Articles | Volume 43, issue 2
https://doi.org/10.5194/jm-43-211-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jm-43-211-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pliocene–Pleistocene warm-water incursions and water mass changes on the Ross Sea continental shelf (Antarctica) based on foraminifera from IODP Expedition 374
Julia L. Seidenstein
CORRESPONDING AUTHOR
U.S. Geological Survey, Florence Bascom Geoscience Center, 12201 Sunrise Valley Dr MS926A, Reston, VA 20192, USA
Department of Earth, Geographic, and Climate Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
R. Mark Leckie
Department of Earth, Geographic, and Climate Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
Robert McKay
Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
Laura De Santis
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
David Harwood
Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
A full list of authors and their affiliations appears at the end of the paper.
Related authors
No articles found.
Samantha E. Bombard, R. Mark Leckie, Imogen M. Browne, Amelia E. Shevenell, Robert M. McKay, David M. Harwood, and the IODP Expedition 374 Scientists
J. Micropalaeontol., 43, 383–421, https://doi.org/10.5194/jm-43-383-2024, https://doi.org/10.5194/jm-43-383-2024, 2024
Short summary
Short summary
The Ross Sea record of the Miocene Climatic Optimum (~16.9–14.7 Ma) and the Middle Miocene Climate Transition (~14.7–13.8 Ma) can provide critical insights into the Antarctic ocean–cryosphere system during an ancient time of extreme warmth and subsequent cooling. Benthic foraminifera inform us about water masses, currents, and glacial conditions in the Ross Sea, and planktic foram invaders can inform us of when warm waters melted the Antarctic Ice Sheet in the past.
Serena N. Dameron, R. Mark Leckie, David Harwood, Reed Scherer, and Peter-Noel Webb
J. Micropalaeontol., 43, 187–209, https://doi.org/10.5194/jm-43-187-2024, https://doi.org/10.5194/jm-43-187-2024, 2024
Short summary
Short summary
In 1977-79, the Ross Ice Shelf Project recovered ocean sediments ~ 450 km south of the present-day ice shelf calving front. Within these sediments are microfossils, which are used to recreate the history of the West Antarctic Ice Sheet (WAIS) and address how the ice sheet responded to past times of extreme warmth. The microfossils reveal the WAIS collapsed multiple times in the past 17 million years. These results inform predictions of future WAIS response to rising global temperatures.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021, https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
Short summary
PALEOSTRIP has been developed in the framework of past Antarctic ice sheet reconstructions for periods when bathymetry around Antarctica differed substantially from today. It has been designed for users with no knowledge of numerical modelling and allows users to switch on and off the processes involved in backtracking and backstripping. Applications are broad, and it can be used to restore any continental margin bathymetry or sediment thickness and to perform basin analysis.
Related subject area
Planktic foraminifera
Upper Oligocene to Pleistocene planktonic foraminifera stratigraphy at North Atlantic DSDP Site 407, Reykjanes Ridge: diversity trends and biozonation using modern Neogene taxonomic concepts
Rediscovering Globigerina bollii Cita and Premoli Silva 1960
Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans
Spine-like structures in Paleogene muricate planktonic foraminifera
Taxonomic review of living planktonic foraminifera
Upper Eocene planktonic foraminifera from northern Saudi Arabia: implications for stratigraphic ranges
Jurassic planktic foraminifera from the Polish Basin
Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Middle Jurassic (Bajocian) planktonic foraminifera from the northwest Australian margin
Ontogenetic disparity in early planktic foraminifers
Seasonal and interannual variability in population dynamics of planktic foraminifers off Puerto Rico (Caribbean Sea)
Calcification depth of deep-dwelling planktonic foraminifera from the eastern North Atlantic constrained by stable oxygen isotope ratios of shells from stratified plankton tows
Reproducibility of species recognition in modern planktonic foraminifera and its implications for analyses of community structure
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Tirza Maria Weitkamp, Mohammad Javad Razmjooei, Paul Nicholas Pearson, and Helen Katherine Coxall
J. Micropalaeontol., 44, 1–78, https://doi.org/10.5194/jm-44-1-2025, https://doi.org/10.5194/jm-44-1-2025, 2025
Short summary
Short summary
Deep Sea Drilling Project Site 407, near Iceland, offers a valuable 25-million-year record of planktonic foraminifera evolution from the Late Cenozoic. Species counts and ranges, assemblage changes, and biostratigraphic zones were identified. Key findings include the shifts in species dominance and diversity. Challenges include sediment gaps and missing biozone markers. We aim to enhance the Neogene–Quaternary Middle Atlas and improve the North Atlantic palaeoceanography and biostratigraphy.
Alessio Fabbrini, Maria Rose Petrizzo, Isabella Premoli Silva, Luca M. Foresi, and Bridget S. Wade
J. Micropalaeontol., 43, 121–138, https://doi.org/10.5194/jm-43-121-2024, https://doi.org/10.5194/jm-43-121-2024, 2024
Short summary
Short summary
We report on the rediscovery of Globigerina bollii, a planktonic foraminifer described by Cita and Premoli Silva (1960) in the Mediterranean Basin. We redescribe G. bollii as a valid species belonging to the genus Globoturborotalita. We report and summarise all the recordings of the taxon in the scientific literature. Then we discuss how the taxon might be a palaeogeographical indicator of the intermittent gateways between the Mediterranean Sea, Paratethys, and Indian Ocean.
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023, https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Short summary
Planktonic foraminifera are marine plankton that have a long and continuous fossil record. They are used for correlating and dating ocean sediments and studying evolution and past climates. This paper presents new information about Pulleniatina, one of the most widespread and abundant groups, from an important site in the Pacific Ocean. It also brings together a very large amount of information on the fossil record from other sites globally.
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023, https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Short summary
Planktonic foraminifera are microscopic single-celled organisms populating world oceans. They have one of the most complete fossil records; thanks to their great abundance, they are widely used to study past marine environments. We analysed and measured series of foraminifera shells from Indo-Pacific sites, which led to the description of a new species of fossil planktonic foraminifera. Part of its population exhibits pink pigmentation, which is only the third such case among known species.
