nature Reserve, southern Sinai, Red Sea, Egypt
Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin
Benthic foraminiferal patchiness – revisited
Agglutinated foraminifera from the Turonian–Coniacian boundary interval in Europe – paleoenvironmental remarks and stratigraphy
Meghalayan environmental evolution of the Thapsus coast (Tunisia) as inferred from sedimentological and micropaleontological proxies
Biometry and taxonomy of Adriatic Ammonia species from Bellaria–Igea Marina (Italy)
Biogeographic distribution of three phylotypes (T1, T2 and T6) of Ammonia (foraminifera, Rhizaria) around Great Britain: new insights from combined molecular and morphological recognition
Comparative analysis of six common foraminiferal species of the genera Cassidulina, Paracassidulina, and Islandiella from the Arctic–North Atlantic domain
Microfossil assemblages and geochemistry for interpreting the incidence of the Jenkyns Event (early Toarcian) in the south-eastern Iberian Palaeomargin (External Subbetic, SE Spain)
Micropalaeontology, biostratigraphy, and depositional setting of the mid-Cretaceous Derdere Formation at Derik, Mardin, south-eastern Turkey
Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean
Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition
Reconstructing the Christian Malford ecosystem in the Oxford Clay Formation (Callovian, Jurassic) of Wiltshire: exceptional preservation, taphonomy, burial and compaction
Benthic foraminiferal assemblages and test accumulation in coastal microhabitats on San Salvador, Bahamas
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection
Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)
Paleocene orthophragminids from the Lakadong Limestone, Mawmluh Quarry section, Meghalaya (Shillong, NE India): implications for the regional geology and paleobiogeography
Larger foraminifera of the Devil's Den and Blue Hole sinkholes, Florida
Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Ahmed M. BadrElDin and Pamela Hallock
J. Micropalaeontol., 43, 239–267, https://doi.org/10.5194/jm-43-239-2024, https://doi.org/10.5194/jm-43-239-2024, 2024
Short summary
Short summary
The Red Sea hosts exceptionally diverse marine environments despite elevated salinities. Distributions of benthic foraminifers were used to assess the ecological status of coral reef environments in the Ras Mohamed Nature Reserve, south Sinai. Sediment samples collected in mangrove, shallow-lagoon, and coral reef habitats yielded 95 foraminiferal species. Six species, five hosting algal symbionts, made up ~70 % of the specimens examined, indicating water quality suitable for reef accretion.
Malcolm B. Hart, Holger Gebhardt, Eiichi Setoyama, Christopher W. Smart, and Jarosław Tyszka
J. Micropalaeontol., 42, 277–290, https://doi.org/10.5194/jm-42-277-2023, https://doi.org/10.5194/jm-42-277-2023, 2023
Short summary
Short summary
<p>In the 1960s-1970s some species of Triassic foraminifera were described as having a planktic mode of life. This was questioned and Malcolm Hart studied the material in Vienna, taking some to London for SEM imaging. Samples collected from Poland are compared to these images and the suggested planktic mode of life discussed. Foraminifera collected in Ogrodzieniec are glauconitic steinkerns with no test material present and none of the diagnostic features needed to determine "new" species.</p>
Joachim Schönfeld, Nicolaas Glock, Irina Polovodova Asteman, Alexandra-Sophie Roy, Marié Warren, Julia Weissenbach, and Julia Wukovits
J. Micropalaeontol., 42, 171–192, https://doi.org/10.5194/jm-42-171-2023, https://doi.org/10.5194/jm-42-171-2023, 2023
Short summary
Short summary
Benthic organisms show aggregated distributions due to the spatial heterogeneity of niches or food. We analysed the distribution of Globobulimina turgida in the Gullmar Fjord, Sweden, with a data–model approach. The population densities did not show any underlying spatial structure but a random log-normal distribution. A temporal data series from the same site depicted two cohorts of samples with high or low densities, which represent hypoxic or well-ventilated conditions in the fjord.
Richard M. Besen, Kathleen Schindler, Andrew S. Gale, and Ulrich Struck
J. Micropalaeontol., 42, 117–146, https://doi.org/10.5194/jm-42-117-2023, https://doi.org/10.5194/jm-42-117-2023, 2023
Short summary
Short summary
Turonian–Coniacian agglutinated foraminiferal assemblages from calcareous deposits from the temperate European shelf realm were studied. Acmes of agglutinated foraminifera correlate between different sections and can be used for paleoenvironmental analysis expressing inter-regional changes. Agglutinated foraminiferal morphogroups display a gradual shift from Turonian oligotrophic environments towards more mesotrophic conditions in the latest Turonian and Coniacian.
Mohamed Kamoun, Martin R. Langer, Chahira Zaibi, and Mohamed Ben Youssef
J. Micropalaeontol., 41, 129–147, https://doi.org/10.5194/jm-41-129-2022, https://doi.org/10.5194/jm-41-129-2022, 2022
Short summary
Short summary
Sedimentology and micropaleontology analyses provide the dynamic processes that shaped the environmental evolution of the Thapsus coastline (Tunisia) including its lagoon and Roman harbor. The highlights are paleoenvironmental change records from the coast of Thapsus for the last 4000 years, benthic foraminiferal biota recording the dynamic coastal processes, two transgressive events being recognized, and a presented model for the paleoenvironmental evolution.
Joachim Schönfeld, Valentina Beccari, Sarina Schmidt, and Silvia Spezzaferri
J. Micropalaeontol., 40, 195–223, https://doi.org/10.5194/jm-40-195-2021, https://doi.org/10.5194/jm-40-195-2021, 2021
Short summary
Short summary
Ammonia beccarii was described from Rimini Beach in 1758. This taxon has often been mistaken with other species in the past. Recent studies assessed the biometry of Ammonia species and integrated it with genetic data but relied on a few large and dead specimens only. In a comprehensive approach, we assessed the whole living Ammonia assemblage near the type locality of A. beccarii and identified parameters which are robust and facilitate a secure species identification.
Julien Richirt, Magali Schweizer, Aurélia Mouret, Sophie Quinchard, Salha A. Saad, Vincent M. P. Bouchet, Christopher M. Wade, and Frans J. Jorissen
J. Micropalaeontol., 40, 61–74, https://doi.org/10.5194/jm-40-61-2021, https://doi.org/10.5194/jm-40-61-2021, 2021
Short summary
Short summary
The study presents (1) a validation of a method which was previously published allowing us to recognize different Ammonia phylotypes (T1, T2 and T6) based only on their morphology and (2) a refined biogeographical distribution presented here supporting the putatively invasive character of phylotype T6. Results suggest that phylotype T6 is currently spreading out and supplanting autochthonous phylotypes T1 and T2 along the coastlines of the British Isles and northern France.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Matías Reolid
J. Micropalaeontol., 39, 233–258, https://doi.org/10.5194/jm-39-233-2020, https://doi.org/10.5194/jm-39-233-2020, 2020
Short summary
Short summary
During the early Toarcian (Jurassic, 180 Ma) a hyperthermal event, the Jenkyns Event, occurred, affecting the oxygenation of the sea bottom. The integrated study of foraminiferal and ostracod assemblages with geochemical proxies allows us to interpret the incidence of this event in the Western Tethys, more exactly in the South Iberian Palaeomargin. Diminution of diversity, changes in abundance, and opportunist vs. specialist are coincident with the event.
Michael D. Simmons, Vicent Vicedo, İsmail Ö. Yılmaz, İzzet Hoşgör, Oğuz Mülayim, and Bilal Sarı
J. Micropalaeontol., 39, 203–232, https://doi.org/10.5194/jm-39-203-2020, https://doi.org/10.5194/jm-39-203-2020, 2020
Short summary
Short summary
The microfossils from a Cretaceous outcrop in southern Turkey are described and used to interpret the age of the rocks and their depositional setting and how sea level has changed. These results are compared both locally and regionally, identifying broad correspondence with regional sea level events. A new species of microfossil is described, confirming that many microfossils of Arabia are localised in their distribution.