Anieke Brombacher, Alex Searle-Barnes, Wenshu Zhang, and Thomas H. G. Ezard
J. Micropalaeontol., 41, 149–164, https://doi.org/10.5194/jm-41-149-2022, https://doi.org/10.5194/jm-41-149-2022, 2022
Short summary
Short summary
Foraminifera are sand-grain-sized marine organisms that build spiral shells. When they die, the shells sink to the sea floor where they are preserved for millions of years. We wrote a software package that automatically analyses the fossil spirals to learn about evolution of new shapes in the geological past. With this software we will be able to analyse larger datasets than we currently can, which will improve our understanding of the evolution of new species.
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022, https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Short summary
The microscopic shells of planktonic foraminifera accumulate on the sea floor over millions of years, providing a rich archive for understanding the history of the oceans. We examined an extinct group that flourished between about 63 and 32 million years ago using scanning electron microscopy and show that they were covered with needle-like spines in life. This has implications for analytical methods that we use to determine past seawater temperature and acidity.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Bridget S. Wade, Mohammed H. Aljahdali, Yahya A. Mufrreh, Abdullah M. Memesh, Salih A. AlSoubhi, and Iyad S. Zalmout
J. Micropalaeontol., 40, 145–161, https://doi.org/10.5194/jm-40-145-2021, https://doi.org/10.5194/jm-40-145-2021, 2021
Short summary
Short summary
We examined the planktonic foraminifera (calcareous zooplankton) from a section in northern Saudi Arabia. We found the assemblages to be diverse, well-preserved and of late Eocene age. Our study provides new insights into the stratigraphic ranges of many species and indicates that the late Eocene had a higher tropical/subtropical diversity of planktonic foraminifera than previously reported.
Maria Gajewska, Zofia Dubicka, and Malcolm B. Hart
J. Micropalaeontol., 40, 1–13, https://doi.org/10.5194/jm-40-1-2021, https://doi.org/10.5194/jm-40-1-2021, 2021
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Marjorie Apthorpe
J. Micropalaeontol., 39, 93–115, https://doi.org/10.5194/jm-39-93-2020, https://doi.org/10.5194/jm-39-93-2020, 2020
Short summary
Short summary
Three well-preserved new species of Middle Jurassic (Bajocian) planktonic foraminifera from the continental margin of northwest Australia are described. This is on the southern shelf of the Tethys Ocean, and these planktonics are the first to be reported from the Jurassic Southern Hemisphere. Described as new are Globuligerina bathoniana australiana n. ssp., G. altissapertura n. sp. and Mermaidogerina loopae n. gen. n. sp. The research is part of a study of regional Jurassic foraminifera.
Sophie Kendall, Felix Gradstein, Christopher Jones, Oliver T. Lord, and Daniela N. Schmidt
J. Micropalaeontol., 39, 27–39, https://doi.org/10.5194/jm-39-27-2020, https://doi.org/10.5194/jm-39-27-2020, 2020
Short summary
Short summary
Changes in morphology during development can have profound impacts on an organism but are hard to quantify as we lack preservation in the fossil record. As they grow by adding chambers, planktic foraminifera are an ideal group to study changes in growth in development. We analyse four different species of Jurassic foraminifers using a micro-CT scanner. The low morphological variability suggests that strong constraints, described in the modern ocean, were already acting on Jurassic specimens.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Isabel S. Fenton, Ulrike Baranowski, Flavia Boscolo-Galazzo, Hannah Cheales, Lyndsey Fox, David J. King, Christina Larkin, Marcin Latas, Diederik Liebrand, C. Giles Miller, Katrina Nilsson-Kerr, Emanuela Piga, Hazel Pugh, Serginio Remmelzwaal, Zoe A. Roseby, Yvonne M. Smith, Stephen Stukins, Ben Taylor, Adam Woodhouse, Savannah Worne, Paul N. Pearson, Christopher R. Poole, Bridget S. Wade, and Andy Purvis
J. Micropalaeontol., 37, 431–443, https://doi.org/10.5194/jm-37-431-2018, https://doi.org/10.5194/jm-37-431-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Twenty-three scientists identified a set of 100 planktonic foraminifera, noting their confidence in each identification. The median accuracy of students was 57 %; 79 % for experienced researchers. Where they were confident in the identifications, the values are 75 % and 93 %, respectively. Accuracy was significantly higher if the students had been taught how to identify species.
Cited articles
Anderson, J. B.: Ecology and distribution of foraminifera in the Weddell Sea of Antarctica, Micropaleontology, 21, 69–96, 1975.
Azetsu-Scott, K., Clarke, A., Falkner, K., Hamilton, J., Jones, E. P., Lee, C., Petrie, B,, Prinsenberg, S., Starr, M., and Yeats, P.: Calcium carbonate saturation states in the waters of the Canadian Arctic Archipelago and the Labrador Sea, J. Geophys. Res.-Ocean., 115, C11021, doi.org/10.1029/2009JC005917, 2010.
Bamber, J. L., Riva, R. E., Vermeersen, B. L., and LeBrocq, A. M.: Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet, Science, 324, 901–903, https://doi.org/10.1126/science.1169335, 2009.
Bart, P. J., Coquereau, L., Warny, S., and Majewski, W.: In situ foraminifera in grounding zone diamict: A working hypothesis, Antarct. Sci., 28, 313–321, https://doi.org/10.1017/S0954102016000055, 2016.
Beltran, C., Golledge, N. R., Ohneiser, C., Kowalewski, D. E., Sicre, M.-A., Hageman, K. J., Smith, R., Wilson, G. S., and Mainié, F.: Southern Ocean temperature records and ice-sheet models demonstrate rapid Antarctic ice sheet retreat under low atmospheric CO2 during Marine Isotope Stage 31, Quaternary Sci. Rev., 228, 106069, https://doi.org/10.1016/j.quascirev.2019.106069, 2020.
Bernhard, J. M.: Foraminiferal biotopes in Explorers Cove, McMurdo Sound, Antarctica, J. Foramin. Res., 17, 286–297, 1987.
Bohaty, S. M. and Harwood, D. M.: Southern Ocean Pliocene paleotemperature variation from high-resolution silicoflagellate biostratigraphy, Mar. Micropaleontol., 33, 241–272, 1998.
Bollen, M., Riesselman, C. R., Ohneiser, C., Albot, O., McKay, R., Lee, M. K., Yoo, K.-C., Kim, S., Lee, J. I., and Levy, R.: Pleistocene oceanographic variability in the Ross Sea: A multiproxy approach to age model development and paleoenvironmental analyses, Glob. Planet. Change, 216, 103901, https://doi.org/10.1016/j.gloplacha.2022.103901, 2022.
Bombard, S., Leckie, R. M., and and IODP Exp. 374 Science Party: Pleistocene foraminifera of the Ross Sea continental slope and rise, IODP Exp. 374, FORAMS23, June 2023, Perugia Italy, 2023.
Bombard, S., Leckie, R. M., Browne, I., Shevenell, A., McKay, R., Harwood, D. M., and IODP Exp 374 Science Party: Miocene Climatic Optimum and Middle Miocene Climate Transition: A foraminiferal record from the central Ross Sea, Antarctica, J. Micropalaeontol., accepted, 2024.
Bostock, H. C., Barrows, T. T., Carter, L., Chase, Z., Cortese, G., Dunbar, G. B., Ellwood, M., Hayward, B., Howard, W., Neil, H. L., Noble, T. L., Mackintosh, A., Moss, P. T., Moy, A. D., Williams, M. J. M., and Armand, L. K.: A review of the Australian-New Zealand sector of the Southern Ocean over the last 30 ka (Aus-INTIMATE project), Quaternary Sci. Rev., 74, 35–57, https://doi.org/10.1016/j.quascirev.2012.07.018, 2013.
Brigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P., DeConto, R., Koenig, S., Nowaczyk, N., Wennrich, V., Rosén, P., Haltia, E., Cook, T., Gebhardt, C., Meyer-Jacob, C., Snyder, J., and Herzschuh, U.: Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia, Science, 340, 1421–1427, https://doi.org/10.1126/science.1233137, 2013.
Budillon, G., Castagno, P., Aliani, S., Spezie, G., and Padman, L.: Thermocline variability and Antarctic Bottom Water formation at the Ross Sea shelf break, Deep-Sea Res. Pt. I, 58, 1002–1018, https://doi.org/10.1016/j.dsr.2011.07.002, 2011.
Capotondi, L., Bergami, C., Giglio, F., Langone, L., and Ravaioli, M.: Benthic foraminifera distribution in the Ross Sea (Antarctica) and its relationship to oceanography, B. Soc. Paleontol. Ital., 57, 187–202, https://doi.org/10.4435/BSPI.2018.12, 2018.
Castagno, P., Falco, P., Dinniman, M. S., Spezie, G., and Budillon, G.: Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf, J. Mar. Syst., 166, 37–49, https://doi.org/10.1016/j.jmarsys.2016.06.009, 2017.
Coccioni, R. and Galeotti, S.: Foraminiferal biostratigraphy and paleoecology of the CIROS-1 Core from McMurdo Sound (Ross Sea, Antarctica), Terra Antarct., 4, 103–117, 1997.
Colleoni, F., De Santis, L., Siddoway, C. S., Bergamasco, A., Golledge, N. R., Lohmann, G., Passchier, S. and Siegert, M. J.: Spatio-temporal variability of processes across Antarctic ice-bed – ocean interfaces, Nat. Commun., 9, 2289, https://doi.org/10.1038/s41467-018-04583-0, 2018.
Conte R., Rebesco, M., De Santis, L., Colleoni, F., Bensi, M., Bergamasco, A., Kovacevic, V., Gales, J., Zgur, F., Accettella, D., De Steur, L., Ursella, L., McKay, R., Kim, S., Lucchi, R. G., and the IODP Expedition 374 Scientists: Bottom current control on sediment deposition between the Iselin Bank and the Hillary Canyon (Antarctica) since the Late Miocene: An integrated seismic-oceanographic approach, Deep-Sea Res. PT. I, 176, 103606, https://doi.org/10.1016/j.dsr.2021.103606, 2021.
Corliss, B. H.: Taxonomy of Recent deep-sea benthonic foraminifera from the southeast Indian Ocean, Micropaleontology, 25, 1–19, 1979.
Corliss, B. H.: Distribution of Holocene deep-sea benthonic foraminifera in the southwest Indian Ocean, Deep-Sea Res. Pt. A, 30, 95–117, 1983.
DeConto, R. M., Pollard, D., and Kowalewski, D.: Modeling Antarctic ice sheet and climate variations during Marine Isotope Stage 31, Glob. Planet. Change, 96, 181–188, https://doi.org/10.1016/j.gloplacha.2012.05.018, 2012.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
de Wet, G. A., Castañeda, I. S., DeConto, R. M., and Brigham-Grette, J.: A high-resolution mid-Pleistocene temperature record from Arctic Lake El'gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31?, Earth Planet. Sc. Lett., 436, 56–63, https://doi.org/10.1016/j.epsl.2015.12.021, 2016.
Diester-Haass, L., Billups, K., and Lear, C.; Productivity changes across the mid-Pleistocene climate transition, Earth-Sci. Rev., 179, 372–391, https://doi.org/10.1016/j.earscirev.2018.02.016, 2018.
Dinniman, M. S., Klinck, J. M., and Smith, Jr., W. O.: A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves, Deep-Sea Res. Pt. II, 28, 1508–1523, https://doi.org/10.1016/j.dsr2.2010.11.013, 2011.
Dotto, T. S., Garabato, A. N., Bacon, S., Tsamados, M., Holland, P. R., Hooley, J., Frajka-Williams, E., Ridout, A., and Meredith, M. P.: Variability of the Ross Gyre, Southern Ocean: Drivers and responses revealed by satellite altimetry, Geophys. Res. Lett., 45, 6195–6204, https://doi.org/10.1029/2018GL078607, 2018.
Dowsett, H. J., Haywood, A. M., Valdes, P. J., Robinson, M. M., Lunt, D. J., Hill, D. J., Stoll, D. K., and Foley, K. M.: Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3, Palaeogeogr. Palaeocl., 309, 83–91, https://doi.org/10.1016/j.palaeo.2011.03.016, 2011.