Dana Ridha, Ian Boomer, and Kirsty M. Edgar
J. Micropalaeontol., 38, 189–229, https://doi.org/10.5194/jm-38-189-2019, https://doi.org/10.5194/jm-38-189-2019, 2019
Short summary
Short summary
This paper records the spatial and temporal distribution of deep-sea benthic microfossils (Foraminifera, single-celled organisms) from the latest Oligocene to earliest Pliocene (about 28 to 4 million years ago) from Ocean Drilling Program cores in the southern Indian Ocean. Key taxa are illustrated and their stratigraphic distribution is presented as they respond to a period of marked global climatic changes, with a pronounced warm period in the mid-Miocene followed by subsequent cooling.
Sev Kender, Adeyinka Aturamu, Jan Zalasiewicz, Michael A. Kaminski, and Mark Williams
J. Micropalaeontol., 38, 177–187, https://doi.org/10.5194/jm-38-177-2019, https://doi.org/10.5194/jm-38-177-2019, 2019
Short summary
Short summary
The Mid-Brunhes Transition saw an enigmatic shift towards increased glacial temperature variations about 400 kyr ago. High-latitude Southern Ocean stratification may have been a causal factor, but little is known of the changes to the high-latitude Bering Sea. We generated benthic foraminiferal assemblage data and are the first to document a glacial decrease in episodic primary productivity since the Mid-Brunhes Transition, signifying possible reductions in sea ice summer stratification.
Malcolm B. Hart, Kevin N. Page, Gregory D. Price, and Christopher W. Smart
J. Micropalaeontol., 38, 133–142, https://doi.org/10.5194/jm-38-133-2019, https://doi.org/10.5194/jm-38-133-2019, 2019
Short summary
Short summary
The use of micropalaeontological samples from mudstone successions that have suffered de-watering and compaction means that subtle, lamina-thick, changes in assemblages may be lost when samples are processed that are 1–2 cm thick. As most micropalaeontological samples are often 2–5 cm thick, one must be then cautious of interpretations based on such short-duration changes. This work is part of an integrated study of the Christian Malford lagerstätten that has resulted in a number of papers.
Andrea Fischel, Marit-Solveig Seidenkrantz, and Bent Vad Odgaard
J. Micropalaeontol., 37, 499–518, https://doi.org/10.5194/jm-37-499-2018, https://doi.org/10.5194/jm-37-499-2018, 2018
Short summary
Short summary
Benthic foraminifera often colonize marine underwater vegetation in tropical regions. We studied these so-called epiphytic foraminifera in a shallow bay in the Bahamas. Here the foraminifera differed between types of vegetation, but sedimentological processes seem to be the main controller of the dead foraminifera in the sediment. This indicates that in carbonate platform regions, epiphytic foraminifera should only be used cautiously as direct indicators of past in situ marine vegetation.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Lyndsey R. Fox, Stephen Stukins, Tom Hill, and Haydon W. Bailey
J. Micropalaeontol., 37, 395–401, https://doi.org/10.5194/jm-37-395-2018, https://doi.org/10.5194/jm-37-395-2018, 2018
Short summary
Short summary
This paper describes five new Mesozoic deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London.
Joachim Schönfeld
J. Micropalaeontol., 37, 383–393, https://doi.org/10.5194/jm-37-383-2018, https://doi.org/10.5194/jm-37-383-2018, 2018
Short summary
Short summary
Benthic foraminifera from the Bottsand coastal lagoon, western Baltic Sea, have been monitored annually since 2003 and accompanied by hydrographic measurements since 2012. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the lagoon in 2016, most likely during a period of salinities > 19 units and average temperatures of 18 °C in early autumn. The high salinities probably triggered their germination from a propagule bank in the lagoonal bottom sediment.
Ercan Özcan, Johannes Pignatti, Christer Pereira, Ali Osman Yücel, Katica Drobne, Filippo Barattolo, and Pratul Kumar Saraswati
J. Micropalaeontol., 37, 357–381, https://doi.org/10.5194/jm-37-357-2018, https://doi.org/10.5194/jm-37-357-2018, 2018
Short summary
Short summary
We carried out a morphometric study of late Paleocene orthophragminids from the Mawmluh Quarry section in the Shillong Plateau, India. We recorded the occurrence of two species of Orbitoclypeus, whereas the other typical Tethyan genera Discocyclina is absent. We also identified the associated benthic foraminifera and algae. Shallow benthic zones (SBZ) 3 and 4 have been recognized in the section. The timing of transition from shallow marine to continental deposition is commented on.
Laura J. Cotton, Wolfgang Eder, and James Floyd
J. Micropalaeontol., 37, 347–356, https://doi.org/10.5194/jm-37-347-2018, https://doi.org/10.5194/jm-37-347-2018, 2018
Short summary
Short summary
Shallow-water carbonate deposits rich in larger benthic foraminifera (LBF) are well-known from the Eocene of the Americas. However, there have been few recent LBF studies in this region. Here we present the LBF ranges from two previously unpublished sections from the Ocala limestone, Florida. The study indicates that the lower member of the Ocala limestone may be Bartonian rather than Priabonian in age, with implications for regional biostratigraphy.
Catherine Girard, Anne-Béatrice Dufour, Anne-Lise Charruault, and Sabrina Renaud
J. Micropalaeontol., 37, 87–95, https://doi.org/10.5194/jm-37-87-2018, https://doi.org/10.5194/jm-37-87-2018, 2018
Short summary
Short summary
This study constitutes an attempt to analyze the variations in foraminiferal assemblages using the morphogroup approach in the Late Devonian. Our results show that both methods of estimating morphotype percentages, the traditional counting and the cumulated area methods, provide similar results, are highly correlated with each other, and provide similar relationships with paleoenvironmental proxies.
Cited articles
Abell, J. T., Winckler, G., Anderson, R. F., and Herbert, T. D.: Poleward and weakened westerlies during Pliocene warmth, Nature, 589, 70–75, 2021.
Alegret, L. and Thomas, E.: Upper Cretaceous and lower Paleogene benthic foraminifera from northeastern Mexico, Micropaleontology, 47, 269–316, https://doi.org/10.2113/47.4.269, 2001.
Alegret, L. and Thomas, E.: Benthic foraminifera across the Cretaceous/Paleogene boundary in the Southern Ocean (ODP Site 690): Diversity, food and carbonate saturation, Mar. Micropaleontol., 105, 40–51, 2013.
Alegret, L., Harper, D. T., Agnini, C., Newsam, C., Westerhold, T., Cramwinckel, M. J., et al.: Biotic response to early Eocene warming events: Integrated record from offshore Zealandia, north Tasman Sea, Paleoceanogr. Paleocl., 36, e2020PA004179, https://doi.org/10.1029/2020PA004179, 2021.
Andersen, H. V.: Foraminifera of the mudlumps, lower Mississippi River Delta, in: Genesis and Paleontology of the Mississippi River Mudlumps: Louisiana Geol. Survey, Geol. Bull., Vol. 35, pt. 2, p. 107, 1961.
Asano, K. J.: Miocene foraminifera from the Noto Peninsula, Ishikawa Prefecture, Tohoku University, Institute of Geological Paleontology Short Papers, 5, 1–21, 1953.
Bandy, O. L.: Distribution of foraminifera, radiolaria and diatoms in sediments of the Gulf of California, Micropaleontology, 7, 1–26, 1961.
Bandy, O. L. and Arnal, R. E.: Distribution of recent foraminifera off west coast of Central America, AAPG Bull., 41, 2037–2053, 1957.
Barker, R. W.: Taxonomic notes on the species figured by H. B. Brady in his report of the foraminifera dredged by HMS Challenger during the years 1973–1876, American Association of Petroleum Geologists, Special Publication 9, 238 pp., 1960.