Duplessy, J. C., Roche, D. M., and Kageyama, M.: The deep ocean during the last interglacial period, Science, 316, 89–91, https://doi.org/10.1126/science.1138582, 2007.
Dwyer, G. S. and Chandler, M. A.: Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes, Philos. T. R. Soc. A, 367, 157–168, 2009.
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D. A., and Piotrowski, A. M.: Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition, Science, 337, 704–709, https://doi.org/10.1126/science.1221294, 2012.
Emerson, S. and Bender, M.: Carbon fluxes at the sediment-water interface of the deep-sea: Calcium carbonate preservation, J. Mar. Res., 39, 139–162, 1981.
Fillon, R. H.: Late Cenozoic foraminiferal paleoecology of the Ross Sea, Antarctica, Micropaleontology, 20, 129–151, https://doi.org/10.2307/1485056, 1974.
Freeman, N. M., Lovenduski, N. S., and Gent, P. R.: Temporal variability in the Antarctic Polar Front (2002–2014), J. Geophys. Res.-Ocean., 121, 7263–7276, https://doi.org/10.1002/2016JC012145, 2016.
Gales, J. A., McKay, R. M., De Santis, L., Rebesco, M., Laberg, J. S., Shevenell, A. E., Harwood, D., Leckie, R. M., Kulhanek, D. K., King, M., Patterson, M., Lucchi, R. G., Kim, S., Kim, S., Dodd, J., Seidenstein, J., Prunella, C., Ferrante, G. M., and IODP Exp 374 Scientists: Climate-controlled submarine landslides on the Antarctic continental margin, Nat. Commun., 14, 2714, https://doi.org/10.1038/s41467-023-38240-y, 2023.
Gales J., Rebesco M., De Santis L., Bergamasco A., Colleoni F., Kim S., Accettella D., Kovacevic V., Liu Y., Olivo E., Colizza E., Florindo-Lopez C., Zgur F., and McKay R.: Role of dense shelf water in the development of Antarctic submarine canyon morphology, Geomorphology, 372, 107453, https://doi.org/10.1016/j.geomorph.2020.107453, 2021.
Gooday, A. J.: Benthic foraminifera (Protista) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics, Adv. Mar. Biol., 46, 1–90, 2003.
Grant, G. R., Naish, T. R., Dunbar, G. B., Stocchi, P., Kominz, M. A., Kamp, P. J. J., Tapia, C. A., McKay, R. M., Levy, R. H., and Patterson, M. O.: The amplitude and origin of sea-level variability during the Pliocene epoch, Nature, 574, 237–241, https://doi.org/10.1038/s41586-019-1619-z, 2019.
Hammer, Ø., Harper, D. A. T., and P. D. Ryan, P. D.: PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 4, 9 pp., http://palaeo-electronica.org/2001_1/past/issue1_01.htm (last access: 15 May 2024), 2001.
Hammer, Ø.: Reference Manual: PAST (PAleontological STatistics), version 4.13, Palaeontologia electronica, 2023.
Hauck, J., Gerdes, D., Hillenbrand, C.-D., Hoppema, M., Kuhn, G., Nehrke, G., Völker, C., and Wolf-Gladrow, D. A.: Distribution and mineralogy of carbonate sediments on Antarctic shelves, J. Mar. Syst., 90, 77–87, 2012.
Hauck, J., Arrigo, K. R., Hoppema, M., van Dijken, G. L., Völker, C., and Wolf-Gladrow, D. A.: Insignificant buffering capacity of Antarctic shelf carbonates, Global Biogeochem. Cy., 27, 1–10, https://doi.org/10.1029/2011GB004211, 2013
Hayward, B. W., Grenfell, H. R., Sabaa, A. T., and Neil H. L.: Factors influencing the distribution of Subantarctic deep-sea benthic foraminifera, Campbell and Bounty Plateaux, New Zealand, Mar. Micropaleontol., 62, 141–166, 2007.
Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J., and McCulloch, M.: Global sea-level fluctuations during the Last Interglaciation (MIS 5e), Quaternary Sci. Rev., 26, 2090–2112, https://doi.org/10.1016/j.quascirev.2007.06.019, 2007.
Herbert, T. D.: The Mid-Pleistocene Climate Transition, Ann. Rev. Earth Planet. Sc., 51, 389–418, https://doi.org/10.1146/annurev-earth-032320-104209, 2023.
Hillenbrand, C.-D., Kuhn, G., and Frederichs, T.: Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: An indicator for ice-sheet collapse?, Quaternary Sci. Rev., 28, 1147–1159, https://doi.org/10.1016/j.quascirev.2008.12.010, 2009.
Hillenbrand, C.-D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R., Kender, S., Williams, M., Andersen, T. J., Jernas, P. E., Elderfield, H., Klages, J. P., Roberts, S. J., Gohl, K., Larter, R. D., and Kuhn, G.: West Antarctic Ice Sheet retreat driven by Holocene warm water incursions, Nature, 547, 43–48, https://doi.org/10.1038/nature22995, 2017.
Hodell, D. A., Kennett, J. P., and Leonard, K. A.: Climatically induced changes in vertical water mass structure of the Vema Channel during the Pliocene: Evidence from DSDP Holes 516A, 517, and 518, in: Initial Reports of the Deep Sea Drilling Project, edited by: Barker, P. F., Carlson, R. L., and Johnson, D. A., National Science Foundation, 72, 907–919, 1983.
Holbourn, A., Kuhnt, W., Kochhann, K. G., Matsuzaki, K. M., and Andersen, N.: Middle Miocene climate–carbon cycle dynamics: Keys for understanding future trends on a warmer Earth?, https://doi.org/10.1130/2022.2556(05), 2022.
Ishino, S. and Suto, I.: Late Pliocene sea-ice expansion and its influence on diatom species turnover in the Southern Ocean, Mar. Micropaleontol., 160, 101895, https://doi.org/10.1016/j.marmicro.2020.101895, 2020.
Ishman, S. E. and Domack, E. W.: Oceanographic controls on benthic foraminifers from Bellingshausen margin of the Antarctic Peninsula, Mar. Micropaleontol., 24, 119–155, 1994.
Ishman, S. E. and Szymcek, P.: Foraminiferal distributions in the former Larsen-A Ice Shelf and Prince Gustav Channel region, eastern Antarctic Peninsula Margin: A baseline for Holocene paleoenvironmental change, in: Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives, edited by: Domack, E., Levente, A., Burnet, A., Bindschadler, R., Convey, P., and Kirby, M., 79, 239–260, https://doi.org/10.1029/AR079p0239, 2003.
Ishman, S. E. and Webb, P.-N.: Late Neogene benthic foraminifera from the Victoria Land Basin margin, Antarctica: Application to glacio-eustatic and tectonic events, Revue de paléobiologie, Special Volume 2, 523–551, 1988.
Jacobs, S. S.: On the nature and significance of the Antarctic Slope Front, Mar. Chem., 35, 9–24, 1991.
Jacobs, S. S., Bauer, E. B., Bruchhausen, P. M., Gordon, A. L., Root, T. F., and Rosselot, F. L.: Eltanin reports cruises 47–50 1971; 52–55 1972, hydrographic stations, bottom photographs, current measurements. nephelometer profiles, Tech. Rep. CU 2-74, LDGO, Columbia Univ., Palisades, NY, https://doi.org/10.7916/d8-3d9t-j927, 1974.
Jenkins, A., Dutrieux, P., Jacobs, S., Steig, E. J., Gudmundsson, G. H., Smith, J., and Heywood, K. J.: Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea, Oceanography, 29, 106–117, https://doi.org/10.5670/oceanog.2016.103, 2016.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Paleoceannographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, Dev. Mar. Geol., 1, 263–325, https://doi.org/10.1016/S1572-5480(07)01012-3, 2007.
Kellogg, T. B., Truesdale, R. S., and Osterman, L. E.: Late Quaternary extent of the West Antarctic ice sheet: new evidence from Ross Sea Cores, Geology, 7, 249–253, 1979.
Kennett, J. P.: Foraminiferal evidence of a shallow calcium carbonate solution boundary, Ross Sea, Antarctica, Science, 153, 191–193, https://doi.org/10.1126/science.153.3732.191, 1966.
Kennett, J. P.: The Fauna of the Ross Sea: Ecology and Distribution of Foraminifera, New Zealand Department of Scientific and Industrial Research, 186, 1–47, 1968.
Kim, S., Lee, J. I., McKay, R. M., Yoo, K.-C., Bak, Y.-S., Lee, M. K., Roh, Y. H., Yoon, H. I., Moon, H. S., and Hyun, C.-U.: Late Pleistocene paleoceanographic changes in the Ross Sea: Glacial-interglacieal variations in paleoproductivity, nutrient utilization, and deep-water formation, Quaternary Sci. Rev., 239, 106356, https://doi.org/10.1016/j.quascirev.2020.106356, 2020.
Kulhanek, D. K., Prunella, C., McLaughlin, J. R., Griffin, B., McKay, R. M., Patterson, M. O., Gales, J., Shevenell, A. E. and van Peer, T. E.: Data report: IODP Site U1523 composite section and stratigraphic splice based on X-ray fluorescence data, Proceedings of the International Ocean Discovery Program, 374.202, https://doi.org/10.14379/iodp.proc.374.202.2022, 2022.
Lamy, F., Winckler, G., Arz, H. W., Farmer, J. R., Gottschalk, J., Lembke-Jene, L., Middleton, J. L., van der Does, M., Tiedemann, R., Alvarez Zarikian, C., and Basak, C.: Five million years of Antarctic Circumpolar Current strength variability, Nature, 627, 789–796, https://doi.org/10.1038/s41586-024-07143-3, 2024.
Leckie, R. M. and Olson, H. C.: Foraminifera as proxies for sea-level change on siliciclastic margins, in: Micropaleontologic Proxies for Sea-Level Change and Stratigraphic Discontinuities, edited by: Olson, H. C. and Leckie, R. M., SEPM Society for Sedimentary Geology Special Publication No. 75, 5–19, https://doi.org/10.2110/pec.03.75.0005, 2003.
Leckie, R. M. and Webb, P.-N.: Late Oligocene-Early Miocene glacial record of the Ross Sea, Antarctica: Evidence from DSDP Site 270, Geology, 11, 578–582, 1983.
Leckie, R. M. and Webb, P.-N.: Late Paleogene and Early Neogene foraminifers of Deep Sea Drilling Project Site 270, Ross Sea, Initial Reports DSDP 90: 1093–1142, Washington, DC, US Government Printing Office, National Science Foundation, 1986.
Lindberg, K. R., Daniels, W. C., Castañeda, I. S., and Brigham-Grette, J.: Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia), Clim. Past, 18, 559–577, https://doi.org/10.5194/cp-18-559-2022, 2022.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lythe, M. B., Vaughan, D. G., and Consortium: BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res.-Sol. Ea., 106, 11335–11351, https://doi.org/10.1029/2000JB900449, 2001.
Mackensen, A. and Berggren, W. A.: Paleogene benthic foraminifers from the southern Indian Ocean (Kerguelen Plateau): Biostratigraphy and paleoecology, edited by: Wise, S. W., Jr., Schlich, R., et al., in: Proceedings of the Ocean Drilling Program, 120, 603–630, 1992.
Mackensen, A., Schmiedl, G., Harloff, J., and Giese, M.: Deep-Sea foraminifera in the South Atlantic Ocean: Ecology and assemblage generation, Micropaleontology, 41, 342–358, 1995.
Majewski, W.: Benthic foraminiferal communities: Distribution and ecology in Admiralty Bay, King George Island, West Antarctica, Pol. Polar Res., 26, 159–214, 2005.
Majewski, W.: Benthic foraminifera from Pine Island and Ferrero bays, Admundsen Sea, Pol. Polar Res., 34, 169–200, https://doi.org/10.2478/popore-2013-0012, 2013.
Majewski, W., Wellner, J. S., and Anderson, J. B.: Environmental connotations for benthic foraminiferal assemblages from coastal West Antarctica, Mar. Micropaleontol., 124, 1–15, https://doi.org/10.1016/j.marmicro.2016.01.002, 2016.