Barmawidjaja, D. M., Jorissen, F. J., Puskaric, S. V., and Van der Zwaan, G. J.: Microhabitat selection by benthic foraminifera in the northern Adriatic Sea, J. Foramin. Res., 22, 297–317, 1992.
Berger, W. H., Leckie, R. M., Janecek, T. R., Stax, R., and Takayama, T.: Neogene carbonate sedimentation on ontong java plateau: highlights and open questions, in: Proceedings of the Ocean Drilling Program Scientific Results, Vol. 130, 711–744, 1993.
Bermúdez, P. J.: Tertiary Smaller Foraminifera of the Dominican Republic, Special Publications of the Cushman Laboratory for Foraminiferal Research, Vol. 25, 1–322, 1949.
Bernhard, J. M.: Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits, Jurassic through Holocene, J. Foramin. Res., 16, 207–215, https://doi.org/10.2113/gsjfr.16.3.207, 1986.
Boersma, A.: Handbook of common Tertiary Uvigerina, Microclimates Press, 1984a.
Boersma, A.: Oligocene and other Tertiary benthic foraminifers from a depth traverse down Walvis Ridge, Deep Sea Drilling Project Leg 74, southeast Atlantic, Initial Rep. Deep Sea, 75, 1273–1300, 1984b.
Boersma, A.: Biostratigraphy and biogeography of Tertiary bathyal benthic foraminifers: Tasman Sea, Coral Sea, and on the Chatham Rise, Deep Sea Drilling Project, Leg 90, edited by: Kennett, J. P. and Von der Borch, C. C., Initial Rep. Deep Sea, 325, 111–171, https://doi.org/10.1127/pala/2022/0132, 1986.
Bolli, H. M., Beckmann, J. P., and Saunders, J. B.: Benthic foraminiferal biostratigraphy of the south Caribbean region, Cambridge University Press, 1994.
Boltovskoy, E. and Giussani de Kahn, G.: Cinco nuevos taxones en Orden Foraminiferida, Communicaciones des Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigacion de las Ciencias Naturales, Hydrobiologia, 2, 43–51, 1981.
Brady, H. B.: Report on the Foraminifera dredged by HMS Challenger, during the years 1873–1876, Reports of the scientific results of the voyage of HMS challenger, Zoology, 9, 1–184, 1884.
Brady, H. B., Parker, W. K., and Jones, T. R.: On some foraminifera from the Abrolhos Bank, Trans. Zool. Soc. Lond., 12, 211–239, 1888.
Brierley, C. M., Fedorov, A. V., Liu, Z., Herbert, T. D., Lawrence, K. T., and LaRiviere, J. P.: Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene, Science, 323, 1714–1718, 2009.
Brotzen, F.: Die Foraminiferengattung Gavelinella nov. gen. und die Systematik der Rotaliiformes, Sveriges Geologiska Undersökning, 36, p. 19, p. 23, 1942.
Campbell, J. W. and Aarup, T.: New production in the North Atlantic derived from seasonal patterns of surface chlorophyll, Deep-Sea Res. Pt. A, 39, 1669–1694, 1992.
Chapman, F. and Parr, W. J.: Foraminifera, in: Australasian Antarctic Expedition 1911–1914, edited by: Johnston, T. H., Scientific Reports, Series C (Zoology and Botany), Sydney, David Harold Paisley, 1, 1–190, 1937.
Chapman, F., Parr, W. J., and Collins, A. C.: Tertiary Foraminifera of Victoria, Australia-The Balcombian Deposits of Port Phillip, Part III, Journal of the Linnean Society of London, Zoology, 38, 553–577, 1934.
Chiji, M. and Lopez, S. M.: Regional foraminiferal assemblages in Tanabe Bay, Kii Peninsula, central Japan, Publ. Seto Mar. Biol. Labor., 16, 85–125, 1968.
Corliss, B. H.: Taxonomy of Recent deep-sea benthonic foraminifera from the southeast Indian Ocean, Micropaleontology, 25, 1–19, https://doi.org/10.2307/1485207, 1979.
Corliss, B. H.: Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean, Mar. Micropaleontol., 17, 195–236, 1991.
Corliss, B. H., Brown, C. W., Sun, X., and Showers, W. J.: Deep-sea benthic diversity linked to seasonality of pelagic productivity, Deep-Sea Res. Pt. I, 56, 835–841, 2009.
Cushman, J. A.: A monograph of the Foraminifera of the North Pacific Ocean, Part II. Textulariidae, Bulletin of the United States National Museum, 71, 1–108, 1911.
Cushman, J. A.: A monograph of the foraminifera of the North Pacific Ocean, US Government Printing Office, 1913.
Cushman, J. A.: Foraminifera of the Philippine and adjacent seas, Bulletin of the United States National Museum, 100, 1–608, 1921.
Cushman, J. A.: Shallow- water foraminifera of the Tortugas region. Publications of the Carnegie Institution of Washington, no. 311, Depart. Mar. Biol., 17, p. 85, 1922.
Cushman, J. A.: The Foraminifera of the Atlantic Ocean, Part 4: Lagenidae, United States National Museum Bulletin, 104, 228 pp., 1923.
Cushman, J. A.: American Upper Cretaceous species of Bolivina and related species, Contributions from the Cushman Laboratory for Foraminiferal Research, 2, 85–91, 1927.
Cushman, J. A.: Some new foraminiferal genera, Contributions from the Cushman Laboratory for Foraminiferal Research, 9, 32–38, 1933.
Cushman, J. A.: A monograph of the foraminiferal family Valvulinidae, Special Publications, Cushman Laboratory for Foraminiferal Research, 8, 1–210, 1937.
Cushman, J. A. and Bermúdez, P. J.: Further new species of foraminifera from the Eocene of Cuba, Contributions from the Cushman Laboratory for Foraminiferal Research, 13, 1–29, 1937.
Cushman, J. A. and Jarvis, P. W.: New foraminifera from Trinidad, Contributions from the Cushman Laboratory for Foraminiferal Research, 5, 6–17, 1929.
Cushman, J. A. and Todd, R.: The Recent and fossil species of Laticarinina, Contributions from the Cushman Laboratory for Foraminiferal Research, 18, 14–20, 1942.
Cushman, J. A. and Todd, R.: Miocene foraminifera from Buff Bay, Jamaica, Special Publications of the Cushman Laboratory for Foraminiferal Research, 15, 1–73, 1945.
Cushman, J. A. and Todd, R.: The genus Sphaeroidina and its species, Contributions from the Cushman Laboratory for Foraminiferal Research, 25, 11—21, 1949.
Dailey, D. H.: Late cretaceous and Paleocene benthic foraminifers from deep-sea drilling project site-516, rio-grande rise, western South-Atlantic Ocean, Initial Rep. Deep Sea, 72, 757–782, 1983.
Defrance J. L. M.: Dictionnaire des Sciences Naturelles dans lequel on traite méthodiquement des diffrents êtres de la nature, Paris, Vol. 32, p. 273, 1824.
De Rijk, S., Jorissen, F. J., Rohling, E. J., and Troelstra, S. R.: Organic flux control on bathymetric zonation of Mediterranean benthic foraminifera, Mar. Micropaleontol., 40, 151–166, 2000.
Denne, R. A. and Gupta, B. K. S.: Association of bathyal foraminifera with water masses in the northwestern Gulf of Mexico, Mar. Micropaleontol., 17, 173–193, 1991.
Dias, B. B., Barbosa, C. F., Faria, G. R., Seoane, J. C. S., and Albuquerque, A. L. S.: The effects of multidecadal-scale phytodetritus disturbances on the benthic foraminiferal community of a Western Boundary Upwelling System, Brazil, Mar. Micropaleontol., 139, 102–112, 2018.
Dickens, G. R. and Owen, R. M.: The latest Miocene–early Pliocene biogenic bloom: a revised Indian Ocean perspective, Mar. Geol., 161, 75–91, 1999.