Majewski, W., Bart, P. J., and McGlannan, A. J.: Foraminiferal assemblages from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica, Palaeogeogr. Palaeocl., 493, 64–81, https://doi.org/10.1016/j.palaeo.2017.12.041, 2018.
Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J., and Anderson, J. B.: Foraminiferal patterns in deglacial sediment in the western Ross Sea, Antarctica: Life near grounding lines, Paleoceanography and Paleoclimatology, 35, 03716, https://doi.org/10.1029/2019PA003716, 2020.
Majewski, W., Holzmann, M., Gooday, A. J., Majda, A., Mamos, T., and Pawlowski, J.: Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean, Sci. Rep., 11, 19869, https://doi.org/10.1038/s41598-021-99155-6, 2021.
Malinverno, E., Maffioli, P., and Gariboldi, K.: Latitudinal distribution of extant fossilizable phytoplankton in the Southern Ocean: Planktonic provinces, hydrographic fronts and palaeoeclogical perspectives, Mar. Micropaleontol., 123, 41–58, https://doi.org/10.1016/j.marmicro.2016.01.001, 2016.
McKay, R., Naish, T., Carter, L., Riesselman, C., Dunbar, R., Sjunneskog, C., Winter, D., Sangiorgi, F., Warren, C., Pagani, M. and Schouten, S.: Antarctic and Southern Ocean influences on Late Pliocene global cooling, P. Natl. Acad. Sci. USA, 109, 6423–6428, https://doi.org/10.1073/pnas.1112248109, 2012a.
McKay, R., Naish, T., Powell, R., Barrett, P., Scherer, R., Talarico, F., Kyle, P., Monien, D., Kuhn, G., Jackolski, C., and Williams, T.: Pleistocene variability of Antarctic Ice Sheet extent in the Ross Embayment, Quaternary Sci. Rev., 34, 93–112, https://doi.org/10.1016/j.quascirev.2011.12.012, 2012b.
McKay, R. M., De Santis, L., Kulhanek, D. K., and the Expedition 374 Scientists Ross Sea West Antarctic Ice Sheet History, Proceedings of the International Ocean Discovery Program, 374: College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/iodp.proc.374.2019, 2019.
McKnight Jr., W. M.: The distribution of foraminifera off parts of the Antarctic coast, Paleontological Research Institution, 44, 60–158, 1962.
Melis, R. and Salvi, G.: Late Quaternary foraminiferal assemblages from western Ross Sea (Antarctica) in relation to the main glacial and marine lithofacies, Mar. Micropaleontol., 70, 39–53, https://doi.org/10.1016/j.marmicro.2008.10.003, 2009.
Melis, R. and Salvi, G.: Foraminifer and ostracod occurrence in a cool-water carbonate factory of the Cape Adare (Ross Sea, Antarctica): A key lecture for the climatic and oceanographic variations in the last 30,000 years, Geosciences, 10, 413, https://doi.org/10.3390/geosciences10100413, 2020.
Melis, R., Capotondi, L., Torricella, F., Ferretti, P., Geniram, A., Hong, J. K., Kuhn, G., Khim, B.-K., Kim, S., Malinverno, E., Yoo, K. C., and Colizza, E.: Last Glacial Maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett Ridge, J. Micropalaeontol., 40, 15–35, https://doi.org/10.5194/jm-40-15-2021, 2021.
Melles, M., Brigham-Grette, J., Minyuk, P. S., Nowaczyk, N. R., Wennrich, V., DeConto, R. M., Anderson, P. M., Andreev, A. A., Coletti, A., Cook, T. L., and Haltia-Hovi, E.: 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE Russia, Science, 337, 315–320, https://doi.org/10.1126/science.1222135, 2012.
Milam, R. W. and Anderson, J. B.: Distribution and ecology of recent benthonic foraminifera of the Adelie-George V continental shelf and slope, Antarctica, Mar. Micropaleontol., 6, 297–325, 1981.
Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., and Sosdian, S.: High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation, Geology, 40, 407–410, https://doi.org/10.1130/G32869.1, 2012.
Morard, R., Quillévéré, F., Douady, C. J., de Vargas, C., de Garidel-Thoron, T., and Escarguel, G.: Worldwide genotyping in the planktonic foraminifera Globoconella inflata: Implications for life history and paleoceanography, PLoS ONE, 6, e26665, https://doi.org/10.1371/journal.pone.0026665, 2011.
Morrison, A. K., Hogg, A. McC., England, M. H., and Spence, P.: Warm Circumpolar Deep-Water transport toward Antarctica driven by local dense water export in canyons, Sci. Adv., 6, eaav2516, https://doi.org/10.1126/sciadv.aav2516, 2020.
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., Carter, L., DeConto, R., Huybers, P., McKay, R., Pollard, D., Ross, J., Winter, D., Barrett, P., Browne, G., Cody, R., Cowan, E., Crampton, J., Dunbar, G., Dunbar, N., Florindo, F., Gebhardt, C., Graham, I., Hannah, M., Hansaraj, D., Harwood, D., Helling, D., Henrys, S., Hinnov, L., Kuhn, G., Kyle, P., Läufer, A., Maffioli, P., Magens, D., Mandernack, K., McIntosh, W., Millan, C., Morin, R., Ohneiser, C., Paulsen, T., Persico, D., Raine, I., Reed, J., Riesselman, C., Sagnotti, L., Schmitt, D., Sjunneskog, C., Strong, P., Taviani, M., Vogel, S., Wilch, T., and Williams, T.: Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations, Nature, 458, 7236, https://doi.org/10.1038/nature07867, 2009.
Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M., and Rignot, E.: Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves, Nat. Commun., 9, 3403, https://doi.org/10.1038/s41467-018-05813-1, 2018.
Nelson, C. S. and Cooke, P. J.: History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic – a synthesis, New Zeal. J. Geol. Geop., 44, 535–553, 2001.
Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, Deep-Sea Res. Pt. II, 56, 778–795, https://doi.org/10.1016/j.dsr2.2008.10.033, 2009.