Diester-Haass, L., Billups, K., and Emeis, K. C.: In search of the late Miocene–early Pliocene “BB” in the Atlantic Ocean (Ocean ng Program Sites 982, 925, and 1088), Paleoceanography, 20, PA4001, https://doi.org/10.1029/2005PA001139, 2005
Diester-Haass, L., Billups, K., and Emeis, K. C.: Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link?, Paleoceanography, 21, PA4216, https://doi.org/10.1029/2006PA001267, 2006.
d'Orbigny, A. D.: Tableau méthodique de la classe des Céphalopodes, Ann. Sci. Naturell., 7, 245–314, 1826.
d'Orbigny, A.: Foraminifères, in: Voyage dans l'Amérique Méridionale (le Brésil, la République orientale de l'Uruquay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la République du Pérou) 238 éxécuté pendant les années 1826, 1827, 1832 et 1833, vol. 5(5), Bertrand, Paris, Levrault, Strasbourg, 1–86, 1839.
d'Orbigny, A. D.: Foraminiferes fossiles du Bassin Tertiaire de Vienne (Autriche) 2, Paris, Gide et Camp, 312 pp., 1846.
d'Orbigny, A. D.: Prodrome de Paleontologie stratigraphique universelle des animaux mollusques et rayonnes. Table alphabetique et synonomique des genres et des especes, Vol. 3, V. Masson, Paris, p. 196, 1852.
Douglas, R. and Woodruff, F.: Deep-sea benthic foraminifera, in: The oceanic lithosphere, edited by: Emilani, C., Vol. 7, The Sea, Wiley, New York, 1233–1327, 1981.
Drury, A. J., Lee, G. P., Gray, W. R., Lyle, M., Westerhold, T., Shevenell, A. E., and John, C. M.: Deciphering the state of the late Miocene to early Pliocene equatorial Pacific, Paleoceanogr. Paleocl., 33, 246–263, 2018.
Drury, A. J., Liebrand, D., Westerhold, T., Beddow, H. M., Hodell, D. A., Rohlfs, N., Wilkens, R. H., Lyle, M., Bell, D. B., Kroon, D., Pälike, H., and Lourens, L. J.: Climate, cryosphere and carbon cycle controls on Southeast Atlantic orbital-scale carbonate deposition since the Oligocene (30–0 Ma), Clim. Past, 17, 2091–2117, https://doi.org/10.5194/cp-17-2091-2021, 2021.
Eade, J. V.: New Zealand Recent foraminifera of the families Islandiellidae and Cassidulinidae, New Zeal. J. Mar. Fresh., 1, 421–454, 1967.
Earland, A.: Foraminifera, Part IV, Additional records from the Weddell Sea sector from material obtained by the S. Y. “Scotia”, Discovery Reports, 13, 1–76, 1936.
Egger, J. G.: Foraminiferen aus Meeresgrundproben: gelothet von 1874 bis 1876, Verlag der K. Akademie, in: Commission, edited by: Franz, G., Vol. 12, 1893.
Ehrenberg, C. G.: Ueber dem blossen Auge unsichtbare Kalkthierchen und Kieselthierchen als Hauptbestandteile der Kreidegebirge, Berichte der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, Vol. 3, 192–200, 1838.
Erbacher, J., Hemleben, C., Huber, B. T., and Markey, M.: Correlating environmental changes during early Albian oceanic anoxic event 1B using benthic foraminiferal paleoecology, Mar/ Micropaleontol/, 38, 7–28, https://doi.org/10.1016/S0377-8398(99)00036-5, 1999.
Fariduddin, M. and Loubere, P.: The surface ocean productivity response of deeper water benthic foraminifera in the Atlantic Ocean, Mar. Micropaleontol., 32, 289–310, 1997.
Farrell, J. W., Raffi, I., Janecek, T. R., Murray, D. W., Levitan, M., Dadey, K. A., et al.: 35. Late neogene sedimentation patterns in the eastern equatorial Pacific Ocean, in: Proceedings of the ocean drilling program, Scientific Results, Vol. 138, 1995.
Fedorov, A. V., Dekens, P. S., McCarthy, M., Ravelo, A. C., DeMenocal, P. B., Barreiro, M., et al.: The Pliocene paradox (mechanisms for a permanent El Niño), Science, 312, 1485–1489, 2006.
Finlay, H. J.: New Zealand Foraminifera: Key Species in Stratigraphy – No. 3, Trans. Roy. Soc. New Zeal., 69, 309–329, 1939.
Finlay, H. J.: New Zealand Foraminifera; Key species in stratigraphy – No. 5, New Zealand J. Sci. Technol., Vol. 28, 259–292, 1947.
Fisher, R. A., Corbet, A. S., and Williams, C. B.: The relation between the number of species and the number of individuals in a random sample of an animal population, J. Anim. Ecol., 12, 42–58, https://doi.org/10.2307/1411, 1943.
Fontanier, C., Jorissen, F. J., Licari, L., Alexandre, A., Anschutz, P., and Carbonel, P.: Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats, Deep-Sea Res. Pt. I, 49, 751–785, https://doi.org/10.1016/S0967-0637(01)00078-4, 2002.
Franzenau, A.: Heterolepa, egy uj genus a foraminiferak rendjében, Term észetrajzi Füzetek, Budapest, Vol. 8, 181–184, 1884.
Frerichs, W. E.: Distribution and ecology of benthonic foraminifera in the sediments of the Andaman Sea, Contrib. Cushman Found Foraminiferal Res., 21, 123–147, 1970.
Galloway, J. J. and Wissler, S. G.: Pleistocene foraminifera from the Lomita Quarry, Palos Verdes Hills, California, J. Paleontol., 1, 35–87, 1927.
Gastaldello, M. E., Agnini, C., Westerhold, T., Drury, A. J., Sutherland, R., Drake, M. K., et al.: The Late Miocene-Early Pliocene Biogenic Bloom: An integrated study in the Tasman Sea, Paleoceanogr. Paleocl., 38, e2022PA004565, https://doi.org/10.1029/2022PA004565, 2023a.
Gastaldello, M. E., Agnini, C., and Alegret, L.: Benthic foraminifera counts and benthic foraminifera accumulation rates from IODP Hole 371-U1506A, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.963742, 2023b.
Glaessner, M. F.: Studien über Foraminiferen aus der Kreide und dem Tertiär des Kaukasus; 1. Die Foraminiferen der ältesten Tertiärschichten des Nordwest – Kaukas, Problemy Paleontologii, Paleontologichesjaya Laboratoriya Moskovskogo Gosudarstvennogo Universiteta, Vol. 2–3, 349–408, 1937.
Gooday, A. J.: A response by benthic foraminifera to the deposition of phytodetritus in the deep sea, Nature, 332, 70–73, https://doi.org/10.1038/332070a0, 1988.
Gooday, A. J.: Deep-sea benthic foraminiferal species which exploit phytodetritus: characteristic features and controls on distribution, Mar. Micropaleontol., 22, 187–205, https://doi.org/10.1016/0377-8398(93)90043-W, 1993.
Gooday, A. J.: Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–9, https://doi.org/10.1016/S0065-2881(03)46002-1, 2003.
Grant, K. M. and Dickens, G. R.: Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene–early Pliocene biogenic bloom, Palaeogeogr. Palaeocl., 187, 61–82, 2002.
Groeneveld, J., Steph, S., Tiedemann, R., Garbe-Schönberg, C., Nürnberg, D., and Sturm, A.: Pliocene mixed-layer oceanography for Site 1241, using combined and δ18O analyses of Globigerinoides sacculifer, in: Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 202, 1–27, Texas A and M University, 2006.
Grzybowski, J.: Otwornice pokładow naftonośnych okolicy Krosna. Rozprawy Wydziału Matematyczno-Przyrodniczego, Akademia Umiejętności w Krakowie, serya 2, vol. 33, p. 293, pl. 12, fig. 12 (see also: Kaminski, M. A. 1984; shape variation in Spiroplectammina spectabilis (Grzybowski), Acta Paleontologica Polonica, 29, 29–49), 1898.
Guerin-Meneville, F. E.: Iconographie du Regne Animal de G. Cuvier, Mollusques, J. B. Bailliére, Paris, https://doi.org/10.5962/bhl.title.10331, 1843.
Gupta, A. K.: Taxonomy and bathymetric distribution of Holocene deep-sea benthic foraminifera in the Indian Ocean and the Red Sea, Micropaleontology, 40, 351–367, https://doi.org/10.2307/1485940, 1994.
Gupta, A. K. and Thomas, E.: Latest Miocene-Pleistocene Productivity and Deep-Sea Ventilation in the Northwestern Indian Ocean, Deep Sea Drilling Project Site 219, Paleoceanography, 14, 62–73, 1999.
Gupta, A. K., Das, M., and Bhaskar, K.: South Equatorial Current (SEC) driven changes at DSDP Site 237, Central Indian Ocean, during the Plio-Pleistocene: evidence from benthic foraminifera and stable isotopes, J. Asian Earth Sci., 28, 276–290, 2006.
Gupta, A. K., Raj, M. S., Mohan, K., and De, S.: A major change in monsoon-driven productivity in the tropical Indian Ocean during ca 1.2–0.9 Myr: Foraminiferal faunal and stable isotope data, Palaeogeogr. Palaeocl., 261, 234–245, 2008.
Haeckel, E.: Systematische Phylogenie, Entwurf eines Natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte, Systematische Phylogenie der Protisten und Pflanzen, 1. Georg Reimer, Berlin, https://doi.org/10.3931/e-rara-72554, 1984.
Hageman, J.: Benthic foraminiferal assemblages from Plio-Pleistocene open bay to lagoonal sediments of the western Peloponnesus (Greece), Doctoral dissertation, Utrecht University, 1979.
Haug, G. H. and Tiedemann, R.: Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673–676, 1998.
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C.: Role of Panama uplift on oceanic freshwater balance, Geology, 29, 207–210, 2001.
Hayward, B. W.: Late Pliocene to middle Pleistocene extinctions of deep-sea benthic foraminifera (“Stilostomella extinction”) in the southwest Pacific, J. Foramin. Res., 32, 274–307, 2002.
Hayward, B. W.: Foraminifera-based estimates of paleobathymetry using Modern Analogue Technique, and the subsidence history of the early Miocene Waitemata Basin, New Zeal. J. Geol. Geophys., 47, 749–767, 2004.
Hayward, B. W. and Buzas, M. A.: Taxonomy and paleoecology of Early Miocene benthic foraminifera of Northern New Zealand and the North Tasman Sea, Paleobiology, 36, 154 pp., https://doi.org/10.5479/si.00810266.36.1, 1979.
Hayward, B. W., Grenfell, H. R., Reid, C. M., and Hayward, K. A.: Recent New Zealand shallow- waterbenthic foraminifera: Taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment, Institute of Geological and Nuclear Sciences Monograph, 21, 258 pp., 1999.
Hayward, B. W., Carter, R., Grenfell, H. R., and Hayward, J. J.: Depth distribution of Recent deep-sea benthic foraminifera east of New Zealand, and their potential for improving paleobathymetric assessments of Neogene microfaunas, New Zeal. J. Geol. Geophys., 44, 555–587, 2001.
Hayward, B. W., Neil, H., Carter, R., Grenfell, H. R., and Hayward, J. J.: Factors influencing the distribution patterns of Recent deep-sea benthic foraminifera, east of New Zealand, Southwest Pacific Ocean, Mar. Micropaleontol., 46, 139–176, 2002.
Hayward, B. W., Grenfell, H. R., Sabaa, A., and Hayward, J. J.: Recent benthic foraminifera from offshore Taranaki, New Zealand, New Zeal. J. Geol. Geophys., 46, 489–518, 2003.
Hayward, B. W., Grenfell, H. R., Carter, R., and Hayward, J. J.: Benthic foraminiferal proxy evidence for the Neogene palaeoceanographic history of the Southwest Pacific, east of New Zealand, Mar. Geol., 205, 147–184, 2004.
Hayward, B. W., Grenfell, H. R., Sabaa, A. T., and Sikes, E.: Deep-sea benthic foraminiferal record of the mid-Pleistocene transition in the SW Pacific, Geol. Soc. Lond. Spec. Publ., 247, 85–115, 2005.
Hayward, B. W., Grenfell, H. R., Sabaa, A. T., Neil, H. L., and Buzas, M.A.: Recent New Zealand deep-water benthic foraminifera: Taxonomy, ecologic distribution, biogeography and use in paleoenvironmental assessment, GNS Science Monograph, 26, 363 pp., Lower Hutt New Zealand, 2010.
Hayward, B. W., Sabaa, A. T., Grenfell, H. R., Neil, H., and Bostock, H.: Ecological distribution of recent deep-water foraminifera around New Zealand, J. Foramin. Res., 43, 415–442, https://doi.org/10.2113/gsjfr.43.4.415, 2013.
Herguera, J. C. and Berger, W.: Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west-equatorial Pacific, Geology, 19, 1173–1176, 1991.
Hermelin, J. O. R.: Pliocene benthic foraminifera from the Ontong-Java plateau (western equatorial Pacific Ocean): faunal response to changing paleoenvironments, Cushman Foundation for Foraminiferal Research Special Publication, 26, 1–143, 1989.
Hofker, J.: The Foraminifera of the Siboga Expedition, Part 3, Siboga Expeditie, Monograph., 4, 1–513, 1951.
Holbourn, A., Henderson, A. S., and MacLeod, N.: Atlas of benthic foraminifera, John Wiley and Sons, https://doi.org/10.1002/9781118452493, 2013.
Hornibrook de, B. N.: Tertiary foraminifera from the Oamaru district (New Zealand) – Part 1: Systematics and distribution, New Zeal. Geol. Surv. Paleontol. Bull., 34, 1–194, 1961.
Hornibrook, N. D. B., Brazier, R. C., and Strong, C. P.: Manual of New Zealand Permian to Pleistocene foraminiferal biostratigraphy, Paleontol. Bull., 56, 1–175, 1989.
Husezima, R. and Maruhasi, M.: A new genus and thirteen new species of foraminifera from the core-sample of Kasiwazaki oil field, Niigata-ken, Journal Sigenkagaku Kenkyusyo, 1, 391–400, 1944.
Ingle Jr., J. C. and Keller, G.: Benthic foraminiferal biofacies of the eastern Pacific margin between 40∘ S and 32∘ N, in: Quaternary depositional environments of the Pacific coast: Pacific Coast Paleogeography Symposium 4, edited by: Field, M., Douglas, R. G., Bouma, A. R., et al., Pacific Section of the Society of Economic Paleontologists and Mineralogists, 341–355, 1980.
Jones, R. W. and Charnock, M. A.: “Morphogroups” of agglutinated foraminifera. Their life positions and feeding habits and potential applicability in (paleo)ecological studies, Rev. Palèobiol., 4, 311—320, 1985.
Jonkers, H. A.: Pliocene benthonic foraminifera from homogeneous and laminated marls on Crete, Doctoral dissertation, Utrecht University, 1984.
Jorissen, F. J.: Benthic foraminifera from the Adriatic Sea: principles of phenotypic variation, Doctoral dissertation, Utrecht University, 1988.
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G.: A conceptual model explaining benthic foraminiferal microhabitats, Mar. Micropaleontol., 26, 3–15, https://doi.org/10.1016/0377-8398(95)00047-X, 1995.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics, Dev. Mar. Geol., 1, 263–325, https://doi.org/10.1016/S1572-5480(07)01012-3, 2007.
Kaiho, K.: Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation, Palaeogeogr., Palaeocl., 83, 65–85, 1991.
Kaiho, K.: Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean, Geology, 22, 719–722, 1994.