Osterman, L. E. and Kellogg, T. B.: Recent benthic foraminiferal distributions from the Ross Sea, Antarctica; relation to ecologic and oceanographic conditions, J. Foramin. Res., 9, 250–269, https://doi.org/10.2113/gsjfr.9.3.250, 1979.
Overpeck, J. T., Otto-Bliesner, B. L., Miller, G. H., Muhs, D. R., Alley, R. B., and Kiehl, J. T.: Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise, Science, 311, 1747–1750, https://doi.org/10.1126/science.1115159 2006.
Pagani, M., Liu, Z., LaRiviere, J., and Ravelo, A. C.: High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations, Nat. Geosci., 3, 27–30, https://doi.org/10.1038/ngeo724, 2010.
Pardo, P. C., Pérez, F. F., Velo, A., and Gilcoto, M.: Water mass distribution in the Southern Ocean: Improvement of an extended OMP (eOMP) analysis, Prog. Oceanogr., 103, 92–105, https://doi.org/10.1016/j.pocean.2012.06.002, 2012.
Patterson, M. O. and Ishman, S. E.: Neogene benthic foraminiferal assemblages and paleoenvironmental record for McMurdo Sound, Antarctica, Geosphere, 8, 1331–1341, https://doi.org/10.1130/GES00771.1, 2012.
Patterson, M. O., McKay, R., Naish, T., Escutia, C., Jimenez-Espejo, F. J., Raymo, M. E., Meyers, S. R., Tauxe, L., Brinkhuis, H., and Expedition 318 Scientists: Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene, Nat. Geosci., 7, 841–847, https://doi.org/10.1038/ngeo2273, 2014.
Peterson, L. C.: Recent abyssal benthic foraminiferal biofacies of the eastern equatorial Indian Ocean, Mar. Micropaleontol., 8, 479–519, 1984.
Peterson, L. C. and Lohmann, G. P.: Major change in Atlantic deep and bottom waters 700,000 yr ago: Benthonic foraminiferal evidence from the South Atlantic, Quaternary Res., 17, 26–38, 1982.
Pflum, C. E.: The distribution of foraminifera in the eastern Ross Sea, Amundsen Sea and Bellingshausen Sea, Antarctica, Paleontological Research Institution, 50, 151–209, 1966.
Pollard, D. and DeConto, R. M.: Modelling West Antarctic ice sheet growth and collapse through the past five million years, Nature, 458, 329–332, https://doi.org/10.1038/nature07809, 2009.
Pritchard, H., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van den Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 484, 7395, https://doi.org/10.1038/nature10968, 2012.
Prothro, L. O., Simkins, L. M., Majewski, W., and Anderson, J. B.: Glacial retreat patterns and processes determined from integrated sedimentology and geomorphology records, Mar. Geol., 395, 104–119, https://doi.org/10.1016/j.margeo.2017.09.012, 2018.
Raymo, M. E., Mitrovica, J. X., O'Leary, J., DeConto, R. M., and Hearty, P. J.: Departures from eustasy in Pliocene sea-level records, Nat. Geosci., 4, 328–332, https://doi.org/10.1038/NGEO1118, 17 April 2011.
Sachs, O., Sauter, E. J., Schlüter, M., Rutgers van der Loeff, M. M., Jerosch, K., and Holby, O.: Benthic organic carbon flux and oxygen penetration reflect different plankton provinces in the Southern Ocean, Deep-Sea Res. Pt. I, 56, 1319–1335, https://doi.org/10.1016/j.dsr.2009.02.003, 2009.
Sanders, H. L.: Marine benthic diversity: A comparative study, Am. Nat., 102, 243–282, 1968.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay, R., Cody, R. D., Pross, J., Van De Flierdt, T., Bohaty, S. M., Levy, R., Williams, T., Escutia, C. and Brinkhuis, H.: Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9, 1–11, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., and Kamb, B.: Pleistocene collapse of the West Antarctic Ice Sheet, Science, 281, 82–85, https://doi.org/10.1126/science.281.5373.82, 1998.
Scherer, R. P., Bohaty, S. M., Dunbar, R. B., Esper, O., Flores, J. A., Gersonde, R., Harwood, D. M., Roberts, A. P., and Taviani, M.: Antarctic records of precession-paced insolation-driven warming during Early Pleistocene Marine Isotope Stage 31, Geophys. Res. Lett., 35, L03505, https://doi.org/10.1029/2007GL032254, 2008.
Schmiedl, G. and Mackensen, A.: Late Quaternary paleoproductivity and deep-water circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera, Palaeogeogr. Palaeocl., 130, 43–80, 1997.
Seidenstein, J. L. and Leckie, R. M.: Pliocene-Pleistocene Warm Water Incursions and Water Mass Changes on the Ross Sea Continental Shelf (Antarctica) Based on Foraminifera, IODP Exp 374, USGS Data Release Products [data set], https://www.sciencebase.gov/catalog/item/653914f0d34ee4b6e05bbb1e (last access: 28 June 2024), 2023.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion, Science, 305, 1766–1770, 2004.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective, Geochem. Geophy. Geosy., 9, Q02006, https://doi.org/10.1029/2007GC001736, 2008.
Si, Y. Stewart, A. L., and Eisenman, I.: Heat transport across the Antarctic Slope Front controlled by cross-slope salinity gradients, Sci. Adv., 9, eadd7049, https://doi.org/10.1126/sciadv.add7049, 2023.
Smith, W. O. Jr., Sedwick, P. N., Arrigo, K. R., Ainley, D. G., and Orsi, A. H.: The Ross Sea in a sea of change, Oceanography, 25, 90–103, https://doi.org/10.5670/oceanog.2012.80, 2012.
Smith, J. A., Graham, A. G. C., Post, A. L., Hillenbrand, C.-D., Bart, P. J., and Powell, R. D.: The marine geological imprint of Antarctic ice shelves, Nat. Commun., 10, 5635, https://doi.org/10.1038/s41467-019-13496-5, 2019.
Sokolov, S. and Rintoul, S. R.: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths, J. Geophys. Res.-Ocean., 114, C11018, https://doi.org/10.1029/2008JC005108, 2009.
Strong, C. P. and Webb, P.-N.: Oligocene and Miocene foraminifera from CRP-2/2A, Victoria Land Basin, Antarctica, Terra Antarct., 8, 461–472, 2000.