Kaiho, K., et al.: Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand, Paleoceanography, Vol. 11, 447–465, https://doi.org/10.1029/96PA01021, 1996.
Kaminski, M. A. and Gradstein, F. M.: Atlas of Paleogene Cosmopolitan Deepwater Agglutinated Foraminifera, The Grzybowski Foundation, ISBN: 83-912385-X, 2005.
Karas, C., Nürnberg, D., Tiedemann, R., and Garbe-Schönberg, D.: Pliocene climate change of the Southwest Pacific and the impact of ocean gateways, Earth Planet. Sc. Lett., 301, 117–124, 2011.
Katz, M. E. and Miller, K. G.: Neogene subsidence along the Northeast Australian margin: benthic foraminiferal evidence, in: Scientific Results of the Proceedings of the Ocean Drilling Program, edited by: Davies, P. J., McKenzie, J. A., Julson, A., Sarg, J. F., and the Shipboard Scientific Party, 133, 75–92, 1993.
Katz, M. E., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K., Shackleton, N. J., and Thomas, E.: Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors, Paleoceanography, 18, 1024, https://doi.org/10.1029/2002PA000798, 2003.
Kawagata, S.: Late Quaternary bathyal benthic foraminifera from three Tasman Sea cores, southwest Pacific Ocean, Science Reports, Institute of Geosciences, University of Tsukuba, Section B, 20, 1–46, 1999.
Kawagata, S.: Tasman Front shifts and associated paleoceanographic changes during the last 250,000 years: foraminiferal evidence from the Lord Howe Rise, Mar. Micropaleontol., 41, 167–191, 2001.
Kawagata, S. and Kamihashi, T.: Middle Pleistocene to Holocene Upper Bathyal Benthic Foraminifera from IODP Hole U1352B in Canterbury Basin, New Zealand, Paleontol. Res., 20, 1–85, 2016.
Kender, S., Kaminski, M. A., and Jones, R. W.: Early to middle Miocene foraminifera from the deep-sea Congo Fan, offshore Angola, Micropaleontology, 54, 477–568, 2008.
Kender, S., McClymont, E. L., Elmore, A. C., Emanuele, D., Leng, M. J., and Elderfield, H.: Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution, Nat. Commun., 7, 11970, https://doi.org/10.1038/ncomms11970, 2016.
Kennett, J. P. and Casey, R. E.: Foraminiferal evidence for a pre-middle eocene age of the chatham rise, New Zealand, New Zeal. J. Mar. Freshw. Res., 3, 20–28, 1969.
Kreuzberg, G.: Eine tertiare Foraminiferen fauna von Neuseeland, Neues Jahrbuch Mineralogie, Geologie und Palaeontologie, Stuttgart, Beil-Bd., 64, 271–292, 1930.
Kuhnt, W., Hess, S., and Jian, Z.: Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea, in: Response of West Pacific Marginal Seas to Global Climate Change, edited by: Sarnthein, M. and Wang, P. X., Mar. Geol., 156, 123–157, 1999.
Kuhnt, W., Holbourn, A., and Zhao, Q.: The early history of the South China Sea: evolution of Oligocene-Miocene deep water environments, Rev. Micropaleontol., 45, 99–159, 2002.
Kurihara, K. and Kennett, J. P.: Neogene benthic foraminifers-distribution in depth traverse, Southwest Pacific, Initial Rep. Deep Sea, 90, 1037–1077, 1986.
Kurihara, K. and Kennett, J. P.: Bathymetric migration of deep-sea benthic foraminifera in the southwest Pacific during the Neogene, J. Foramin. Res., 18, 75–83, 1988.
Kurihara, K. and Kennett, J. P.: Paleoceanographic significance of Neogene benthic foraminiferal changes in a southwest Pacific bathyal depth transect, Mar. Micropaleontol., 19, 181–199, 1992.
Linke, P. and Lutze, G. F.: Microhabitat preferences of benthic foraminifera – a static concept or a dynamic adaptation to optimize food acquisition?, Mar. Micropaleontol., 20, 215–234, 1993.
Lobegeier, M. K. and Sen Gupta, B. K.: Foraminifera of hydrocarbon seeps, Gulf of Mexico, J. Foramin. Res., 38, 93–116, 2008.
Loeblich, A. R. and Tappan, H.: Revision of some Recent foraminiferal genera, Smithsonian Miscellaneous Collections, 128, 1–37, https://repository.si.edu/handle/10088/22914 (last access: 3 January 2024), 1955.
Loeblich, A. R. and Tappan, H.: Remarks on the systematics of the Sarcodina (Protozoa), renamed homonyms and new and validated genera, Proceedings of the Biological Society of Washington, Vol. 74, 213–234, 1961.
Loeblich, A. R. and Tappan, H.: Sarcodina, chiefl y “Thecamoebians” and Foraminiferida, in: Treatise on Invertebrate Paleontology, edited by: Moore, R. C., Part C, Protista 2 (2 vols), Lawrence, KS: Geological Society of America and University of Kansas Press, 1–900, ISBN: 978-0813730035, 1964.
Loeblich, A. R. and Tappan, H.: Suprageneric Classification of the Foraminiferida (Protozoa), Micropaleontology, 30, 1–70, https://doi.org/10.2307/1485456, 1984.
Loeblich, A. R. and Tappan, H.: Foraminiferal genera and their classification, 2 vols, Van Nostrand Reinhold, New York, 1182 pp., 1987.
Loeblich, A. R. and Tappan, H.: Foraminiferal evolution, diversification, and extinction, J. Paleontol., 62, 695–714, 1988.
Loeblich, A. R. and Tappan, H.: Foraminifera of the Sahul Shelf and Timor Sea, Cushman Foundation for Foraminiferal Research Special Publication, 31, 661 pp., 1994.
Lohmann, G. P.: Abyssal benthonic foraminifera as hydrographic indicators in the western South Atlantic Ocean, J. Foramin. Res., 8, 6–34, 1978.
Loubere, P.: Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera, Paleoceanography, 9, 723–737, 1994.
Loubere, P.: The impact of seasonality on the benthos as reflected in the assemblages of deep-sea foraminifera, Deep-Sea Res. Pt. I, 45, 409–432, 1998.
Loubere, P. and Fariduddin, M.: Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on timescales from centuries to millennia, Global Biogeochem. Cy., 13, 115–133, 1999.
Lutze, G. F. and Thiel, H.: Epibenthic foraminifera from elevated microhabitats; Cibicidoides wuellerstorfi and Planulina ariminensis, J. Foramin. Res., 19, 153–158, 1989.
Lyle, M., Drury, A. J., Tian, J., Wilkens, R., and Westerhold, T.: Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity, Clim. Past, 15, 1715–1739, https://doi.org/10.5194/cp-15-1715-2019, 2019.
Mackensen, A.: Neogene benthic foraminifers from the southern Indian Ocean (Kerguelen Plateau) biostratigraphy and paleoecology, Science Results, Proc. ODP, 120, 649–673, 1992.
Mackensen, A., Schmiedl, G., Harloff, J., and Giese, M.: Deep-sea foraminifera in the South Atlantic Ocean: ecology and assemblage generation, Micropaleontology, 41, 342–358, https://doi.org/10.2307/1485808, 1995.
Mancin, N., Hayward, B. W., Trattenero, I., Cobianchi, M., and Lupi, C.: Can the morphology of deep-sea benthic foraminifera reveal what caused their extinction during the mid-Pleistocene Climate Transition?, Mar. Micropaleontol., 104, 53–70, 2013.
Martin, R. A., Nesbitt, E. A., and Campbell, K. A.: The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand, Mar. Geol., 272, 270–284, 2010.
Mathews, R. D.: Rectuvigerina, a new genus of foraminifera from a restudy of Siphogenerina, J. Paleontol., 19, 588–606, p. 590, 1945.
Mead, G. A.: Recent benthic foraminifera in the Polar Front region of the southwest Atlantic, Micropaleontology, 31, 221–248, 1985.
Miller, K. G. and Lohmann, G. P.: Environmental distribution of Recent benthic foraminifera on the northeast United States continental slope, Geol. Soc. Am. Bull., 93, 200–206, 1982.
Milker, Y. and Schmiedl, G.: A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea, Palaeontol. Electron., 15, 1–134, 2012.
Montfort P.: Conchyliologie systématique et classification méthodique des coquilles, Paris: Schoell, Vol. 1, pp. lxxxvii + 409, p. 66, 1808.
Murray, J. W.: Ecology and palaeoecology of benthic foraminifera: Longman Scientific and Technical, Harlow, Essex, UK, 1991.
Murray, J. W.: Ecology and applications of benthic foraminifera, Cambridge University Press, 2006.
Nees, S.: The Benthic Foraminiferal Record Of Late Quaternary Glacial/Interglacial Cycles In Core E36-23, Se Tasman Plateau, in: The evolution of the Tasman Sea Basin, edited by: Van der Lingen, G. J., Swanson, K. M. and Muir, R. J., Proceedings of the Tasman Sea Conference, November 1992, Christchurch, New Zealand, Rotterdam, Balkema Publishers, ISBN 9789054103288, 1994.
Nees, S.: Late Quaternary palaeoceanography of the Tasman Sea: the benthic foraminiferal view, Palaeogeogr. Palaeocl., 131, 365–389, 1997.
Nees, S., Armand, L., De Deckker, P., Labracherie, M., and Passlow, V.: A diatom and benthic foraminiferal record from the South Tasman Rise (southeastern Indian Ocean): implications for palaeoceanographic changes for the last 200,000 years, Mar. Micropaleontol., 38, 69–89, 1999.
Nomura, R.: Cassidulinidae (Foraminiferida) from the Uppermost Cenozoic of Japan – Part 2, Tohoku University Science Reports, Series 2, Geology, 54, 1–93, 1983.
Nomura, R.: Paleogene to Neogene deep-sea paleoceanography in the eastern Indian Ocean: benthic foraminifera from ODP Sites 747, 757 and 758, Micropaleontology, 41, 251–290, https://doi.org/10.2307/1485862, 1995.
Nomura, R., Peirce, J. W., Weissel, J. K., Taylor, E., Dehn, J., Driscoll, N. W., et al.: Oligocene to Pleistocene benthic foraminifer assemblages at sites 754 and 756, eastern Indian Ocean, in: Proceedings of the Ocean Drilling Program, Scientific results, Vol. 121, 31–75, Texas A and M University, Ocean Drilling Program, 1991.
Nuttall, W. L. F.: Lower Oligocene foraminifera from Mexico, J. Paleontol., 6, 3–35, 1932.
Parker, W. K. and Jones, T. R.: VI. On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Straits and Baffin's Bay, Philos. T. R. Soc. Lond., 155, 325–441, 1865.
Patterson, R. T.: Abditodendrix, a new foraminiferal genus in the family Bolivinitidae, J. Foramin. Res., 15, 138–140, 1985.
Peterson, L. C., Murray, D. W., Ehrmann, W. U., and Hempel, P.: Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean, Washington, D.C., American Geophysical Union Geophysical Monograph Series, 70, 311–333, 1992.
Pflum, C. E. and Frerichs, W. E.: Gulf of Mexico deep-water foraminifers, Cushman Foundation for Foraminiferal Research Special Publication, 14, 125 pp., 1976.
Phleger, F. B. and Parker, F. L.: Ecology of foraminifera, northwest Gulf of Mexico, Part II. Foraminifera species, Mem. Geol. Soc. Am., 46, 1–64, 1951.
Phleger, F. B., Parker, F. L., and Peirson, J. F.: Sediment cores from the North Atlantic Ocean, Swedish Deep-Sea Exped., 7, 3–122, 1953.
Pillot, Q., Suchéras-Marx, B., Sarr, A. C., Bolton, C. T., and Donnadieu, Y.: A global reassessment of the spatial and temporal expression of the Late Miocene Biogenic Bloom, Paleoceanogr. Paleocl., 38, e2022PA004564, https://doi.org/10.1029/2022PA004564, 2023.
Reuss, A. E.: Neue Foraminiferen aus den Schichten des österreichischen Tertiärbeckens, Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch – Naturwissenschaftliche Classe, Vol. 1, 365–390, 1850.
Reuss, A. E.: Die Foraminiferen und Entomostraceen des Kreidemergels von Lemberg, Naturwissenschaftliche Abhandlungen, Wien, Österreich, Vol. 4, 17–52, 1851.
Revets, S. A.: The Generic Revision of Five Families of Rotaliine Foraminifera, Part 1 – The Bolivinitidae, Part 2 – The Anomalinidae, Alabaminidae, Cancrisidae and Gavelinellidae, Cushman Found. Foramin. Res., 34, 1–55 ISBN: 9781970168228, 1996.
Ridha, D., Boomer, I., and Edgar, K. M.: Latest Oligocene to earliest Pliocene deep-sea benthic foraminifera from Ocean Drilling Program (ODP) Sites 752, 1168 and 1139, southern Indian Ocean, J. Micropalaeontol., 38, 189–229, 2019.
Robertson, B. E.: Systematics and paleoecology of the benthic foraminiferida from the Buff Bay section, Miocene of Jamaica, Micropaleontology, 44, 1–266, 1998.
Russo, B., Curcio, E., and Iaccarino, S.: Paleoecology and paleoceanography of a Langhian succession (Tremiti Islands, southern Adriatic Sea, Italy) based on benthic foraminifera, Boll. Leg. It., 46, 107–124, 2007.
Saidova, K. M.: Bentosniye foraminifery Tikhogo Okeana, P.P. Shirshov Institute of Oceanology, Academy of Sciences of the USSR, Moscow, 3 parts, 1975.
Schlumberger, C.: Note sur le genre Planispirina, B. Soc. Zool. Fr., 11, 105–118, 1887.
Schmiedl, G., Mackensen, A., and Müller, P. J.: Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses, Mar. Micropaleontol., 32, 249–287, 1997.
Schnitker, D.: The deep waters of the western North Atlantic during the past 24,000 years, and the re-initiation of the Western Boundary Undercurrent, Mar. Micropaleontol., 4, 265–280, 1979.
Schönfeld, J. and Altenbach, A. V.: Late Glacial to Recent distribution pattern of deep-water Uvigerina species in the north-eastern Atlantic, Mar. Micropaleontol., 57, 1–24, 2005.
Schwager, C.: Fossile Foraminiferen von Kar Nikobar, Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859, Palaontol. Mitteil., 2, 187–268, 1866.
Schweizer, M.: Evolution and molecular phylogeny of Cibicides and Uvigerina (Rotaliida, Foraminifera), Doctoral dissertation, University of Utrecht, 2006.
Schroder-Adams, C. J.: Middle Eocene to Holocene benthic foraminifer assemblages from the Kerguelen Plateau (southern Indian Ocean), in: Proceedings of the Ocean Drilling Program, Scientific Results, College Station, Vol. 119, 611–630, 1991.
Schultze, M. J. S.: Über den Organismus der Polythalamien (Foraminiferen), nebst Bemerkungen über die Rhizopoden im allgemeinen, Ingelmann, Leipzig, 1–68, https://books.google.pt/books?id=o7rk00_xueQC (last access: 3 January 2024), 1854.
Schwager, C.: Saggio di una classificazione dei foraminiferi avuto riguardo alle loro famiglie naturali, Bolletino R, Comitato Geologico d'Italia, 7, 475–485, 1876.
Seiglie, G. A. and Baker, M. B.: Duquepsammiidae, a new family, and Duquepsammia, a new genus of agglutinated foraminifers, Micropaleontology, 33, 263–266, https://doi.org/10.2307/1485642, 1987.