Strong, C. P. and Webb, P.-N.: Lower Oligocene foraminiferal fauna from CRP-3 Drillhole, Victoria Land Basin, Antarctica, Terra Antarct., 8, 347–358, 2001.
Szymcek, P., Ishman, S. E., Domack, E. W., and Leventer, A.: Holocene Oceanographic and Climatic Variability of the Vega Drift Revealed Through Foraminiferal Interpretation, Online Proceedings of the 10th ISAEC, edited by: Cooper, A. K. and Raymond, C. R., USGS Open-File Report, 1047, 2007.
Tagliaro, G., Fulthorpe, C. S., Watkins, D. K., De Vleeschouwer, D., Brumsack, H., Bogus, K., and Lavier, L. L.: Late Miocene-Pliocene vigorous deep-sea circulation in the Southeast Indian Ocean: Paleoceanographic and tectonic implications, Paleoceanogr. Paleocl., 37, e2021PA004303, https://doi.org/10.1029/2021PA004303, 2022.
Taylor-Silva, B. I. and Riesselman, C. R.: Polar frontal migration in the warm Late Pliocene: Diatom evidence from the Wilkes Land margin, East Antarctica, Paleoceanogr. Paleocl., 33, 76–92, doi.org/10.1002/2017PA003225, 2018.
Teitler, L., Florindo, F., Warnke, D. A., Filippelli, G. M., Kupp, G., and Taylor, B.: Antarctic Ice Sheet response to a long warm interval across Marine Isotope Stage 31: A cross-latitudinal study of iceberg-rafted debris, Earth Planet. Sc. Lett., 409, 109–119, https://doi.org/10.1016/j.epsl.2014.10.037, 2015.
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The Antarctic Slope Current in a changing climate, Rev. Geophys., 56, 741–770, https://doi.org/10.1029/2018RG000624, 2018.
Villa, G., Persico, D., Wise, S., and Gadaleta, A.: Calcareous nannofossil evidence for Marine Isotope Stage 31 (1 Ma) in Core AND-1B, ANDRILL McMurdo Ice Shelf Project (Antarctica), Glob. Planet. Change, 96/97, 75–86, https://doi.org/10.1016/j.gloplacha.2009.12.003, 2010.
Wang, Y. Zhou, M., Zhang, Z., and Dinniman, M. S.: Seasonal variations in Circumpolar Deep Water intrusions into the Ross Sea continental shelf, Front. Mar. Sci., 10, 1020791, https://doi.org/10.3389/fmars.2023.1020791, 2023.
Ward, B. L. and Webb, P.-N.: Late Quaternary foraminifera from raised deposits of the Cape Royds-Cape Barne area, Ross Island, Antarctica, J. Foramin. Res., 16, 176–200, https://doi.org/10.2113/gsjfr.16.3.176, 1986.
Ward, B. L., Barrett, P. J., and Vella, P.: Distribution and ecology of benthic foraminifera in McMurdo Sound, Antarctica, Palaeogeogr. Palaeocl., 58, 139–153, https://doi.org/10.1016/0031-0182(87)90057-5, 1987.
Webb P.-N.: Benthic foraminifera, in: Antarctic Cenozoic history from the CIROS-1 Drillhole, edited by: Barrett, P. J., McMurdo Sound, DSIR Bull., 245, 99–118, 1989.
Webb, P.-N. and Strong, C. P.: Pliocene benthic foraminifera from CRP-2 (lithostratigraphic unit 2.2), Victoria Land Basin, Antarctica, Terra Antart., 7, 453–459, 2000.
Webb, P.-N. and Strong, C. P.: Foraminiferal biostratigraphy and palaecology in Upper Oligocene-Lower Miocene glacial marine sequences 9, 10, and 11, CRP-2/2A drill hole, Victoria Land Basin, Antarctica, Palaeogeogr. Palaeocl., 231, 71–100, https://doi.org/10.1016/j.palaeo.2005.07.036, 2006.
Webb, P.-N., Leckie, R. M., and Ward, B. L.: Foraminifera (Late Oligocene), in Barrett P.J. (ed.), Antarctic Cenozoic history from the MSSTS-1 Drillhole, McMurdo Sound, DSIR Bull., 237, 115–125, 1986.
Whitehead, J. M. and Bohaty, S.M.: Pliocene summer sea surface temperature reconstruction using silicoflagellates from Southern Ocean ODP Site 1165, Paleoceanography, 18, 1075, https://doi.org/10.1029/2002PA000829, 2003.
Whitworth III, T. and Orsi, A. H.: Antarctic Bottom Water production and export by tides in the Ross Sea, Geophys. Res. Lett., 33, L12609, https://doi.org/10.1029/2006GL026357, 2006.
Wilson, D. J., Bertram, R. A., Needham, E. F., Flierdt, T. van de, Welsh, K. J., McKay, R. M., Mazumder, A., Riesselman, C. R., Jimenez-Espejo, F. J., and Escutia, C.: Ice loss from the East Antarctic Ice Sheet during Late Pleistocene interglacials, Nature, 561, 383–386, https://doi.org/10.1038/s41586-018-0501-8, 2018.
Wu, S. Lembke-Jene, L., Lamy, F., Arz, H. W., Nowaczyk, N., Xiao, W., Zhang, Xu, Hass, H. C., Titschack, J., Zheng, X., Liu, J., Dumm, L., Diekmann, B., Nürnberg, D., Tiedemann, R., and Kuhn, G.: Orbital- and millennial-scale Antarctic Circumpolar variability in the Drake Passage over the past 140,000 years, Nat. Commun., 12, 3948, https://doi.org/10.1038/s41467-021-24264-9, 2021.
Short summary
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past interglacial times. The shells of foraminifera are preserved in Ross Sea sediment, which is collected in cores. Benthic species from Site U1523 inform us about changing water masses and current activity, including incursions of Circumpolar Deep Water. Warm water planktic species were found in sediment samples from four intervals within 3.72–1.82 million years ago, indicating warmer than present conditions.
Warmer waters in the Southern Ocean have led to the loss of Antarctic ice during past...