Sejrup, H. P. and Guilbault, J. P.: Cassidulina reniforme and C. obtusa (Foraminifera), taxonomy, distribution, and ecology, Sarsia, 65, 79–85, 1980.
Silvestri, A.: Ricerche strutturali su alcune forme dei Trubi dei Bonfornello (Palermo), Memorie dell'Accademia Pontificia dei Nuovi Lincei, 22, 235–276, 1904.
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J., 27, 379–423, 1948.
Smart, C. W., King, S. C., Gooday, A. J., Murray, J. W., and Thomas, E.: A benthic foraminiferal proxy of pulsed organic matter paleofluxes, Mar. Micropaleontol., 23, 89–99, 1994.
Smart, C. W., Thomas, E., and Ramsay, A. T.: Middle–late Miocene benthic foraminifera in a western equatorial Indian Ocean depth transect: Paleoceanographic implications, Palaeogeogr. Palaeocl., 247, 402–420, 2007.
Smith, P. B.: Ecology of benthonic species, US Government Printing Office, p. 55, 1964.
Steph, S., Tiedemann, R., Groeneveld, J., Sturm, A., and Nürnberg, D.: Pliocene changes in tropical east Pacific upper ocean stratification: Response to tropical gateways?, Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 202, 1–51, 2006.
Streeter, S. S. and Shackleton, N. J.: Paleocirculation of the deep North Atlantic: 150,000-year record of benthic foraminifera and oxygen-18, Science, 203, 168–171, 1979.
Suhr, S. B. and Pond, D. W.: Antarctic benthic foraminifera facilitate rapid cycling of phytoplankton-derived organic carbon, Deep-Sea Res. Pt. II, 53, 895–902, 2006.
Suhr, S. B., Pond, D. W., Gooday, A. J., and Smith, C. R.: Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis, Mar. Ecol. Prog. Ser., 262, 153–162, 2003.
Sutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., Bhattacharya, J., Bordenave, A., Chang, L., Collot, J., Cramwinckel, M. J., Dallanave, E., Drake, M. K., Etienne, S. J. G., Giorgioni, M., Gurnis, M., Harper, D. T., Huang, H.-H. M., Keller, A. L., Lam, A.R., Li, H., Matsui, H., Morgans, H. E. G., Newsam, C., Park, Y.-H., Pascher, K. M., Pekar, S. F., Penman, D. E., Saito, S., Stratford, W. R., Westerhold, T., and Zhou, X.: Site U1506, in: Tasman Frontier Subduction Initiation and Paleogene Climate., edited by: Sutherland, R., Dickens, G. R., Blum, P., and the Expedition 371 Scientists, Proceedings of the International Ocean Discovery Program, 371, College Station, TX, International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.371.103.2019, 2019a.
Sutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., Bhattacharya, J., Bordenave, A., Chang, L., Collot, J., Cramwinckel, M. J., Dallanave, E., Drake, M. K., Etienne, S. J. G., Giorgioni, M., Gurnis, M., Harper, D. T., Huang, H.-H. M., Keller, A. L., Lam, A. R., Li, H., Matsui, H., Morgans, H. E. G., Newsam, C., Park, Y.-H., Pascher, K. M., Pekar, S. F., Penman, D. E., Saito, S., Stratford, W. R., Westerhold, T., and Zhou, X.: Expedition 371 methods, in: Tasman Frontier Subduction Initiation and Paleogene Climate, edited by: Sutherland, R., Dickens, G. R., Blum, P., and the Expedition 371 Scientists, Proceedings of the International Ocean Discovery Program, 371: College Station, TX, International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.371.102.2019, 2019b.
Sutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., et al.: Continental-scale geographic change across Zealandia during Paleogene subduction initiation. Geology, 48, 419–424, 2020.
Sutherland, R., Dos Santos, Z., Agnini, C., Alegret, L., Lam, A. R., Westerhold, T., et al.: Neogene mass accumulation rate of carbonate sediment across northern Zealandia, Tasman Sea, southwest Pacific, Paleoceanogr. Paleocl., 37, e2021PA004294, https://doi.org/10.1029/2021PA004294, 2022.
Thalmann, H. E.: Bibliography and index to new genera, species and varieties of foraminifera for the year 1936, J. Paleontol., 13, 425–465, 1939.
Thomas, E.: Late Eocene to Recent deep-sea benthic foraminifers from the central equatorial Pacific Ocean, Initial Rep. Deep Sea, 85, 655–694, 1985.
Thomas, E.: Late Cretaceous through Neogene deep-sea benthic foraminifera (Maud Rise, Weddell Sea, Antarctica), in: Proc. ODP, Science Results, College Station, Vol. 113, 571–594, 1990.
Thomas, E. and Gooday, A. J.: Cenozoic deep-sea benthic foraminifers: tracers for changes in oceanic productivity?, Geology, 24, 355–358, 1996.
Thomas, E. and Shackleton, N. J.: The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, Geol. Soc., Lond. Spec. Publ., 101, 401–441, 1996.
Tjalsma, R. C. and Lohmann, G. P.: Paleocene–Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean, Special Publication, Micropaleontology, 4, 1–90, 1983.
Trauth, F.: Das Eozänvorkommen bei Radstadt im Pongau und seine Beziehungen zu den gleichalterigen Ablagerungen bei Kirchberg am Wechsel und Wimpassing am Leithagebirge,Denkschriften der Kaiserlichen Akademie der Wissenschaften Wien, Mathematisch-Naturwissenschaftliche Classe, 95, 171–278, 1918.
Van der Zwaan, G. J.: Paleoecology of late Miocene Mediterranean foraminifera, Doctoral dissertation, Utrecht University, 1982.
Van Morkhoven, F. P. C. M., Berggren, W. A., Edwards, A. S., and Oertli, H. J.: Cenozoic cosmopolitan deep-water benthic Foraminifera, Pau, Elf Aquitaine, 1986.
Vella, P.: Studies in New Zealand foraminifera, Part 1 – Foraminifera from Cook Strait, Part 11 – Upper Miocene to Recent species of the genus Notorotalia, New Zeal. Geol. Surv. Paleontol. Bull., 28, 1–64, 1957.
Vénec-Peyré, M. T.: “Les Planches inédites de Foraminiféres d'Alcide d'Orbigny: á l'aube de la micropaleontology”, Muséum national d'Histoire naturelle, Paris, 302 pp., 2005.
Voloshinova, N. A.: Iskopaemye Foraminifery SSRS, Nonionidy, Kassidulinidy i Khilostomellidy, Fossil foraminifera of the USSR, Nonionidae, Cassidulinidae and Chilostomellidae, edited by: Voloshinova, N. A. and Dain, L. G., Vsesoyuznogo Neftyanogo Nauchnoissledovatel'skogo Geologo-razvedochnogo Instituta (VNIGRI), 63, 1–114, 1952.
von Gümbel, C. W.: Beiträge zur Foraminiferenfauna der nordalpinen Eocängebilde, Abhandlungen der K. Bayerischen Akademie der Wissenschaften (1870), 10, 581–730, 1868.
Williamson, W. C.: On the Recent Foraminifera of Great Britain, London, Ray Society, 107 pp., 1858.
Wright, R.: Neogene benthic foraminifera from DSDP leg 42A, Mediterranean Sea, DSDP Initial Reports, 42, 709–726, 1978.
Yassini, I. and Jones, B. G.: Foraminiferida and ostracoda from estuarine and shelf environments on the southeastern coast of Australia, University of Wollongong Press, Australia, 484 pp., 1995.
Short summary
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling Program Site U1506 in the Tasman Sea from the Late Miocene to the Early Pliocene (between 7.4 to 4.5 million years ago). We described and illustrated the 36 most common species; analysed the past ocean depth of the site; and investigated the environmental conditions at the seafloor during the Biogenic Bloom phenomenon, a global phase of high marine primary productivity.
This paper examines benthic foraminifera, single-celled organisms, at Integrated Ocean Drilling...